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We study the quenching dynamics of a one-dimensional spin-1/2 XY model in a transverse field when the
transverse field h�=t /�� is quenched repeatedly between −� and +�. A single passage from h→−� to
h→ +� or the other way around is referred to as a half period of quenching. For an even number of half
periods, the transverse field is brought back to the initial value of −�; in the case of an odd number of half
periods, the dynamics is stopped at h→ +�. The density of defects produced due to the nonadiabatic transi-
tions is calculated by mapping the many-particle system to an equivalent Landau-Zener problem and is
generally found to vary as 1 /�� for large �; however, the magnitude is found to depend on the number of half
periods of quenching. For two successive half periods, the defect density is found to decrease in comparison to
a single half period, suggesting the existence of a corrective mechanism in the reverse path. A similar behavior
of the density of defects and the local entropy is observed for repeated quenching. The defect density decays
as 1 /�� for large � for any number of half periods, and shows an increase in kink density for small � for an
even number; the entropy shows qualitatively the same behavior for any number of half periods. The prob-
ability of nonadiabatic transitions and the local entropy saturate to 1/2 and ln 2, respectively, for a large
number of repeated quenching.
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I. INTRODUCTION

Zero-temperature quantum phase transitions1,2 driven by
quantum fluctuations have been studied extensively in recent
years. In a quantum system, statics and dynamics are inter-
mingled and hence a quantum critical point is associated
with a diverging length scale as well as a diverging time
scale called the relaxation time. The relaxation time of a
quantum system is the inverse of the minimum-energy gap
which goes to zero at the quantum critical point. In the prox-
imity of a quantum critical point, the spatial correlation
length � grows as �����−� and the characteristic time scale
or the relaxation time �� scales with � as ����z, where � is
the measure of the deviation from the critical point, and �
and z are the critical exponents characterizing the universal-
ity class of the quantum phase transition.

When a quantum system is swept across a zero-
temperature critical point1,2 by slowly varying a parameter of
the Hamiltonian at a uniform rate, the resulting dynamics
fails to be adiabatic, however slow the time variation may
be. This is because of the diverging relaxation time discussed
above. There exist nonadiabatic transitions which eventually
lead to defects in the final state. According to the Kibble-
Zurek �KZ� argument,3 the nonadiabatic effects dominate
close to the critical point where the rate of change of Hamil-
tonian is of the order of the relaxation time of the quantum
system. The KZ analysis predicts that when a parameter of
the Hamiltonian is quenched at a uniform rate as t /� through
the critical point, the density of defects in the final state
shows a power-law behavior with the time scale of quench-
ing � given by 1 /��d/��z+1�. Following recent experimental
studies4 of nonequilibrium dynamics of strongly correlated
quantum systems, there is an upsurge in the theoretical in-
vestigation of related nonrandom5–8 and random models,9

and models with a gapless phase.10 A generalized scaling
relation for the defect density in a nonlinear quench across a
quantum critical point has also been proposed.11

The quenching dynamics of a spin-1/2 XY chain in a
transverse field, when either the transverse field7 or the
interaction8 is quenched from −� to +� at a uniform rate t /�,
has been studied extensively in recent years, and the defect
density is found to obey the KZ prediction. It should also be
noted that recent studies of the two-dimensional Kitaev
model indicate a generalization of the KZ prediction when
quenched along a critical surface.12

In this work, we investigate a situation where the trans-
verse field is quenched back and forth across the quantum
critical points from −� to +� and again from +� to −� and
so on, with the functional form of the transverse field being
given by h= � t /�. According to the Kibble-Zurek argument,
the system fails to evolve adiabatically near the quantum
critical points, where the relaxation time is very large, which
results in the production of kinks �in this case, oppositely
oriented spins in the final state�. In our notation, n�l�
corresponds to the defect density in the final state after l
passages through both the Ising quantum critical points to be
defined below. Thus, even values of l signify l half periods
and the transverse field is brought back to the initial value
h→−�; for odd values of l, the field in the final state
tends to +�. Clearly, the case of l=1 has been extensively
studied earlier.7,8 In all the cases, the initial value of h is
large and negative so that all the spins are down, i.e., ori-
ented antiparallel to the z axis. If the dynamics were adia-
batic for the entire span of time, one would expect all spins
to be down �up� in the final state following an even �odd�
number of half periods of quenching, and the defect is de-
fined accordingly.
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II. QUENCHING SCHEME AND RESULTS

The Hamiltonian of our model is given by

H = −
1

2�
n

�Jx�n
x�n+1

x + Jy�n
y�n+1

y + h�n
z� , �1�

where the �s are Pauli-spin matrices satisfying the usual
commutation relations. The strength of the transverse field is
denoted by h and Jx−Jy is the measure of anisotropy; Jx, Jy,
and h are all nonrandom variables. The Hamiltonian in Eq.
�1� can be exactly diagonalized using the Jordan-Wigner
transformation which maps a system of spin-1/2s to a system
of spinless fermions.13–15 Diagonalizing the equivalent fer-
mionic Hamiltonian in terms of Bogoliubov fermions, we
arrive at an expression for the gap in the excitation spectrum
given by13,15

�k = �h2 + Jx
2 + Jy

2 + 2h�Jx + Jy�cos k + 2JxJy cos 2k�1/2.

�2�

The gap given in Eq. �2� vanishes at h= 	 �Jx+Jy� for wave
vectors k=0 and 
, respectively, signaling a quantum phase
transition from a ferromagnetically ordered phase to a quan-
tum paramagnetic phase known as the “Ising” transition. On
the other hand, the vanishing of the gap at Jx=Jy for
�h�� �Jx+Jy� at an ordering wave vector k0=cos−1�h /2Jx�,
signifies a quantum phase transition which belongs to a dif-
ferent universality class from the Ising transitions between
two ferromagnetically ordered phases. In our quenching
scheme, the system will be swept across the Ising critical
points only.

Let us first briefly recall the case with l=1.7,8 When pro-
jected to the two-dimensional subspace spanned by the state
vectors �0	 �empty state� and �k ,−k	 �two fermion state�, the
Hamiltonian takes the form

Hk�t� = − �h + �Jx + Jy�cos k�I2

+ 
h + �Jx + Jy�cos k i�Jx − Jy�sin k

− i�Jx − Jy�sin k − h − �Jx + Jy�cos k
� ,

where I2 denotes the 2�2 identity matrix. Therefore, the
many-body problem is effectively reduced to the problem of
a two-level system, with the two levels being the states
�0	 and �k ,−k	. The general state vector k�t� evolving in
accordance with the Schrödinger equation i�tk�t�
=Hk�t�k�t� can be represented as a linear superposition
�k�t�	=C1k�t��0	+C2k�t��k ,−k	, with the initial condition
C1k�−��=1 and C2k�−��=0. The off-diagonal term of the
projected Hamiltonian �= �Jx−Jy�sin k represents the
interaction between the two time-dependent levels �1,2
= � �h�t�+ �Jx+Jy�cos k�. The Schrödinger equation given
above is identical to the Landau-Zener �LZ� problem of a
two-level system16 and therefore, the transition probability of
excitations at the final time is given by17 pk= �C1k�+���2
=e−2
�, where �=�2 /�, so that in the present case,
pk�l=1�= pk�1�=e−
��Jx − Jy�2sin2 k. This immediately leads to
an expression for the density of kinks or down spins n in the
final state

n�l = 1� � n�1� = 
0


 dk



pk �

1


���Jx − Jy�
, �3�

in the limit of large �. The 1 /�� decay of the defect density
is in accordance with the Kibble-Zurek prediction.6,7

We shall now generalize the quenching dynamics to the
case l=2, when the system is brought back to the state with
h→−� from the final state of the case l=1, with the initial
condition given by �C1k����2=e−2
� and �C2k����2=1−e−2
�.
With a view to estimating the nonadiabatic transition prob-
ability, we consider two time-dependent states �1	 and �2	
with energy �1�t� and �2�t�, respectively, where �1�t�−�2�t�
=�t, � being a constant and the time-independent coupling
between the states being �. Let us also assume that the time
t goes from −� to +� �the forward path in Fig. 1�.

Defining a general state vector as ���t�	
=C1�t��1�t�	+C2�t��2�t�	, where �C1�t��2��C2�t��2� is the prob-
ability of the state �1	��2	� at time t, we can recast the
Schrödinger equation in the form

d2

dz2Ū�z� + �r +
1

2
−

1

4
z2�Ū�z� = 0, �4�

where z=e−
/4i�1/2t, r= i�2 /�, and U�t�= Ū�z� are
related to C2�t� through the relation U�t�
=C2�t�ei�−�

t dt��2�t��e
i
2

��
t dt���1�t��−�2�t���. Focusing on the special

case with �C1�−���=1 and �C2�−���=0, we have Ū�z�
=AD−r−1�−iz� as the particular solution of the Weber’s differ-
ential Eq. �4�.17,18 We remark that the axis in the z plane,
which corresponds to t, is along e−1/4
i for t�0, and along
e3/4
i for t�0. The constant A is determined from the initial
condition �C1�−���=1 by taking the asymptotic expansion of
D−r−1�−iz� along e3/4
i �or t→−� limit�. This finally yields
D−r−1�−iRe3/4
i��e−
/4�n+1�ie−iR2/4R−n−1, where R=�����t�
and we find �A�=�1/2e−
�/4. The solution in the limit
R→ +� �or t→ +�� along z=Re−1/4
i leads to the final ex-
pression �C1����2=e−2
� �a result already used for the case
l=1�. The parameter �=�2 /� depends on the magnitude of
the slope � of the two approaching states and the interaction
�. Using the above results, we therefore get a recursive re-

2∆
Time

Energy
− 8)

−( 8)
( 8)

‘

1
2

Forward Path

Reverse Path

2 ( 1 (8 )

FIG. 1. The time-dependent energy levels of the Landau-Zener
Hamiltonian. The minimum gap is 2�.
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lation for the probabilities after the �l+1�th quenching �with
l�0� given as

�C1�− �− 1�l+1���2 = e−2
��C1�− �− 1�l���2

+ �1 − e−2
���C2�− �− 1�l���2, �5�

�C2�− �− 1�l+1���2 = �1 − e−2
���C1�− �− 1�l���2

+ e−2
��C2�− �− 1�l���2, �6�

Equations �5� and �6� look incomplete at first sight because
they do not contain any cross terms like C1����C2����� or
C2����C1�����. However, this is because at t→ ��, the
coefficients C1�t� and C2�t� vary rapidly with time as
exp���i /���tdt�E�t���.7 Hence, the two cross terms given
above vary rapidly with the initial time �which is going to
+� or −� depending upon the number of repetitions as ex-
plained above� and independently of each other for different
values of k. Their contribution to the defect density therefore
vanishes upon integration over k due to the presence of terms
like cos�T cos k�, T being the time at which the terms are
calculated �which is �� in our case�. On the other hand, the
terms given in Eqs. �5� and �6�, namely, �C1�����2 and
�C2�����2 have no such rapid variations, since any arbitrary
large phase in C1���� cancels the exactly opposite phase
appearing in C1����� �with a similar argument holding for
C2����. Thus Eqs. �5� and �6� follow from an exact solution
of the Landau-Zener problem with general initial conditions
C1�−�� and C2�−��, once we use the fact that the phases of
these initial amplitudes are rapidly varying and are therefore
uncorrelated with each other. This is also the reason why we
can consider the state obtained after one or more quenches as
a mixed state with an entropy given by the expression in Eq.
�9� below.

Using the above results, one finds the probability of a
nonadiabatic transition to be

pk�2� = �C2�− ���2 = 2e−2
��1 − e−2
�� . �7�

The transition probability pk�2� �Fig. 2� is maximum for k
=
 /2 for small values of �, whereas for higher values of �,

there are two maxima symmetrically placed around k=
 /2
at k0=sin−1� ln 2


��Jx−Jy�2 which gradually shift to k=0 and 
 for
very large �. In the limit of �→ +�, there is no nonadiabatic
transition as the dynamics is perfectly adiabatic. The ob-
served behavior of pk�2� also corresponds to the existence of
an inherent time scale �0 �for k0=
 /2� in the problem which
separates the regions of small and large �. It is interesting to
note that the nonadiabatic transition probability for the for-
ward path attains the minimum value7 of 1/2 at the wave
vector k=
 /2 for �=�0= �ln 2� / �
�Jx−Jy�2�, while for the
reverse path, although pk0=
/2,�0

�2� is once again 1/2, this is
the maximum possible value of pk�2�.

The kink density n�2�, i.e., the density of the up spins in
the final state with h→−�, is again related to pk�2� as
n�2�= 1


�0

dkpk�2� �Fig. 3�a��. In the limit of large �, we find

that

n�2� =
2


���Jx − Jy�
�1 −

1
�2

� . �8�

Clearly, the magnitude of the defect density after a full pe-
riod �l=2� case, is smaller than the l=1 case given in Eq. �3�
in the limit of large � and also in the limit of small � when
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FIG. 2. Variation of pk�2� with k for different values of � as
obtained analytically for Jx−Jy =1.
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FIG. 3. �a� Variation of n�1�, n�2�, n�3�, and n�4� with �, and �b�
variation of s�1�, s�2�, and s�3� with � as obtained by numerically
integrating Eqs. �9� and �10� with Jx−Jy =1. In �a�, n�4� denotes the
defect density as obtained from the analytical expression in Eq.
�11�. In the limit of large �, the numerical results match perfectly
with the analytical results.
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the defect density is maximum for l=1. This establishes the
existence of a corrective mechanism during the reverse
quenching process, arising from the fact that the maximum
possible value of pk�2� is 1/2, which makes the area under
the curve of pk vs k smaller for the l=2 case as compared to
the l=1 case. The defect density n�2� �see Fig. 3� attains a
maxima around ��2�0; eventually, there is a 1 /�� decay in
the asymptotic limit of �. We can explain the n vs � behavior
in the following way: in the limit of small �, the system fails
to evolve appreciably and always remains close to its initial
state for both l=1 and l=2, whereas for large �, the system
evolves adiabatically at all times except near the quantum
critical points. In either situation the nonadiabatic transition
probability pk�2� and hence the density of defects n�2� are
small though it is larger in the intermediate range of �.

Although the final state after a full period is a pure state,
locally it may be viewed as a mixed state described by a
decohered reduced diagonal density matrix with elements7 pk
and 1− pk. The Von Neumann entropy density of the final
state is given by

s = − 
0


 dk



�pk ln�pk� + �1 − pk�ln�1 − pk�� . �9�

s�2� shows a similar behavior with � as n�2� �Fig. 3�b��, and
the behavior can be justified along the same line of argu-
ments as given above.

For an arbitrary number of repeated quenching,
the nonadiabatic transition probability pk�l�
= �1−e−2
��− �1−2e−2
���1− pk�l−1��. We can simplify this
to obtain

pk�l� =
1

2
−

�1 − 2e−2
��l

2
. �10�

Equation �10� shows that pk�l� increases with l for even val-
ues of l, while for odd l, this variation depends on the value
of k. However, in the asymptotic limit of l, pk�l� saturates to
the value 1/2 for all k which implies that every spin is up or
down with an equal probability in the final state following a
large number of quenches.

Using pk�l� given above for any l, we find that the defect
density scales as 1 /�� in the asymptotic limit of � and can be
put in the form

n�l� =
1

2
�Jx − Jy���
�
w=1

l
l!

w ! �l − w�!
2w

�w
�− 1�w+1. �11�

Interestingly, using Eqs. �10� and �11�, for two successive
values of l, we find that n�l+1��n�l� for small values of � if
l is odd, a fact that once again emphasizes the corrective
mechanism in the reverse path mentioned already. A similar
result is also obtained for large � for smaller values of l, as
shown in Fig. 3�a�. On the other hand, n�l+1� is always
greater than n�l� for even l. We also find that n�l+1�→n�l�
in the asymptotic limit of l and � for both even and odd
values of l. Moreover, for any odd l, the kink density n�l�
decreases monotonically with �, while for even l, n�l� attains

a maxima around �0; in the limit �→�, n�l� decays as 1 /��
in both cases. A close inspection of the variation of n�l� with
� �see Fig. 3�a�� also unravels other interesting aspects of the
repeated quenching dynamics: �i� For even values of l, the
characteristic scale �� at which the defect density is maxi-
mum shifts to higher values of � �from ���2�0 for l=2�. At
the same time we find that n�l��n�l−2� for all values of � so
that it eventually saturates to 1/2 for all � for asymptotic l.
�ii� Similarly for odd l, n�l+2��n�l� for small �; for higher
�, n�l+2� exceeds n�l� following a crossover around ����.
Once again n�l� saturates to 1/2 for a large number of re-
peated quenches. The behavior of the entropy density as a
function of � for any general value of l is shown in Fig. 3�b�.
It follows from Eq. �9� that for any given �, the local entropy
density increases with l; in the limit l→�, pk�l� tends to 1/2
and therefore the local entropy density tends to its maximum
value of ln 2.

III. CONCLUSION

In conclusion, we have studied the defect generation and
entropy production in a transverse XY spin-1/2 chain under
repeated quenching of the transverse field between −� and
+�. We have employed a generalized form of the Landau-
Zener transition formula along with the concept of uncorre-
lated initial phases of the probability amplitudes so that the
cross terms appearing in the recursion relation of probabili-
ties vanish under integration over momentum. Using the
nonadiabatic transition formula thus obtained, we evaluate
the defect density in the final state after an arbitrary number
of quenches.

Our results show that the defect density satisfies
n�l��n�l+1� for small �, if l is odd; this points to the exis-
tence of a corrective mechanism in the reverse path. The
results obtained by numerical integration of the transition
probability and by using the analytical expression given in
Eq. �11� match perfectly in the limit of large �. The entropy
density, however, is found to increase monotonically with the
number of repetitions, showing that the local disorder of the
system increases monotonically with l, irrespective of the
behavior of the kink density. For an odd number of repeti-
tions, we observe a monotonic decrease of the kink density
with �, as seen previously for the widely studied l=1 case.
For even l, on the other hand, n�l� grows for small � but
eventually decreases as 1 /�� in the large � limit, attaining a
maxima at an intermediate value of �=��; �� shifts to higher
values of � with increasing l. The difference in the behaviors
of the defect density for an even and odd numbers of repeti-
tions originates from the fact that the system is expected to
come back to its initial ground state after an even value of l
for a perfectly adiabatic dynamics.

As mentioned above, the local entropy increases after
each half-period of quenching. In the limit l→�, the entropy
s�l� eventually saturates to its maximum possible value of
ln 2 for all � while the nonadiabatic transition probability
pk�l� approaches 1/2 for all k. This result suggests that a spin
remains up or down with the same probability, irrespective of
the applied field after a large number of quenches. Using Eq.
�10�, one can also define a characteristic number of repeti-
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tions l��k ,�� so that for l� l��k ,��, the transition probability
pk�l��1 /2; it can be shown that l��k ,�� attains a minima at
an intermediate value of �. We conclude by noting that the
defect production due to repeated quenching can be studied
in systems of atoms trapped in optical lattices,19 quantum
magnets20 and spin-one Bose condensates.21
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