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We report the results of exact-diagonalization studies of Hubbard models on a 4�4 square lattice with
periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by
inequivalent hopping integrals t and t�. We focus primarily on two patterns, the checkerboard and the striped
cases, for a large range of values of the on-site repulsion U and doped hole concentration x. We present
evidence that superconductivity is strongest for U of the order of the bandwidth and intermediate inhomoge-
neity 0� t�� t. The maximum value of the “pair-binding energy” we have found with purely repulsive inter-
actions is �pb=0.32t for the checkerboard Hubbard model with U=8t and t�=0.5t. Moreover, for near-optimal
values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is
sufficiently short that finite-size effects are already unimportant.
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I. INTRODUCTION

The relatively large energy scales and short coherence
lengths involved in high-temperature superconductivity
�HTSC� imply that theories of the “mechanism” must in-
volve different considerations than the conventional BCS
theory of low-temperature superconductivity �LTSC�. The
theory of LTSC can be treated in the context of Fermi-liquid
theory, in which the strong effects of electron-electron repul-
sions are resolved at high energy, so that pairing is a Fermi-
surface instability triggered by weak, retarded, induced at-
tractive interactions. The theory of HTSC must treat the
strong local repulsions between electrons directly, as Fermi-
liquid theory is certainly not valid at short distances and high
energies. Conversely, since the physics of HTSC is relatively
local, numerical studies of finite-size systems can, plausibly,
resolve questions concerning the mechanism as long as the
system sizes are large compared to the coherence length, a
condition that could not remotely be envisaged for LTSC.

In the present paper, we report exact-diagonalization stud-
ies of the low-energy states of the Hubbard model on a
square lattice �Fig. 1� with hopping matrix elements tij be-

tween pairs of sites, i and j, and with a short-range repulsive
interaction Uj between two electrons on the same site. We
propose to address the following sharply posed question, re-
lated to the physics of the mechanism: What form of the
Hamiltonian �i.e., values of �tij� and �Ui�� maximizes Tc sub-
ject to the constraints that �a� tij be short ranged and
bounded—i.e., �tij�� t for all ij—and that �b� the interactions
be repulsive, Ui�0, for all i? Constraint �b� represents a
theoretical prejudice that HTSC derives directly from the
strong repulsive interactions between electrons and could be
relaxed in future studies. The requirement that tij be bounded
avoids the trivial answer that, for any Hamiltonian that sup-
ports superconductivity, Tc can be doubled by simply dou-
bling the Hamiltonian.

The largest systems we can readily study are 4�4. For
such small systems, there is no direct way to extract a Tc. We
have thus introduced other benchmarks of the strength of the
superconductivity that can be readily computed on finite-size
systems, especially the “pair-binding energy,” defined in Eq.
�3�, and the strength of the pair-field correlations defined in
Eqs. �4�–�6�.

The full optimization problem we have proposed would
be prohibitively time consuming. We have therefore concen-
trated on a restricted, highly symmetric subset of all possible
Hamiltonians, with particular focus on the symmetric check-
erboard and stripe patterns shown in Figs. 1�a� and 1�b�. We
take the hopping matrix elements to be t on the solid
�“strong”� bonds in the figure and t�� t on the dotted
�“weak”� bonds. For t�= t, the system is the homogeneous
Hubbard model, while for t�=0, the system consists of dis-
connected Hubbard squares or ladders. Thus, as we vary t�
from 0 to t, we vary the “degree of inhomogeneity.”

For instance, as shown in the contour plot in Fig. 2, the
pair-binding energy of the checkerboard lattice with periodic
boundary conditions �PBCs� is largest for U=8t and t�
=0.5t. The concentration x of “doped holes” per site �i.e., the
deviation from one electron per site� can only take discrete
values; among those, the optimal pair binding is largest when
x=1 /16 �as in the contour plot in Fig. 2�a��, somewhat
smaller when x=3 /16 �Fig. 2�b��, and is always negative
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FIG. 1. �Color online� Schematic representation of the inhomo-
geneous Hubbard model: �a� the checkerboard version and �b� the
striped version. The hopping matrix elements are t on the solid
“strong” bonds and t�� t on the dotted “weak” bonds. The three
labeled bonds ab, cd, and ef are the focus of our study of pairing
correlations.
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�pair repulsion� for x=5 /16. Indeed, of all forms of the
Hamiltonian we have explored to date, the checkerboard
Hubbard model with these parameters has the largest pair-
binding energy we have found. Moreover, by changing
boundary conditions to twisted PBCs, shown as the solid
�red� triangles in Fig. 3�a�, we see that at fixed U=8t, as a
function of t� in the range 0.8� t� / t�0, the results are sen-
sitive to change of boundary conditions only at the 20%
level.

We therefore infer that the checkerboard Hubbard model
in the thermodynamic limit has a maximum value of the pair
binding �pb� t /3 for U�8t, t�� t /2, and x�1 /16. From
analysis of the ground-state symmetry and of the pair-field
correlations, we can identify the dominant superconducting
correlations on this system as d wave �dx2−y2�.
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FIG. 2. �Color online� Contour plots of the pair-binding energy
as a function of U and t� on two types of lattices with periodic
boundary conditions. Note the change of scale in �c�.
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FIG. 3. �Color online� The pair-binding energy �pb�1 /16� as a
function of t� at U=8t on a �a� checkerboard lattice and a �b� striped
lattice with various boundary conditions. Squares represent data
with PBC in both directions; triangles represent data with PBCs in
the x direction and “twisted” PBCs in the y direction. �Inset: a
closer look at �pb�1 /16� as t� goes to zero on the checkerboard
lattice. Notice that �pb�1 /16� becomes negative when t�	0.025t.�

TSAI et al. PHYSICAL REVIEW B 77, 214502 �2008�

214502-2



II. HAMILTONIAN

The inhomogeneous Hubbard model we have studied is
described by the Hamiltonian

H = − 	

i,j�,


tij�ci,

† cj,
 + H.c.� + 	

i

Uini,↑ni,↓, �1�

where 
i , j� indicates nearest-neighbor sites, ci,

† creates an

electron on site i with spin polarization 
= �1, and ni,

=ci,


† ci,
. The usual �homogeneous� limit of this model is
obtained by taking tij = t and Ui=U.

Although we have studied a wider variety of patterns, to
be concrete we will primarily focus on two inhomogeneous
patterns of the hopping amplitudes: the checkerboard lattice
and the striped lattice shown in Fig. 1. Unless otherwise
stated, our discussion will focus on the case in which PBCs
are applied in both the x and y directions. However, finite-
size effects will be estimated by comparing these results to
those with “twisted” periodic boundary conditions. Specifi-
cally, for a 4�4 system, PBC means identifying the sites
�n+4,m���n ,m� and �n ,m+4���n ,m�, while twisted PBC
in the y direction means identifying �n+4,m���n ,m� and
�n ,m+4���n+2,m�. We have also obtained results with
open boundary conditions, but because of the large surface to
volume ratio of the small systems studied, the proper inter-
pretation of these results is unclear, and so we do not report
them here.

III. RESULTS

The exact diagonalization is performed using the Lanczos
method,1 which has been employed by other people to ex-
tract some ground-state properties of a 4�4 �homogeneous�
Hubbard model.2–4 By taking advantage of conservation of
the z component of the spin and the C4v symmetry of the
checkerboard and D2h symmetry of the striped model, we
successfully reduce the dimension of the Hilbert space from
around 108 to 107 states and the ground-state energies we
found for t� / t→1 agree with those of Fano et al.3 A com-
plete group-theoretical analysis which facilitates efficient
implementation of the Lanczos algorithm can be found in
Ref. 4.

We present representative results on the pair-binding en-
ergy and the pair-field correlations. We have much more
extensive tables of results for various values of U / t, t� / t, and
x and for various choices of boundary conditions. These ad-
ditional results are available from the authors upon request.

A. Pair-binding energy

To better understand the pairing phenomena arising from
repulsive interactions, we define the pair-binding energy

�pb�x� = 2E0�M� − �E0�M + 1� + E0�M − 1�� , �2�

where N=16 is the number of sites in the system, E0�M� is
the ground-state energy with N−M electrons �i.e., M holes
doped into a “neutral” half-filled lattice�, and x�M /N is the
“concentration of doped holes.” We will focus on the case in
which M is odd. Thus, a positive pair-binding energy means

that, given two isolated clusters with a mean doped hole
density x, it is energetically preferable to “pair” the doped
holes so that one cluster has M +1 and the other cluster has
M −1 doped holes.

For a superconducting system, �pb→2�min in the limit
N→�, where �min is the minimum value of the supercon-
ducting gap. While gaps can occur for other reasons �e.g.,
charge-density-wave formation�, a superconducting state, as
far as we know, is the unique state that generically produces
a gap for a nonzero range of x in more than one dimension
�1D�. In a superconducting state with gapless �nodal� excita-
tions, �pb vanishes as N→�, but only relatively slowly, in
proportion to �0N−1/2 in 2D, so �pb computed on finite-size
systems remains a good diagnostic of superconductivity. Un-
der generic circumstances in nonsuperconducting systems,
the repulsive interactions between quasiparticles implies that
�pb is negative and �pb−N−1 as N→�.

A positive pair-binding energy on a small system could
also indicate a tendency for phase separation. Unambigu-
ously distinguishing gap formation from phase separation
can only be done by appropriate finite-size scaling,5 which is
beyond the reach of the present calculations. However, a
gross test for phase separation is possible by testing whether
further agglomeration of doped holes is favored. Specifically,
for M =Nx even, we define

N = �E0�M + 2� + E0�M − 2� − 2E0�M��/2. �3�

This is a crude approximation of the compressibility,5 which
is negative in a system with a sufficiently strong tendency to
phase separation. For the interesting range of t� and U, we
never find a negative value of N and hence our system is
unlikely to be phase separated.

We have computed the pair-binding energy �pb as a func-
tion of t�, U, and x on both the checkerboard and striped
lattices with PBCs and twisted PBCs. Contour plots of
�pb�x=1 /16� and �pb�x=3 /16� for the checkerboard lattice
are shown, respectively, in Figs. 2�a� and 2�b�, respectively.
The global maximum can clearly be seen for U=8t and t�
=0.5t.

�pb�x=1 /16� is shown at fixed U=8t as a function of t� in
Fig. 3 with both PBCs �squares� and twisted PBCs �tri-
angles�. A remarkable degree of insensitivity to boundary
conditions is apparent for t� / t�0.8. On the coarse scale of t�
in the main figure, it appears that �pb is positive at small t� / t
for all U. However, this hides a subtlety at small t� / t, as
shown in the inset to the figure in which the regime of small
t� is shown on an expanded scale. Specifically, as shown in
Fig. 5, below, the pair-binding energy on an isolated square
changes from positive to negative at U=Uc�4.6t. Moreover,
as discussed in Ref. 8, it follows that the pair binding is
positive with a nonzero limit as t� / t→0 for 0�U�Uc,
while �pb−O��t��2 / t� is negative and vanishes as t� / t→0
for U�Uc.

In Fig. 4, �pb�x� for the checkerboard model is shown at
fixed U / t=8 as a function of t� / t for different values of x
=1 /16, 3/16, and 5/16.

A contour plot of �pb�x=1 /16� for the striped lattice is
shown in Fig. 2�c�, and �pb�x=1 /16� for fixed U=8t is
shown as a function of t� / t for PBCs and twisted PBCs in
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Fig. 3�b�. Here, the results are apparently more sensitive to
boundary conditions, so inferences concerning the thermody-
namic limit are more difficult to reach. However, here, too, a
global maximum of �pb is reached for U=14t and t�=0.7t. In
the limit of vanishing t�, as follows from the results for an
isolated ladder, Fig. 5 �dashed curve�, �pb is positive and
nonvanishing for 0�U�Uc1�3.5t, negative and order �t��2

for Uc1�U�Uc2�7t, again positive and nonvanishing for
Uc2�U�Uc3�15t, and finally negative and order �t��2 for
U�Uc3.

B. Pair-field correlations

We have also studied the equal-time pair-field correlation
function defined as

D�ij,kl� = 
�ij
† �kl� , �4�

where the pair field is �ij
† =

1
�2

�ci↑
† cj↓

† + cj↑
† ci↓

† � . �5�

ij represents the bond between a pair of nearest-neighbor
sites, i , j, on the lattice. We focus on this correlation function
for the largest possible separations, given the small system
size: between a pair of parallel strong bonds separated by a
distance 2—i.e., bonds ab and ef in Fig. 1—and a pair of
perpendicular strong bonds separated by a distance
3�2 /2—i.e., bonds ab and cd in Fig. 1. We have computed
these pairing correlations for both the checkerboard and
striped models with M =0, 2, and 4—i.e., for doped hole
concentration x=0, 1/8, and 1/4 and for a range of U / t and
t� / t.

In Fig. 6�a�, we show the pair correlation function for the
checkerboard lattice at fixed U / t=8 as a function of t� / t for
x=1 /8 �triangles� and 1/4 �squares�. D�ab ,cd� is represented
by the dashed lines in the figure and D�ab ,ef� by the solid
lines. The same quantities are shown for the striped lattice in
Fig. 6�b�. Qualitatively similar results for both lattices have
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FIG. 6. �Color online� Pair-field correlation functions at U=8t
on the �a� checkerboard and �b� striped lattices. Solid curves repre-
sent D�ab ,ef� and dashed represent D�ab ,cd�; triangles are data
points for M =2 doped holes, and squares are data points for M
=4. Note that in the striped case D�ab ,cd� have been multiplied by
10 for comparison.
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been obtained for x=0, but the magnitude of D is an order of
magnitude smaller than for x�0, consistent with the ex-
pected Mott insulating character of the undoped system. The
positive sign of D�ab ,ef� and the negative sign of D�ab ,cd�
are consistent with the d-wave character of the pairing; in the
thermodynamic, at large spatial separations, the sign of D is
determined entirely by the symmetry of the order parameter.

For the checkerboard model, it is apparent that the mag-
nitude of the pairing correlations is relatively weak in the
limit of both strong inhomogeneity �t� / t�1� and vanishing
inhomogeneity �t� / t�1�. However, the strength of these cor-
relations is only weakly dependent on t� / t for a broad range
of intermediate values. Moreover, in this intermediate re-
gime, the strength of the pairing is quite similar for x=1 /8
and x=1 /4.

It is more difficult to make a clear qualitative statement
about the behavior of the striped model. One seemingly puz-
zling feature of the striped results deserves comment. In the
limit t�→0, where the two ladders decouple, one might ex-
pect the correlation of the interladder pair fields �D�ab ,cd��
to vanish. However, since for U=8 the pair-binding energy
on a 4�2 ladder �cube� is positive, as shown in Fig. 5
�dashed curve�, for t�=0 and M =2, there are two degenerate
ground states, with the hole-pair on one or the other discon-
nected ladder. Thus, even as t� tends to 0, the ground-state
wave function is a coherent superposition of these two states
and hence has substantial pair-field correlations. Were one to
study the finite-temperature properties of this system, the co-
herence would be lost above a relatively small temperature
Tcoh t�. This illustrates the dangers of uncritically accepting
evidence of strong superconducting correlations from the
pair-field correlation function.

We have also studied the expectation value of the pair-
field operator between ground states with M =Nx and M −2
doped holes:


�ij� � 
M ;0��ij�M − 2;0� , �6�

where �M ;0� is the ground state with M doped holes. This is
not a gauge-invariant quantity, in that there is an arbitrary
choice of an overall phase; by choosing the wave functions
real, this is reduced to an overall sign ambiguity. However,
the internal symmetry of the pairing state is manifest in this
quantity.

For the checkerboard case, for all U and t�� t, the
ground-state symmetry as a function of M alternates, A1 for
M =0, B1 for M =2, and A1 for M =4. Thus, the pair-field
operator that connects any two of these states must have
precisely B1 �i.e., dx2−y2� symmetry.7 In Fig. 7, for fixed U
=8t, we plot, as a function of t� / t, the gauge-invariant quan-
tities ��s�2 �squares� and ��w�2 �triangles�, where �s and �w
are, respectively, the expectation value of �ij for strong
bonds ij �within a square� and weak bonds �connecting two
squares� �see Eq. �8��. Again, there is a clear indication that
superconducting correlations are strongest for t�� t /2.

Two peculiarities are worth mentioning here: First, it is
puzzling that the difference in the pair amplitudes on the
weak and strong bonds is so large, ��w� / ��s�10−7, as
clearly shown in Fig. 7. This is a qualitative point that war-
rants further study. Second, even in the limit t�→ t, ��w�

� ��s�. This is a consequence of the fact the ground state is
threefold degenerate4 when t�= t and M =2; this degeneracy
is lifted whenever t�� t.

C. Superconducting susceptibility

The T=0 superconducting susceptibility is expressible as

�a��� = 	
�

�
M ;0���a��M − 2;���2

E��M − 2� − E0�M� − 2�
, �7�

where E��M� is the energy of the �th excited state with M
doped holes and where we take

��a� �
1

Za
	

ij

f ij
�a��ij, Za = 	

ij

�f ij
�a��2. �8�

Here, the chemical potential is appropriate to the case in
which the ground state has M doped holes—i.e., �E0�M −2�
−E0�M���2�� �E0�M�−E0�M +2��. Because of the d-wave
symmetry, we always take f ij to be positive on vertical bonds
and negative on horizontal bonds. We consider three possible
susceptibilities: �s, in which �f ij�=1 on the strong bonds and
0 on the weak; �w, in which �f ij�=1 on the weak bonds and 0
on the strong; and �T, in which �f ij�=1 on all nearest-
neighbor bonds. For simplicity, we have defined the suscep-
tibility with respect to adding two holes. Another �more con-
ventional� definition includes, as well, terms which remove
two holes.

As mentioned before, computing all the excited states that
enter this sum is not feasible, but a lower bound estimate can
be readily obtained in the “single-mode approximation”
�SMA� by approximating the sum by the single term involv-
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FIG. 7. �Color online� The square of the expectation value of the
pair annihilation operator, ��a�2, as a function of t� on the checker-
board lattice. The subscript a refers to the contribution from the
strong and weak bonds, respectively. The open symbols indicate the
data obtained at t�=0.99t. As in Eq. �10�, 1 /� times this quantity
is the single-mode-approximation to the superconducting
susceptibility.
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ing the ground state with N−M +2 electrons. We refer to this
as �a

�SMA�. In terms of the pair-field expectation values dis-
cussed in the previous section,

�s
�SMA� = ��s�2/� ,

�w
�SMA� = ��w�2/� ,

�T
�SMA� = ��s + �w�2/2� , �9�

where ���E0�M�−E0�M +2�+2��. Thus, the quantities plot-
ted in Fig. 7 can be viewed �up to a factor of 1 /�� as the
SMA to the susceptibility at constant �. Moreover, it is worth
mentioning that they are almost exact to the lower bound
susceptibility as long as �→0 by tuning chemical potential
properly.

IV. INTERPRETATION

We now discuss the implications of our results. In particu-
lar, we are interested in using the present information to in-
fer, as much as possible, the phase diagram of the checker-
board and striped Hubbard models in the thermodynamic
limit N→�. The results of our analysis and some additional
speculations lead us to propose the qualitative phase diagram
shown in Fig. 8.

A. Checkerboard model

There are two limits in which the checkerboard model
simplifies: U� t�, where it can be studied using conventional
diagrammatic methods, and t�� t, where it reduces to weakly
coupled squares which can be treated8,9 using degenerate
perturbation theory in t� / t. This allows us to deduce the solid
portions shown in the phase diagram in Fig. 8 without resort-
ing to the present numerical results.

For U=0 and in the thermodynamic limit, the noninter-
acting Fermi surface depends qualitatively on t� / t. There are
four bands since each unit cell contains four sites and
�2� /2a ,0� and �0,2� /2a� are the basis vectors of the recip-
rocal lattice. For t� t�� tc��x�, there are two electron pockets
enclosing the M points �� /2a ,0� and �0,� /2a�, respec-
tively, and one hole pocket enclosing the “nodal point”
�� /2a ,� /2a�, as shown in Fig. 9�a�. The hole pocket shrinks
to a point as t� approaches the critical value for a Lifshitz
transition, tc��x�. For 0� t�� tc��x�, only the two electron
pockets enclosing the M points remain, as shown in Fig.
9�b�. For x=1 /16, 1/8, 3/16, and 1/4, tc� is, respectively,
0.95t, 0.89t, 0.82t, and 0.75t.

This Lifshitz transition appears in the conjectural phase
diagram in Fig. 8 as the boundary between two Fermi-liquid
phases—FL1 �with two electron pockets plus one hole
pocket� and FL2 �with only two electron pockets�. In sketch-
ing this figure, we have assumed that the Fermi-liquid phases
are stable in the presence of a small repulsive U; it is likely
that this is not strictly the case, since there is probably a
Kohn-Luttinger instability of any Fermi liquid,10 but if this
occurs, it is on such a low energy and temperature scale that
it can be neglected for present purposes.

The small-t� portion of the phase diagram in Fig. 8 was
derived previously in Refs. 8 and 9. For 0�U�Uc�4.6t,
where an isolated Hubbard square has a positive pair-binding
energy, there exists a nodeless d�x2−y2�-wave superconducting
phase. For Uc�U�UT�18.6t, there is a third Fermi-liquid
phase, FL3, which has the same Fermi-surface topology as
FL2. Finally, for UT�U �where the isolated square with one
doped hole has a fully polarized spin-3/2 ground state�, the
system exhibits an exotic, spin-3/2 Fermi-liquid phase, FL4,
if x�1 /8, while it phase separates into two insulating anti-
ferromagnetic charge-ordered phases if 1 /8�x�1 /5.

The superconducting state at small t� arises from the ge-
ometry of the square and strong correlations produced by U.
However, across the phase boundary between the supercon-
ducting phase and FL2 or FL3, it is reasonable to view the
onset of superconductivity as a BCS-like Fermi-surface in-
stability. In this limit, the fact that the d-wave supercon-
ductor is nodeless can be understood as being a simple con-
sequence of the fact that the Fermi surface does not intersect
the line of d-wave gap nodes, so there are no gapless quasi-
particles.

Nodeless d-SC

FL1

FL3

F
L
4

F
L
2

d-SC ?

FIG. 8. �Color online� A speculative phase diagram of the
checkerboard model at x=1 /16.
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π
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π
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2

π

k y
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k y
a

FIG. 9. �Color online� A sketch of the Fermi surface with x
=3 /16 for �a� t�=0.95t, showing the two electron and one hole
Fermi pockets, and �b� t�=0.70t, with only the two electron
pockets.
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To obtain a more complete phase diagram, we have used
the insights obtained from the present exact-diagonalization
studies. It is, of course, not clear to what extent the results
from small system studies can be extrapolated to the N→�
limit. However, at least in the case of the pair-binding en-
ergy, since the results appear to be relatively insensitive to
boundary conditions for t��0.8t, we feel that we can use
these results as the basis of a set of plausible conjectures.
These are shown as the dashed lines in Fig. 8. Notice that we
have superposed the conjectured phase diagram on the con-
tour plot of the pair-binding energy from Fig. 2�a�. Where
the pair-binding energy on the 4�4 system is large and in-
sensitive to boundary conditions, we feel that we are on
sound grounds when we speculate that this corresponds to a
well-developed, nodeless d-wave superconducting state in
the N→� limit.

Unfortunately, where �pb is small and/or sensitive to
boundary conditions, this could mean that in the N→� limit,
the system has entered a gapless phase—i.e., a FL or a nodal
d-wave superconductor. However, it could simply mean that
the minimum gap of a nodeless d-wave superconductor is
small and the corresponding correlation length is long. In
drawing our conjectural phase diagram, we have assumed the
former, and so, to the extent possible, we have drawn phase
boundaries between the nodeless d-wave phase and various
gapless phases along contours separating the region of
“large” and boundary condition-insensitive pair-binding en-
ergy to regions with smaller and/or strongly boundary-
condition-dependent pair binding. Clearly, the upper portion
of the phase diagram �t��0.8t� is the most speculative por-
tion, including the entire region in which nodal d-wave su-
perconductivity occurs.

The existence of a tetracritical point in the conjectured
phase diagram, with the additional implication that there ex-
ists a nodal d-wave superconducting state for large enough
t�, follows from the nature of the known phases along the
edges of the phase diagram. In particular, if there is a direct,
continuous transition from FL1 to a d-wave superconductor,
the d-wave superconductor must be nodal. However, we can-
not rule out the possibility of a direct first-order transition
from FL1 to a d-wave superconductor, in which case the
tetracritical point could be replaced by a bicritical point, and
the d-wave superconductor could always be nodeless. The
portion of the phase diagram with t��0.8t could also exhibit
additional broken symmetry phases.11–13

B. Striped model

It is impossible, with any degree of confidence, to use the
present results to infer anything new about the phase diagram
of the striped Hubbard model in the N→� limit. For t�� t,
the model becomes an array of weakly connected two-leg
ladders, a problem which was studied previously by Arrigoni
et al. in Ref. 11. From that work, we know that for x�xc
�0.1, there exists a nodeless “d-wave-like” superconducting
state over a very broad range of U / t. In contrast, the

oscillatory behavior of the pair-binding energy seen in the
Fig. 2�c� as t�→0 is a special feature of the 4�2 ladder,
which does not occur in a system of weakly coupled, infi-
nitely long two-leg ladders. Combining this observation with
the strong boundary condition dependence of the pair-
binding energy apparent in Fig. 3�b� �even when the twist in
the boundary conditions is applied in the direction perpen-
dicular to the stripe direction�, we are forced to conclude that
the results on the 4�4 stripe lattice are not representative of
the N→� limit.

We therefore do not venture to draw even a conjectural
phase diagram for this system. Nevertheless, on the basis of
the fact that, in Fig. 2�c�, there is an extended region with
relatively large pair-binding energy, when t� is a substantial
fraction of t, makes plausible the speculation made in Ref. 11
that the nodeless superconducting state grows in strength for
a substantial range of non-infinitesimal t� / t. Furthermore, if
indeed there is a nodal d-wave state for t� / t near 1, there
must also exist a Lifshitz-type phase transition to a supercon-
ducting state with gapless quasiparticles at a U / t-dependent
critical value of the interladder coupling.14

V. DISCUSSION

One issue that is often ignored in discussions of HTSC is
the role of the longer-range Coulomb interactions. d-wave
pairing avoids the obvious deleterious effects of the on-site
Hubbard repulsion between electrons, but is known15 to be
fairly sensitive to longer-range repulsive interactions. To ad-
dress this issue, we have computed the effect on the pair-
binding energy of a nearest-neighbor repulsion, V, between
electrons. Indeed, we always find that the pair-binding en-
ergy decreases, more or less linearly, with increasing V.
However, where the pair binding is strong for V=0, it re-
mains positive up to rather large values of V. For instance,
for the checkerboard lattice under optimal conditions U=8t
and t�= t /2, �pb is an essentially linear function of V, which
vanishes at V�1.3t.

In conclusion, we have studied inhomogeneous Hubbard
models, primarily with checkerboard and striped patterns, on
a 4�4 square lattice with periodic boundary conditions by
exact diagonalization. Although the existence of the HTSC in
the uniform Hubbard model is still a controversial issue,16

we have produced clear evidence that, without considering
other nonelectronic degrees of freedom such as phonons,
strong pairing of electrons can be achieved from purely re-
pulsive interactions if certain modulations of the electronic
structure are introduced. Nonmonotonic dependence of the
pair-binding energy and the pair-field correlators on the de-
gree of inhomogeneity �t� / t� were found to be generic. This
observation supports the notion that there is an optimal in-
homogeneity for high-temperature superconductivity.11,17–21

Since exact-diagonalizaiton studies cannot access signifi-
cantly larger systems, it has not been possible to carry out
finite-size scaling to corroborate this conclusion. However,
we hope that the present results will stimulate further work
on larger system using more efficient numerical tools such as
density matrix renormalization group22 or quantum Monte
Carlo techniques.

OPTIMAL INHOMOGENEITY FOR SUPERCONDUCTIVITY: … PHYSICAL REVIEW B 77, 214502 �2008�

214502-7



ACKNOWLEDGMENTS

We thank E. Fradkin and D. J. Scalapino for helpful dis-
cussions. This work was supported in part by DOE Grant No.

DE-FG02-06ER46287. H.Y. is supported by a SGF at Stan-
ford University. Computational resources were provided by
SLAC at Stanford University, and some of the computations
were performed at the CSCS Manno, Switzerland.

1 For instance, J. K. Cullum and R. A. Willoughby, Lanczos
Algorithms for Large Symmetric Eigenvalues Computations
�Birkhauser, Boston, 1985�.

2 E. Dagotto, F. Ortolani, and D. Scalapino, Phys. Rev. B 46,
R3183 �1992�; P. W. Leung, Z. Liu, E. Manousakis, M. A.
Novotny, and P. E. Oppenheimer, ibid. 46, 11779 �1992�.

3 G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, R6877
�1990�.

4 G. Fano, F. Ortolani, and F. Semeria, Int. J. Mod. Phys. B 3,
1845 �1989�; G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B
46, 1048 �1992�.

5 V. J. Emery and S. A. Kivelson, Physica C 209, 597 �1993�.
6 S. Chakravarty, L. Chayes, and S. A. Kivelson, Lett. Math. Phys.

23, 265 �1991�.
7 D. J. Scalapino and S. A. Trugman, Philos. Mag. B 74, 607

�1996�.
8 W.-F. Tsai and S. A. Kivelson, Phys. Rev. B 73, 214510 �2006�;

76, 139902 �2007�.
9 H. Yao, W.-F. Tsai, and S. A. Kivelson, Phys. Rev. B 76,

161104�R� �2007�.
10 W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 �1965�.

11 E. Arrigoni, E. Fradkin, and S. A. Kivelson, Phys. Rev. B 69,
214519 �2004�.

12 G. Hager, G. Wellein, E. Jeckelmann, and H. Fehske, Phys. Rev.
B 71, 075108 �2005�.

13 E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 �2002�.
14 M. Granath, V. Oganesyan, S. A. Kivelson, E. Fradkin, and V. J.

Emery, Phys. Rev. Lett. 87, 167011 �2001�.
15 S. R. White, S. Chakravarty, M. P. Gelfand, and S. A. Kivelson,

Phys. Rev. B 45, 5062 �1992�.
16 For recent work, see T. Aimi and M. Imada, J. Phys. Soc. Jpn.

76, 113708 �2007� and references therein.
17 S. Chakravarty and S. A. Kivelson, Phys. Rev. B 64, 064511

�2001�.
18 I. Martin, D. Podolsky, and S. A. Kivelson, Phys. Rev. B 72,

060502�R� �2005�.
19 K. Aryanpour, T. Paiva, W. E. Pickett, and R. T. Scalettar, Phys.

Rev. B 76, 184521 �2007�.
20 Y. L. Loh and E. W. Carlson, Phys. Rev. B 75, 132506 �2007�.
21 E. Arrigoni and S. A. Kivelson, Phys. Rev. B 68, 180503�R�

�2003�.
22 S. R. White �private communication�.

TSAI et al. PHYSICAL REVIEW B 77, 214502 �2008�

214502-8


