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The isotropic XY model �s=1 /2� in a transverse field, with uniform long-range interactions among the
transverse components of the spins, on the inhomogeneous periodic chain, is studied. The model, composed of
N segments with n different exchange interactions and magnetic moments, is exactly solved by introducing the
integral Gaussian transformation and the generalized Jordan–Wigner transformation, which reduce the problem
to the diagonalization of a finite matrix of nth order. The quantum transitions induced by the transverse field
are determined by analyzing the induced magnetization of the cell and the equation of state. The phase
diagrams for the quantum transitions, in the space generated by the transverse field and the interaction param-
eters, are presented. As expected, the model presents multiple, first- and second-order quantum transitions
induced by the transverse field, and it corresponds to an extension of the models recently considered by the
authors. Detailed results are also presented, at T=0, for the induced magnetization and isothermal susceptibility
�T

zz as a function of the transverse field.
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I. INTRODUCTION

The study of the critical quantum behavior of systems,1

which is induced by quantum fluctuations, has been object of
great interest in recent years. This critical behavior, which
controls the properties of the systems at very low tempera-
ture, is present in different systems. In particular, for mag-
netic systems, they have been responsible for unusual prop-
erties observed in low dimensional magnetic materials.2,3

Therefore, the study of the critical behavior of spin systems
in low dimension, particularly the exactly soluble, is of great
importance for understanding the properties of these materi-
als.

Among these models, the one-dimensional XY model in-
troduced by Lieb et al.,4 despite being almost 50 years old, is
still the best one to describe exactly magnetic quantum tran-
sitions. The rather rich quantum critical behavior presented
by the model can be seen in a recent work by de Lima et al.5

and in the references therein, where they studied the aniso-
tropic model on the inhomogeneous periodic lattice. The
study of the model on the inhomogeneous open lattice has
also been recently addressed by Feldman.6

The isotropic model on the inhomogeneous lattice has
also been studied by de Lima et al.,7 where a detailed study
of the static and dynamic critical properties is presented. Al-
though the model has been applied mostly in the study of the
quantum critical behavior of magnetic systems,2,3,8–10 more
recently it has also been applied in the study of quantum
entanglement, which plays an essential role in the quantum
computation. These applications can be found in the recent
work by Amico et al.11 and in the references therein. In par-
ticular, in a recent work on quantum communication in a spin
system, Avellino et al.12 studied the strong effect of long-
range interaction on the fidelity of transmission of quantum

information. Besides the importance of the long-range inter-
action in the transmission of quantum information in spin
chains, its presence can induce classical critical behavior in
these systems, which is essential for the study of the classical
and/or quantum crossover.

The one-dimensional XY model is among the models
which present this behavior, provided a uniform long-range
interaction is considered. In particular, for the isotropic one,
in the presence of a homogeneous long-range interaction
along the transverse field direction, it can still be solved
exactly, and its solution has been obtained by Gonçalves
et al.13,14 Besides the appearance of classical critical behav-
ior, the most important features presented by the homoge-
neous model have been the existence of quantum bicritical
points and, particularly, the existence of first-order quantum
transitions. Another relevant results obtained in the study of
the homogeneous case were the exact determination of the
classical and/or quantum crossover for first- and second-
order phase transitions and the verification of the scaling
relations proposed by Continentino and Ferreira15 for first-
order quantum transitions.

As pointed out by Pfleiderer,16 quantum first-order transi-
tions can be driven by different mechanisms, and to look at
this quantum critical behavior, in an exactly soluble problem,
has been the one of the motivations to analyze the isotropic
model on the inhomogeneous periodic chain with long-range
interaction. Besides this point, the possibility of having mul-
tiple first- and second-order quantum transitions and multi-
critical points of higher order has also been important moti-
vation for considering the long-range interaction in the
inhomogeneous model.

Therefore, in this paper, we will extend our previous
results7,13,14 by looking at an extended version of the models
previously considered. Although the model presents classical
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and quantum critical behaviors, we will restrict our analysis
to the quantum one.

In Sec. II we present the exact solution of the model and
obtain the functional of the Helmholtz free energy at arbi-
trary temperatures. The quantum critical behavior is dis-
cussed in Sec. III, and it is determined from the equation of
state at T=0. Explicit results for the quantum phase dia-
grams, induced magnetization Mz, and isothermal suscepti-
bility �T

zz for systems with different sizes of the unit cell are
also presented. Finally in Sec. IV we summarize the main
results of the paper.

II. MODEL AND FUNCTIONAL OF THE FREE ENERGY

We consider the isotropic XY model �s=1 /2� on the in-
homogeneous periodic chain with N cells, n sites per cell,
and lattice parameter a, in a transverse field, with long-range
interactions among the spin components in the z direction.
The unit cell of the inhomogeneous lattice is shown in Fig. 1,
and the Hamiltonian of the model in its more general form is
given by

H = − �
l=1

N

��
m=1

n

�mhSl,m
z �

m=1

n−1

Jm�Sl,m
x Sl,m+1

x + Sl,m
y Sl,m+1

y �

+ JnSl,n
x Sl+1,1

x + JnSl,n
y Sl+1,1

y � −
J�

N
�
j=1

N

�
l=1

N

�
m,m�=1

n

Sj,m
z Sl,m�

z ,

�1�

where the parameters Jm are the exchange coupling between
nearest neighbors, �m the magnetic moments, h the external
field, and J� the uniform long-range interaction among the z
components, and where we have assumed periodic boundary
conditions. If we introduce the ladder operators,

S� = Sx � iSy , �2�

and the Jordan–Wigner transformations,

Sl,m
+ = exp i��

l�=1

l−1

� �
m�=1

n

cl�,m�
† cl�,m� + i� �

m�=1

m−1

cl,m�
† cl,m��cl,m

† ,

�3�

Sl,m
z = cl,m

† cl,m −
1

2
, �4�

where cl,m and cl,m
† are fermion annihilation and creation op-

erators, we can write the Hamiltonian as17

H = H+P+ + H−P−, �5�

where

H� = − �
l=1

N ��
m=1

n 	��mh − J��cl,m
† cl,m −

1

2

�mh −

J�

2
��

+ �
m=1

n−1
Jm

2
�cl,m

† cl,m+1 + cl,m+1
† cl,m�

− �
l=1

N−1
Jn

2
�cl,n

† cl+1,1 + cl+1,1
† cl,n� �

Jn

2
�cN,n

† c1,1 + c1,1
† cN,n�

−
J�

N
�
j=1

N

�
l=1

N

�
m,m�=1

n

cj,m
† cj,mcl,m�

† cl,m� �6�

and

P� =
I � P

2
, �7�

with P given by

P = exp
i��
l=1

N

�
m=1

n

cl,m
† cl,m� . �8�

As it is well known,17–19 since the operator P commutes
with the Hamiltonian, the eigenstates have definite parity,
and P−�P+� corresponds to a projector into a state of odd
�even� parity. Introducing periodic and antiperiodic boundary
conditions on c’s for H− and H+, respectively, the wave vec-
tors in the Fourier transforms,

cl,m =
1

�N
�

q

exp�− iqdl�Aq,m �9�

and

Aq,m =
1

�N
�
l=1

N

exp�iqdl�cl,m, �10�

are given by q−= 2l�
Nd for periodic condition and q+= ��2l+1�

Nd
for antiperiodic condition,20 with l=0, �1, . . . , �N /2, and
H− and H+ can be written in the form

H� = �
q�

Hq�, �11�

where

Hq� = − �
m=1

n 	��mh − J��Aq�,m
† Aq�,m −

1

2

�mh −

J�

2
��

− �
m=1

n−1
Jm

2
�Aq�,m

† Aq�,m+1 + Aq�,m+1
† Aq�,m�

−
Jn

2
�Aq�,n

† Aq�,1 exp�− idq�� + Aq�,1
† Aq�,n exp�idq���

−
J�

N
�
m=1

n

�Aq�,m
† Aq�,m�2. �12�

Although H− and H+ do not commute, it can be shown that in
the thermodynamic limit, all the static properties of the sys-

l−th cell

m=1 m=2 m=n

d=na

FIG. 1. Unit cell of the inhomogeneous chain.
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tem can be obtained in terms of H− or H+.17–19 Therefore, by
considering periodic boundary conditions on c’s, we can
identify H�H− and q�q−, where Hq can be written in the
form

Hq = − �
m=1

n 	��mh − J��Aq,m
† Aq,m −

1

2

�mh −

J�

2
��

− �
m=1

n−1
Jm

2
�Aq,m

† Aq,m+1 + Aq,m+1
† Aq,m�

−
Jn

2
�Aq,n

† Aq,1 exp�− idq� + Aq,1
† Aq,n exp�idq��

−
J�

N
��

m=1

n

Aq,m
† Aq,m�2. �13�

The partition function is then given by

ZN =� N

2�
�

q

�Zq� , �14�

with

Zq = exp	−
�

2 �
m=1

n 
�mh −
J�

2
��

�exp��
m=1

n−1
�Jm

2
�Aq,m

† Aq,m+1 + Aq,m+1
† Aq,m�

+�Jn

2
�Aq,n

† Aq,1 exp�− idq� + Aq,1
† Aq,n exp�idq��

+ �
m=1

n

���mh − J��Aq,m
† Aq,m�+ 
��J�

N
�
m=1

n

Aq,m
† Aq,m�2 .

�15�

Since the long-range interaction term commutes with the
Hamiltonian, we can introduce the Gaussian transformation

exp�b2� =
1

�2�
�

−�

�

exp
−
x2

2
+ �2bx�dx �16�

in the previous expression, so that the partition function can
be rewritten in an integral representation as

Zq = exp	−
�

2 �
m=1

n 
�mh −
J�

2
���

−�

� 	exp
−
x̄2

2
��

�Tr�exp�− �Hq
˜�x̄��� ,

where x̄=x /�nN and the effective Hamiltonian Hq
˜�x̄� is

given by

H̃q�x̄� = − �
m=1

n−1
Jm

2
�Aq,m

† Aq,m+1 + Aq,m+1
† Aq,m�

−
Jn

2
�Aq,n

† Aq,1 exp�− idq� + Aq,1
† Aq,n exp�idq��

− �
m=1

n 
�mh − J� +�2J�

�
x̄�Aq,m

† Aq,m. �17�

By introducing the canonical transformations

Aq,m = �
k=1

n

uq,km�q,k, Aq,m
† = �

k=1

n

uq,km
� �q,k

† �18�

and by imposing the condition

��q,k,H̃q�x̄�� = 	q,k�q,k, �19�

this leads, for the coefficients uq,km, to the equation

Aq�
uq,k1

uq,k2

]

uq,kn

� = 	q,k�
uq,k1

uq,k2

]

uq,kn

� , �20�

where Aq is given by

Aq � −�
h̃1

J1

2
0 ¯ 0

Jn

2
exp�− iqd�

J1

2
h̃2

J2

2
0

0
J2

2
h̃3

J3

2
]

]

J3

2
� � 0

0 � h̃n−1

Jn−1

2

Jn

2
exp�iqd� 0 ¯ 0

Jn−1

2
h̃n

� ,

�21�

and the u’s satisfy the orthogonality relations,

�
m=1

n

uq,kmuq,k�m
� = 
kk�, �22�

�
k=1

n

uq,kmuq,km�
� = 
mm�, �23�

and h̃j =�mh−J�+�2J�
� x̄. Therefore, the effective Hamil-

tonian can be written in the diagonal form,

H̃q�x̄� = �
k

	̃q,k�q,k
† �q,k, �24�

where the spectrum 	̃q of Hq is determined from the deter-
minant equation
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det�Aq − 	̃qI� = 0, �25�

and the operators �’s are given in terms of A’s and c’s by the
expression

�q,k = �
m=1

n

uq,km
� Aq,m =

1
�N

�
l=1

N

�
m=1

n

exp�iqdl�uq,km
� cl,m,

�26�

which have been obtained by using Eqs. �9� and �22�. From
this result, the partition function can be written in the form

exp��
q,k

ln�1 + exp�− �	̃q,k���dx̄ . �27�

In the thermodynamic limit, the partition function can be
evaluated by Laplace method by imposing the condition that
g��x̄0�=0, where g�x̄� is given by

g�x̄� = −
x̄2

2
+

1

nN
�
q,k

�ln�1 + exp�− �	̃q,k��� ,

and x̄0 is equal to

x̄0 =
1

nN
�
q,k

�2�J�

1 + exp�− �	̃q,k�
,

which can be written in terms of the average induced mag-
netization Mz, defined as

Mz =
1

nN
�
l,m

�m�Sl,m
z � =

1

nN
�

q,k,m
�muq,km

� uq,km��q,k
† �q,k� −

1

2
,

�28�

in the form

x̄0

�2�J�
= Mz +

1

2
.

Finally, we can obtain from the previous results the func-
tional of the Helmholtz free energy per lattice site which is
given by

f =
h

2
−

kBT

nN
�
q,k

ln�1 + exp�− �	̃q,k�� + J�Mz�Mz + 1� .

�29�

The equation of state is obtained numerically from this
functional by imposing the conditions

� f

�Mz = 0,
�2f

�Mz2 � 0. �30�

The numerical solution is more easily obtained for n4,
where there are analytical solutions for Eqs. �20� and �25�
�Ref. 7� and in the cases where we have uniform magnetic
moments, namely, �m��. In this situation, the term
−�l,m

n �hSl,m
z commutes with the Hamiltonian, and conse-

quently the effect of the field is to shift the spectrum. This
means that the solution of Eq. �25� can be written as

	̃q,k = 	̃q,k
0 − �h + J� −�2J�

�
x0 = 	̃q,k

0 − �h − 2J�Mz, �31�

where 	̃q,k
0 is the energy of the excitations of the model for

zero transverse field and long-range interaction, and we iden-
tify the expression �h+2J�Mz as an effective field heff.

14

III. QUANTUM CRITICAL BEHAVIOR

In the limit T→0, the functional of the Helmholtz free
energy per lattice site �Eq. �29�� can be explicitly written as

f =
FN

N
=

h

2
+ J�Mz�Mz + 1� −

1

�n
�
k=1

n �
0

q̄k

	q,kdqk, �32�

where q̄k is obtained by imposing the condition 	̃q,k=0 and
we have considered the lattice spacing a=1 and uniform
magnetic moments �=1. Under these conditions the average
induced magnetization Mz, given in Eq. �28�, can also be
written in the form

Mz =
1

2�n
�
k=1

n �
0

q̄k

sgn�	q,k�dqk. �33�

The quantum phase diagram is determined from the equa-
tion of state, which is obtained numerically from the previ-
ous equations by considering the conditions shown in Eq.
�30�, and in particular we can determine the magnetization as
a function of the transverse field. As it is well known, the
second-order phase transitions are determined by imposing
the limit Mz→0 and it can be shown numerically, for arbi-
trary unit-cell sizes, that the critical field varies linearly with
the long-range range interaction J� and that these phase tran-
sitions, as in the homogenous model,14 occur for J��0 only.

The first-order phase transitions are determined by impos-
ing the additional condition

f�Mz� = f�Mp
z � , �34�

where Mp
z are the magnetization plateaus, which are identical

to the ones in the model without the long-range interaction.7

This is due to the fact that, for uniform magnetic moments,
the long-range interaction does preserve the azimutal sym-
metry of the model and consequently the magnetization pla-
teaus satisfy the quantization condition21

n
�

2
− Mp

z� = � � integer, �35�

which does only depend on the symmetry of the Hamil-
tonian.

As in the homogenous case,14 the first-order phase transi-
tions occur for J��0 only, and in this case, besides the bi-
critical points where the second-order lines meet the first-
order ones,13 there are triple points which correspond to the
point where three first-order lines meet. From the magneti-
zation as a function of the field, we can obtain the isothermal
susceptibility �T

zz, which is given by

�T
zz �

1

n

�Mz

�h
. �36�
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The main results are shown in Figs. 2–11. In Fig. 2 we
present the phase diagram for n=2, and as expected there are
two second-order lines for J��0 which end up at bicritical
points for J�=0. For J��0, there are two first-order lines
which collapse into a single one at a triple point. In Fig. 3�a�
we present the magnetization as a function of the field, and
as it can be seen the different critical behaviors are explicitly
shown depending on the sign of the long-range interaction. It
should be noted that as we approach the triple point, the two
first-order phase transitions collapse into a single one, which
corresponds in this case to a jump in the induced magnetiza-
tion from zero to one-half.

As in the homogeneous model,14 there is a universal curve
to which all magnetization data collapse, independently of
the order of the transition. This is presented in Fig. 3�b�,
where we show the magnetization as a function of the effec-
tive field heff=h+2J�Mz.

In Fig. 4 we present the quantum phase diagram for n
=3. As in the previous case, for J��0 we have second-order
phase transitions and for J��0 we have first-order phase
transitions. There are three second-order lines and two first-
order lines meet at a unique triple point. The magnetization
is presented in Fig. 5�a� for different values of J�, which
characterize the different behaviors, and in Fig. 5�b� we
present the collapse of the magnetization when plotted as a
function of the effective field heff.

It should be noted that for a different set of parameters,
we could have two triple points, and in this case we will have
a single first-order line beyond the critical value J�, which is
associated to the second triple point. This situation can be
seen in the phase diagram shown in Fig. 6, for n=4, where it
is explicitly shown that we can have three triple points. Since

we have no suppression of a phase transition, there are four
second-order transition lines. As it has been shown for J�
=0,7 an adequate choice of the exchange parameters can sup-

-3 -2 -1 0 1 2 3

1

2

Mz=0

J
2
/J

1
=2

h/J
1

J'/J1

n=2

Mz=1/2

FIG. 2. Phase diagram for the quantum transitions as a function
of the strength of the long-range interaction J� /J1 for n=2 and J1

=1, J2=2. For J� /J1�0, the critical lines identify the first-order
phase transitions and for J� /J10, the second-order phase
transitions.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

Mz

h
eff

/J
1

n=2

J
2
/J

1
=2

(b)

r=1.5

r=0.5

r=1

r ≤ 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

Mz

h/J
1

n=2

J
2
/J

1
=2

(a)
r=1.5

r=0.5r=1 r=0 r=-0.5 r=-1

FIG. 3. �a� Magnetization as a function of h /J1, and �b� univer-
sal curve for the magnetization as a function of the effective field
heff /J1 �heff=h+2J�Mz�, at T=0, for different values of r�r
=J� /J1�, in the regions where the system undergoes first- �r�0�
and second-order �r0� quantum transitions for n=2 and J1=1,
J2=2.

-2 -1 0 1 2

1

2

3

Mz=1/6
Mz=1/2

J
2
/J

1
=1

J
3
/J

1
=2h/J

1

J'/J1

n=3

FIG. 4. Phase diagram for the quantum transitions as a function
of the strength of the long-range interaction J� /J1 for n=3 and J1

=1, J2=1, and J3=2. For J� /J1�0, the critical lines identify the
first-order phase transitions and for J� /J10, the second-order
phase transitions.
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press a phase transition. For n=4, this condition corresponds
to J1J3=J2J4 and the phase diagram for this case is presented
in Fig. 7. As it can be verified in this figure, we have three
second-order lines, instead of four, and just one triple point.

The magnetization associated to the parameters defined in
Fig. 6 is presented in Fig. 8. As in the previous cases, in Fig.
8�a� we have the magnetization as a function of the field for
different values of J�, and in Fig. 8�b�, the universal curve

0.0 0.7 1.4 2.1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r=0.2

≤

h
eff

/J
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(b)
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r 0

0 1 2
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(a)

J
2
/J

1
=1

J
3
/J

1
=2

n=3

FIG. 5. �a� Magnetization as a function of h /J1 and �b� universal
curve for the magnetization as a function of the effective field
heff /J1 �heff=h+2J�Mz�, at T=0, for different values of r�r
=J� /J1�, in the regions where the system undergoes first- �r�0�
and second-order �r0� quantum transitions, for n=3 and J1=1,
J2=1, and J3=2.
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FIG. 6. Phase diagram for the quantum transitions as a function
of the strength of the long-range interaction J� /J1 for n=4 and J1

=1, J2=1, J3=1, and J4=2. For J� /J1�0, the critical lines identify
the first-order phase transitions and for J� /J10, the second-order
phase transitions.
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FIG. 7. Phase diagram for the quantum transitions as a function
of the strength of the long-range interaction J� /J1 for n=4 and J1

=1, J2=1, J3=2, and J4=2. For J� /J1�0, the critical lines identify
the first-order phase transitions and for J� /J10, the second-order
phase transitions.
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for the magnetization as a function of the effective field heff.
In Fig. 9, we present the phase diagram for n=5. Since n is
odd, there is no suppression of any transition for J�=0 �Ref.
7� and, as expected, there are five second-order transition
lines. The associated magnetization as a function of the field

is presented in Fig. 10�a� and the magnetization universal
curve is shown in Fig. 10�b�.

Finally, in Fig. 11, we present the isothermal susceptibil-
ity �T

zz for n=3 and different values of J�. As in the homo-
geneous model, the isothermal susceptibility, at the second-
order phase transitions, diverges for J�=0 only, and its
multiple phase transitions have the same critical exponents
of the homogeneous model and consequently belong to the
same universality class.

IV. CONCLUSIONS

In this work we have considered the isotropic XY model
with a uniform long-range interaction along the z direction in
a periodic inhomogenous lattice with N cells and n sites per
cell. The exact solution of the model was formally obtained
at arbitrary temperatures and distribution of magnetic mo-
ments and exchange constants. Explicit equations have been
obtained for the functional of the Helmholtz free energy
from which the equation of state can be determined numeri-
cally.

The analysis of the critical behavior has been restricted to
the quantum phase transitions and we have shown, as in the
homogeneous model, that the system presents first-order
phase transitions when the long-range interaction is ferro-
magnetic and second-order phase transitions when the long-
range interaction is antiferromagnetic. The model also pre-
sents multiple first- and second-order phase transitions and
the number of critical lines is equal to n, for n odd, and less
than n, for n even, provided the exchange constants in the xy
plane satisfy a special relation.

The second-order critical lines meet the first-order ones at
J�=0, which are bicritical points and there are multiple triple
points, where three first-order critical lines meet, depending
on the unit-cell size. The critical exponents have been ob-
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tained numerically, and it has been shown, as expected, that
the model belongs to the same universality class of the ho-
mogeneous one.

Finally, we would like to point out that is of paramount
importance the presence of multiple first-order quantum tran-
sitions and triple points, which we have shown exactly to
exist in the model, since we believe that this behavior is
related to the different mechanisms from which the first-

order phase transitions are driven. These mechanisms have
been thoroughly discussed by Pfleiderer16 by analyzing
quantum critical behavior obtained for different materials.
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