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The recently proposed reduction method for diluted spin glasses is investigated in depth. In particular, the
Edwards-Anderson model with �J and Gaussian bond disorder on hypercubic lattices in d=2, 3, and 4 is
studied for a range of bond dilutions. The results demonstrate the effectiveness of using bond dilution to
elucidate low-temperature properties of Ising spin glasses and provide a starting point to enhance the methods
used in reduction. Based on that, a greedy heuristic called “dominant bond reduction” is introduced and
explored.
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I. INTRODUCTION

Despite more than three decades of intensive research,
many properties of spin glasses,1–4 especially in finite dimen-
sions, are still not well understood. The simplest model is the
Edwards-Anderson �EA� model,5

H = − �
�i,j�

Ji,jxixj, �xi = � 1� , �1�

with Ising spins xi= �1 arranged on a finite-dimensional lat-
tice with nearest-neighbor bonds Ji,j, randomly drawn from a
distribution P�J� of zero mean and unit variance.

In Refs. 6–8, it was proposed to study the EA in Eq. �1�
on bond-diluted lattices at T=0 to obtain more accurate scal-
ing behavior for low-temperature excitations. There, it is
shown how to remove iteratively low-connected spins from
the lattice and alter the interactions, i.e., to reduce the sys-
tem, in such a way that the ground-state energy of the re-
duced system is the same as the original system. In this way
often much larger lattice sizes L can be simulated compared
to undiluted ones and, in combination with finite-size scal-
ing, enhanced scaling regimes are achieved. With these
methods, for instance, we have solved spin glasses exactly at
the bond-percolation threshold pc, the edge of the glassy re-
gime, in d=2, . . . ,7 by reducing a large number of systems
with up to 108 spins.9

There is, of course, a long history of studying spin sys-
tems on dilute lattices, including spin glasses, going back to
Ref. 5 itself �see, for example, Refs. 10–14�. Coniglio15,16

proposed to map the ensemble of critical Ising �or Potts� spin
models onto percolating clusters, based on the ideas of For-
tuin and Kasteleyn,17 to treat ferromagnetic18 and spin-glass
phenomena.19,20 Our approach here is based on transforma-
tions in the Hamiltonian of an Ising spin system that are
exact for each instance. The price paid is that these transfor-
mations reducing the Hamiltonian only apply at T=0. Ex-
tending our earlier work on the Migdal-Kadanoff
approximation,8 Jörg and Ricci-Tersenghi21 very recently in-
cluded infinitesimal temperature corrections. Their method is
limited to discrete bonds and to a subset of the rules we
discuss here. As we can merely consider T=0, we are unfor-
tunately not sensitive to the transition seen by Ref. 21 that is
said to emerge only at nonzero temperatures.

Our approach, combined with the highly efficient “ex-
tremal optimization” �EO� heuristic,22,23 have lead to a com-
prehensive characterization of low-temperature excitations in
spin glasses in low dimensions �up to d=7�.24 These results
allow for a direct comparison with mean-field predictions25

and have recently motivated a reassessment of fundamental
scaling relations.26,27 This work has also inspired the use of
dilution for more effective Monte Carlo simulations of dis-
ordered systems.21,28–30

Here we study the connection between lattice topology
and the reduction method. In particular, we explore the ef-
fectiveness of each of the reduction rules as a function of
bond dilution. The results provide the reader with an oppor-
tunity to evaluate in more detail the conclusions drawn in
previous papers6,7,24,31,32 and might suggest possible exten-
sions of these rules for improved effectiveness. As an ex-
ample of a concrete application, we introduce and evaluate
“dominant bond reduction” �DBR�, a new heuristic which
entails a greedy, almost linear algorithm to obtain approxi-
mate spin-glass ground states on average with bounded rela-
tive error for increasing system sizes.

This paper is structured as follows. In Sec. II, we will
introduce the reduction method and its rules. In Sec. III, we
display and discuss our numerical investigation of the reduc-
tion rules. In Sec. VI, we discuss our simulation results for
DBR, followed by some concluding remarks in Sec. V. In the
Appendix, a generalized description of the reduction method
is given with some speculations on its applicability.

II. REDUCTION METHOD

To exploit the advantages of spin glasses on a bond-
diluted lattice, we can often reduce the number of relevant
degrees of freedom substantially before a call to an optimi-
zation algorithm becomes necessary. Such a reduction, in
particular, of low-connected spins, leads to a smaller com-
pact remainder graph, bare of trivially fluctuating variables,
which is easier to optimize. These reductions are very similar
to a procedure known as k-core decomposition in graph
theory, which is often applied to analyze hard combinatorial
or real-world problems.33–35 Furthermore, rules of this sort
have also been used to study planar36 and 3d resistor
networks.37
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Here, we focus exclusively on the reduction rules for the
ground-state energy �i.e., T=0�; a subset of these rules also
permits the exact determination of the entropy and overlap8

at T=0. These rules apply to general Ising spin-glass Hamil-
tonians as in Eq. �1� with any bond distribution P�J�, discrete
or continuous, on arbitrary sparse graphs.

The reductions affect both spins and bonds, eliminating
recursively all zero-, one-, two-, and three-connected spins.
These rules are supplemented here with one that is not topo-
logical but concerns bond values directly, which is especially
effective for broad continuous bond distributions, such as
Gaussian or power-law bonds. The addition of more elabo-
rate rules that depend on suitably chosen bond distributions
is conceivable, the universality of the underlying physics
permitting. These operations eliminate and add terms to the
expression for the Hamiltonian in Eq. �1� but leave it form
invariant. Again, loosening this requirement may lead to an
even more efficient procedure for certain problems, although
it should be understood that an unrestricted reduction in gen-
eral leads to an exponential growth in the number and form
of the newly created terms, involving all combinations of
p-spin interactions �see the Appendix�. Offsets in the energy
along the way are accounted for by a variable Ho, which is
exact for a ground-state configuration. The rules discussed
here are as follows:

Rule I: An isolated spin can be ignored entirely.
Rule II: A one-connected spin i can be eliminated since its

state can always be chosen in accordance with its neighbor-
ing spin j to satisfy the bond Ji,j. For its energetically most
favorable state, we adjust HoªHo− �Ji,j� and eliminate the
term −Ji,jxixj from H.

Rule III: A double bond, Ji,j
�1� and Ji,j

�2�, between two spins i
and j can be combined to a single bond by setting Ji,j =Ji,j

�1�

+Ji,j
�2� or be eliminated entirely if the resulting bond vanishes.

This operation is very useful to lower the connectivity of i
and j at least by one �for example, see Fig. 2�.

Rule IV: For a two-connected spin i, rewrite the two terms
pertaining to xi in Eq. �1� as

xi�Ji,1x1 + Ji,2x2� � �Ji,1x1 + Ji,2x2� = J1,2x1x2 + �H , �2�

where

J1,2 =
1

2
��Ji,1 + Ji,2� − �Ji,1 − Ji,2�� ,

�H =
1

2
��Ji,1 + Ji,2� + �Ji,1 − Ji,2�� , �3�

leaving the graph with a new bond J1,2 between spins 1 and
2 and acquiring an offset HoªHo−�H. In the ground state,
the bound in Eq. �2� becomes an equality.

Rule V: A three-connected spin i can be reduced via a
“star-triangle” relation, as depicted in Fig. 1. We rewrite the
three terms pertaining to xi in Eq. �1� as

Ji,1xix1 + Ji,2xix2 + Ji,3xix3 � �Ji,1x1 + Ji,2x2 + Ji,3x3�

= J1,2x1x2 + J1,3x1x3 + J2,3x2x3

+ �H , �4�

where

J1,2 = − A − B + C + D, J1,3 = A − B + C − D ,

J2,3 = − A + B + C − D, �H = A + B + C + D ,

A =
1

4
�Ji,1 − Ji,2 + Ji,3�, B =

1

4
�Ji,1 − Ji,2 − Ji,3� ,

C =
1

4
�Ji,1 + Ji,2 + Ji,3�, D =

1

4
�Ji,1 + Ji,2 − Ji,3� .

As before, in the ground state, the bound in Eq. �4� becomes
an equality.

Rule VI: A spin i �of any connectivity� for which the
absolute weight �Ji,j�� of one bond to a spin j� is larger than
the absolute sum of all its other bond weights to neighboring
spins j� j�, i.e.,

�Ji,j�� � �
j�j

�Ji,j� , �5�

bond Ji,j� must be satisfied in any ground state. Then, spin i
is determined in the ground state by spin j� and it, as well as
this “superbond” Ji,j�, can be eliminated accordingly, as de-
picted in Fig. 2. Here, we obtain H0ªH0− �Ji,j��. All other
bonds connected to i are simply reconnected with j�, but
with reversed sign, if Ji,j��0.

This procedure is costly, and hence best applied after the
other rules are exhausted. However, it can be highly effective
for very widely distributed bonds. In particular, since neigh-
boring spins may reduce in connectivity and become suscep-
tible to the previous rules again, an avalanche of further re-
ductions may ensue �see Fig. 2�.

After a recursive application of these rules, the original
lattice or graph is either completely reduced �which is almost

FIG. 1. “Star-triangle” relation to reduce a three-connected spin
x0. The new bonds on the right are obtained in Eq. �4�.

FIG. 2. Illustration of rule VI for “strong” bonds. Left: the local
topology of a graph is shown for two spins, x0 and x1, connected by
a bond J0,1 �thick line�. If J0,1�0 �J0,1�0� satisfies Eq. �5�, x0 and
x1 must align �antialign� in the ground state and x0 can be removed.
Right: the remainder graph is shown after the removal. The other
bonds emanating from x0 �dashed lines� are now directly connected
to x1 �with a sign change if J0,1�0�. This procedure may lead to a
double bond �rule III�, as shown here, if x1 was already connected
to a neighbor of x0 before.
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always the case below or near pc�, in which case Ho provides
the exact ground-state energy already, or we are left with a
reduced, compact graph in which no spin has less than four
connections, from which one could obtain the ground state
with some optimization procedure, as described in Refs. 6
and 31. Reducing even higher-connected spins would lead to
new �hyper�bonds between more than two spins, unlike Eq.
�1�, as discussed in the Appendix.

III. NUMERICAL SIMULATIONS

In our simulations we have studied EA spin glasses on
hypercubic lattices over a range of sizes L in dimensions d
=2, 3, and 4 at various bond fractions p for �J bonds and
Gaussian bonds. Similar studies could as well have been

done on an arbitrary family of sparse graphs, without restric-
tion. We have applied the rules described in Sec. II recur-
sively, until no further reductions were possible. We have
calculated a number of aspects of this reduction, such as the
number of spins in the remainder graph relative to the origi-
nal lattice, the average connectivity in the remainder graph,
and the fraction of systems that is completely reducible
�without remainder�, all as a function of bond density p.
Similarly, we have counted along the way how many times
each of the reduction rules has been applied for graphs of a
certain size L and bond fraction p. The system sizes used in
each figure of this section are listed in Table I for each di-
mension.

In Fig. 3 we have plotted the efficiency of the reduction
step for one-connected spins �rule II above, labeled R1 here�,
two-connected spins �rule IV, R2 here�, three-connected
spins �rule V, R3�, double bond elimination �rule III, Rd�,
and superbonds �rule VI, SB� as a function of p for dimen-
sions d=2, 3, and 4. Efficiency is defined here as the number
of calls to that step in a run relative to the original number of
spins N=Ld in the lattice. We observe that each of the reduc-
tion rules reaches a peak for increasing bond densities, on
order of R1, R2, R3, and SB. Rd, the elimination of double
bonds, actually does not itself involve the reduction of a
spin, and its behavior is more varied. The rise to that peak is

TABLE I. List of the range of system sizes L chosen for each
dimension d in Figs. 3–6.

d L

2 10, 20, . . . ,100

3 5, 10, . . . ,20

4 3, 4 , . . . ,10, 15
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FIG. 3. �Color online� Plot of the efficiency of the reduction steps as a function of bond density p in d=2 �left column�, d=3 �middle
column�, and d=4 �right column� for �J bonds �top row�, Gaussian bonds without superbond reduction SB according to rule VI �middle
row�, and Gaussian bonds with SB �bottom row�. All efficiencies quickly become independent of system size L with closer-spaced curves
corresponding to larger sizes. Rule VI, which is useful only for continuous bonds, does not effect other rules much but adds up to 10% in
reduction even at p=1 with decreasing effect for larger d.
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very dependent on the recursive application of the set of
rules, exhausting lower rules �which are computationally less
costly� first before applying a higher rule. For instance, at
least everything that is reducible by R1 and R2 could also
have been reduced with SB. Thus, the further to the right a
rule peaks, the more powerful it is, and its decline signals
significant changes in the structure of the graph. The peak of
R1 near pc �marked by a vertical line in each plot� is a
consequence of the well-known fact that a percolating graph
is predominantly one connected, i.e., pc�1 / �2d� such that
the connectivity is �c=2dpc�1 for d→�. The values for the
bond-percolation thresholds on hypercubic lattices are pc
=1 /2 in d=2, pc�0.2488 in d=3, and pc�0.1601 in d=4.
These thresholds are indicated by vertical lines in each plot.

The additional use of SB does not seem to affect the other
rules much �except for Rd�. While it does not seem to trigger
avalanches of activity for lower rules �except just above pc�,
it in itself often leads to nearly 10% further reduction at
larger p.

In Fig. 4 we have plotted, as a function of bond density p,
the fraction of instances that result in a remainder graph after
a complete exhaustion of the reduction rules. We note that
below and near the bond-percolation threshold pc in each
dimension, almost all graphs are completely reducible. This

implies that the optimization of their energy can be done in
polynomial time. Physically, this means that there cannot be
an ordered, glassy state even at T=0 below pc, of course. For
increasing system size, a sharp transition emerges such that
almost every graph has some nonempty remainder �of un-
specified size� above that transition. In the case of the dis-
crete �J bonds, this transition appears to be related with
presumed onset of spin-glass order at p= p�� pc, as dis-
cussed in Refs. 6 and 7. For Gaussian bonds, p�= pc, and the
transition appears to be centered close to that. Asymptoti-
cally, the use of SB seems to push the transition just above
pc, whereas it seems to locate somewhat below without SB.

In Fig. 5 we have plotted the average size of the remain-
der graph �empty or not� as a function of bond density p.
Including the empty remainder graphs in the weight of the
average is important, of course, and explains the values be-
low unity at low p. The pivot point indicates a well-defined
transition point closely related to a three-core percolation
transition33,35,38 above pc, as our rules reduce at least all ver-
tices of degree less than 4. The correspondence is not exact,
as cooperative effects between bond weights �such as rule
III� or superbonds �rule VI� distort the pure case. Predictably,
for p→1 the graphs remain unaltered, except maybe for a
few spins reducible by SB at lower d.
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FIG. 4. Plot of the probability to obtain any nonempty remainder graph after a complete exhaustion of the reduction rules as a function
of bond density p in d=2 �left column�, d=3 �middle column�, and d=4 �right column� for �J bonds �top row�, Gaussian bonds without
superbond reduction SB according to rule VI �middle row�, and Gaussian bonds with SB �bottom row�. The sequence of graphs in each plot
steepen for increasing system size L from right to left. There is a strong dependence on L, and it appears that the probabilities converge to
a 0–1 step function at or near the bond-percolation threshold �indicated by a vertical line�. With superbond reduction, rule VI, graphs are far
more reducible even significantly above the threshold, at least at finite size.
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In Fig. 6 we have plotted the average connectivity ��� of
any nonempty remainder graph as a function of bond density
p. By virtue of the reduction rules, it is ���	4. The data are
very noisy below pc since almost all remainders are empty
there. These connectivities will eventually approach 2d for
p→1, except when SB is included. There is a strong effect
due to SB also right above the threshold pc, where rule VI
leads to an increasingly sharper maximum with size and di-
mension, as Eq. �5� is more likely satisfied there.

IV. DOMINANT BOND REDUCTION HEURISTIC

Rule VI in Sec. II is based on the following observation:
If the absolute weight �Ji,j�� of one bond incident on spin xi

from a neighboring spin xj� exceeds, the absolute sum of all
its other �i−1 bond weights with adjacent spins, i.e., if by
Eq. �5�

ri 	 �
j=1,j�j�

�i �Ji,j�
�Ji,j��

� 1, �6�

bond Ji,j� must be satisfied in any ground state. In the exact
reduction procedure, as applied in Sec. III, such a dominant
bond is used to eliminate it and the spin xi from the problem.

Here, we consider relaxing that constraint to assess the
quality of approximate results that can be obtained with a
heuristic approach. We assume that even if ri	1 in Eq. �6�,
any almost-dominant bond on a spin xi is more likely satis-
fied in a ground state. This suggests a fast greedy heuristic:
Find the spin xi with ri=rmin=min1�j�N
rj� in an instance
and eliminate it and its strongest bond as in rule VI. This step
can be repeated until any number of the heaviest bonds has
been removed to treat the remainder with an optimization
heuristic like EO, or even until the entire lattice is reduced.
The latter heuristic we call DBR.

Like rule VI itself, DBR is not useful for homogeneous
bond distributions like �J, where all bonds have the same
absolute weight �J�	1 �at least initially�. However, it may be
very effective for continuous bond distributions on dilute lat-
tices with low average connectivity ���, as we have shown in
Sec. III. We can further exploit the universality of bond dis-
tributions and utilize broadly distributed bonds,40,41 such as a
power law, P�J���J�−
 for �J�→�, as long as P�J� has zero
mean and finite width. In fact, such a greedy procedure has
already been described for extremely widely separated bonds
�each bond is larger in weight that the sum of all smaller
ones�, where it becomes exact:42,43 the problem is no longer
NP hard. For the power-law bonds, we expect that there is a
transition in the behavior of this procedure at some finite
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FIG. 5. Plot of the average �fractional� size of the remainder graph �empty or not� as a function of bond density p in d=2 �left column�,
d=3 �middle column�, and d=4 �right column� for �J bonds �top row�, Gaussian bonds without superbond reduction SB according to Rule
VI �middle row�, and Gaussian bonds with SB �bottom row�. Superbond reduction with rule VI lowers the remainder size near the threshold
by about an order of magnitude but with diminishing effects for larger p. The sequence of graphs in each plot steepens for increasing system
size L.
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value of 
c. Hence, we may find a “sweet spot:” a suffi-
ciently broad distribution on a sufficiently dilute lattice for
efficient DBR on very large lattices, while p just above pc
and 
 just above 
c ensure the EA universality class in any
dimension.

Frustration leaves many bonds violated in the ground
state, obviously, and our recursive elimination procedure ac-
counts for that through compounding bonds in rule III, as
described also in Fig. 2. In a simple benchmark, shown in
Fig. 7, we found that DBR obtains an approximate ground-
state energy density of �e�N=−1.308�1� for the undiluted EA,
in d=2 at N=1002, only 0.5% above �e��=−1.314 79�2�, the
best-known result,39 and in d=3 at N=203, 4% above �e��

=−1.700�1�.44 Computational costs are trivial, O�dN ln N�,
but our implementation is limited to N�104 by a data struc-
ture problem: repeated application of rule VI leads to a few
highly connected spins with hundreds of neighbors. Of
course, to calculate properties of low-T excitations, even a
systematic error of 4% would be unacceptably large, and our
naive DBR algorithm will have to be developed into a me-
taheuristic, again combining reduction and EO.

To explore the effect of broadly distributed bonds, we
have compared DBR for one undiluted cubic lattice of size
N=203 with Gaussian and power-law bonds at 
=1.5. In Fig.
8, we show the value of the �smallest� ri=rmin in Eq. �6� of
the currently reduced spin xi during one run of DBR. Ini-

tially, for all rmin�1, DBR is exact, which persists much
longer for power-law bonds. Even when rmin	1, the value
of rmin is typically smaller for power-law bonds. Considering
that DBR’s systematic error is only 4% for Gaussian bonds,
we project that power-law bonds should be even more suc-
cessful. We expect to conduct more extensive tests for vary-
ing 
 and increasing N, which will require a significantly
revised data structure compared to the one used in these stud-
ies.

V. CONCLUSIONS

Our results validate the effectiveness of the recently pro-
posed reduction scheme to determine the stiffness exponent
y,8 leaving remainder graphs that are a small fraction �typi-
cally �1–10%� of the size of the original problem in the
interesting regime just above pc. Note that the fact that re-
duction works well in two-dimensions, where Tc=0 holds,
does not imply definitively that it should work for d�2.
Nevertheless, since the local interconnections between spins
�i.e., graph vertices� near and just above pc in d=2 and
higher dimensions are similar, it justifies that the reduction
scheme is applicable also for higher dimensions,6,7,24 or even
sparse random graphs,31,32 where no exact ground-state algo-
rithms are available. As the general discussion and the specu-
lative inferences in the Appendix suggest, it may be possible
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�middle row�, and Gaussian bonds with SB �bottom row�. The dramatic effect of implementing rule VI becomes apparent near the
percolation threshold, especially for increasing d. The sequence of graphs in each plot steepens for increasing system size L.
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to extend the methods discussed here for any particular graph
topology or bond distribution at hand. We have also pre-
sented evidence that a heuristic approach, based purely on
the bond reductions introduced in Sec. II, provides a fast
algorithm to obtain approximate ground states, with the po-
tential to handle even large or undiluted systems within
bounded error.
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APPENDIX

In general, a spin-glass Hamiltonian H, such as the one in
Eq. �1�, consists of the sum �in the negative� of a number of
terms Ji1,. . .,ip

xi1
. . .xip

, each representing a �hyper�bond of
weight J between p spins xi� 
−1, +1�. The number of con-
nected spins p may vary between terms, although p=2 for all
terms in Eq. �1�. The bonds J are quenched variables drawn
from an arbitrary distribution, discrete or continuous. A par-
ticular instance of the spin-glass Hamiltonian is specified by
the values of these quenched variables.

A ground state minimizes H, thus we want to maximize as
many terms as possible in −H. Each spin, say, x0, appears in
a number of such terms, connecting it to a total of q other
spins. In general, there are 2q possible terms, and we can
eliminate x0= �1 by

J0x0 + J1x1x0 + . . . + Jqxqx0 + J12x1x2x0 + . . .

+ J1. . .qx1 . . . xqx0

= x0�J0 + J1x1 + . . . + Jqxq + J12x1x2

+ . . . + J1. . .qx1 . . . xq�

� �J0 + J1x1 + . . . + Jqxq + J12x1x2

+ . . . + J1. . .qx1 . . . xq�

= a0 + a1x1 + . . . + aqxq + a12x1x2

+ . . . + a1. . .qx1 . . . xq, �A1�

where the bound again becomes an equality for the ground-
state energy. A new Hamiltonian is obtained which is re-
duced by one variable. Notice that the last two lines provide
a unique system of 2q linear equations, one for each assign-
ment of the xi= �1, which determine the new bonds a in
terms of the old bonds J.

To solve the linear system, we define

g�x� = �J0 + J1x1 + . . . + Jqxq + J12x1x2 + . . . + J1. . .qx1 . . . xq� ,

�A2�

and note that for any function g�x�, x� 
�1�q, it is true that

g�x� = �

��

g����
i=1

q

�xi,�i

= �

��

g����
i=1

q
1 + �ixi

2

= �

��

g���
2q �1 + �1x1 + . . . + �qxq + �1�2x1x2 + . . .

+ �q−1�qxq−1xq + . . . + �1 . . . �qx1 . . . xq� , �A3�
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FIG. 7. Extrapolation plot of approximate ground-state energy
densities �e�= �E� /L2 for the two-dimensional EA in Eq. �1� as a
function of 1 /L2. Each data point is the average over 104 random
instances. The results for the DBR heuristic �circles� discussed in
the text extrapolate to within 0.5% of the best-known prediction by
Campbell-Hartmann-Katzgraber �CHK� �Ref. 39� marked by the
horizontal line. Shown are also results obtained with the EO heu-
ristic �squares� �Refs. 22 and 23�, which reproduces CHK within
errors, and a simple alternative to DBR we call least bond reduction
�LBR, triangles�. LBR also applies rule VI but to the spin with the
weakest total bond-weight, i.e., where the sum of all absolute
weights of incident bonds is minimal. Both, DBR and LBR, are
much faster than EO. LBR is marginally simpler than DBR and
avoids the creation of highly connected spins.
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where the sum extends over all 2q permutations of �
� 
�1�q and the relation �a,b= �1+ab� /2 for a ,b� 
�1� was
used to represent the Kronecker symbol. Comparison of Eq.
�A3� with the last two lines in Eq. �A1� yields

ai1,. . .,ip
=

1

2q�

��

g����i1
. . . �ip

�A4�

for the new bonds connecting the remaining variables.
In general, it is not useful to reduce the Hamiltonian in

this way; after all, if all n spins are connected to each other,
as for the Sherrington-Kirkpatrick model,45 just the elimina-
tion of one spin-variable requires O�2n� operations. Yet, there
are common situations, in particular, for lattices of finite di-
mensionality and sparse graphs, where the application of the
previous results can be very useful: either in itself, in com-
bination with heuristic techniques, or as the basis of approxi-
mation schemes. Of course, we may also be interested in the
system’s entropy, the magnetization, overlaps, etc., which
can be considered simultaneously.8

Although the combinatorial effort in the preceding expres-
sions seems daunting in general, they possess a rich structure

that relates them to other, well-studied subjects. For instance,
we can rewrite Eq. �A4� as

ai1,. . .,ip
=

1

2q �
j=0

2q−1

g�
j��Wk,2q�j� , �A5�

with

k = 1 + �

=1

p

2i
−1, �A6�

where 
j� is the binary encoding �on �1� of the integer j. In
particular, Wk,L�x� is the kth Walsh function46 of support L
familiar from wavelet analysis and signal filtering. The or-
thogonality properties of Walsh functions provide a powerful
means to analyze the preceding reduction equations for par-
ticular choices of initial bond distributions. For instance,
there may be types of graphs with a nontrivial bond distri-
bution for which the reductions could be simple. Also, a
transformation may be found that maps the distribution of J’s
into that of a’s. Finally, the existing highly optimized wave-
let algorithms47 may in fact produce efficient spin-glass solv-
ers based on these reduction equations.
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