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The edge-cubic spin model on square lattice is studied via Monte Carlo simulation with cluster algorithm.
By cooling the system, we found two successive symmetry breakings, i.e., the breakdown of Oh into the group
of C3h, which then freezes into ground-state configuration. To characterize the existing phase transitions, we
consider the magnetization and the population number as order parameters. We observe that the magnetization
does well at probing the high-temperature transition but fails in the analysis of the low-temperature transition.
In contrast, the population number performs well in probing the low- and the high-T transitions. We plot the
temperature dependence of the moment and correlation ratios of the order parameters and obtain the high- and
low-T transitions at Th=0.602�1� and Tl=0.5422�2�, respectively, with the corresponding exponents of corre-
lation length �h=1.50�1� and �l=0.833�1�. By using correlation ratio and size dependence of correlation
function, we estimate the decay exponent for the high-T transition as �h=0.260�1�. For the low-T transition,
�l=0.267�1� is extracted from the finite size scaling of susceptibility. The universality class of the low-T
critical point is the same as the three-state Potts model.
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I. INTRODUCTION

The presence of symmetry breaking in many areas of
physics, such as particle, atomic, and condensed matter phys-
ics, is indicative of the importance of the phenomenon.1 In
general, the breakdown of symmetry is an onset of a phase
transition that separates phases with different degrees of
symmetry.2 A system is in high degree of symmetry at high
temperature because it is able to explore all its configura-
tional spaces. The decrease in temperature will reduce ther-
mal fluctuation and lead the system to stay in some favorable
states. This type of transition with no coexistence phases,
and therefore no latent heat, is commonly called a continu-
ous phase transition.

A system with an initially large number of symmetry el-
ements is more likely to experience sequential phase transi-
tions. In fact, various magnetic systems exhibit such behav-
ior. The clock spin model in two dimensions, for example,
whose group symmetry Cn experiences double Kosterlitz–
Thouless transitions for n�4.3 In the presence of frustration,
which induces chiral symmetry Z2, another phase transition
occurs.4

In this paper, we study the edge-cubic spin model on two
dimensions. The model is one of the discrete counterparts of
the continuous spin, the Heisenberg model, of symmetry
group �O3�. In two dimensions, anisotropy is important as
systems with discrete symmetry can have a true long-range
order at finite temperature. The octahedral symmetry group
Oh of the model, with 48 symmetry elements, consists of
some subgroups associated with familiar discrete models,
such as the inversion Z2 of Ising model and C3h of the chiral
three-state Potts model. Any finite ordered phase of the sys-
tem is expected to be in one of its subgroup symmetries.

While cubic symmetry in magnetic systems is an old sub-
ject and appears whenever systems are on real cubic
lattice,5,6 cubic spin models have not been studied as much

as other discrete models, such as Ising, Potts, and clock mod-
els. Previous works on cubic symmetries were mostly carried
out in the theoretical field approach through the consider-
ation of the �4 Hamiltonian, in which the n-component an-
isotropy fields break the continuous O�N� symmetry.7,8 It is
well established that for three-dimensional case, the cubic
fixed point is stable if n�nc, where nc�3 according to more
recent calculations.8,9 The situation is different in two-
dimensional case because the existence of cubic fixed point
is still unclear. Recent study by Calabrese et al.10 could not
unravel the speculation that the Ising and the cubic fixed
points may coincide.

In trying to resolve the speculation of the existence of
cubic fixed point in two dimensions, it is of importance to
directly probe the spin models with cubic symmetry. With
simple normalized-vector spin on cube, we can have three
models, i.e., the face-cubic �six states�, the corner-cubic
�eight states�, and the edge-cubic spin �12 states�. Very re-
cently, Yasuda et al.11 considered a ferromagnetic face-cubic
spin model and then found that the model undergoes a single
phase transition; they discussed the universality class of this
model in comparison to the four-state Potts model. The
corner-cubic spin model is considered a trivial model of de-
coupled three independent Ising models. Studying the
corner-cubic model cannot be expected to address the exis-
tence of cubic fixed point. However, by weighting the spin
orientation, the corner-cubic spin model can transform into a
general Ashkin-Teller model;12 to this respect, the model is
no longer trivial.

Probing the edge-cubic spin model deserves its own right.
First, it is interesting to know the symmetry breaking of Oh
in that model and also to address the existence of cubic uni-
versality class. Since the degree of Oh is high, the edge-cubic
model may experience sequential phase transitions. The re-
maining part of the paper is organized as follows. Section II
describes the model and the method. The result is discussed
in Sec. III. Section IV is devoted to the concluding remarks.
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II. MODEL AND SIMULATION METHOD

The edge-cubic spin model is one of the discrete counter-
parts of the Heisenberg model. Spins can point to any of the
12 middle points of the edges of a cube. An edge of the cube
is two units long, and its center of mass O�0,0 ,0� is set as
the origin of the normalized-vector spin. Here, we study the
ferromagnetic case on square lattice with periodic boundary
condition. The Hamiltonian of the model is expressed as

H = − J�
�ij�

s�i · s� j , �1�

where s�i is a spin on the ith site, J�0. Summation is per-
formed over all the nearest-neighbor pairs of spins. In the
ground-state configuration, i.e., when all spins have a com-
mon orientation, the energy will be −2JN, where N is the
number of spins.

We use the canonical Monte Carlo �MC� method with
single cluster spin updates due to Wolff13 and adopt Wolff’s
idea of embedded scheme in constructing a cluster for the
edge-cubic spins. This is done by projecting the spins into a
randomly generated plane so that the spins are divided into
two groups �Ising-type spins�. The embedded scheme is es-
sential in carrying out cluster algorithm for such spins as
cubic and planar spins.

After the projection, the usual steps of the cluster algo-
rithm are performed,14 i.e., by connecting bonds from the
randomly chosen spin to its nearest neighbors of similar
group, with suitable probability. This procedure is repeated
for neighbors of sites connected to chosen spin until there are
no more spins to include. One Monte Carlo step �MCS� is
defined as visiting once the whole spins randomly and per-
forms cluster spin update in each visit. Note that a spin may
be updated many times, on average, during one step, in par-
ticular, near the critical point.

Measurement is performed after enough equilibration
MCSs �104 MCSs�. Each data point is obtained from the
average over several parallel runs, each run is of 4�104

MCSs. To evaluate the statistical error, each run is treated as
a single measurement. For the accuracy in the estimate of
critical exponents and temperatures, data are collected up to
more than 100 measurements for each system size.

III. RESULTS AND DISCUSSION

A. Specific heat and magnetization

The first step in search for any possible phase transition is
to measure the specific heat of the system defined as follows:

Cv�T� =
1

NkBT2 ��E2� − �E�2� , �2�

where E is the energy in units of J, while �¯� represents the
ensemble average of the corresponding quantity. All tem-
peratures are expressed in units of J /kB, where kB is the
Boltzmann constant.

As shown by the specific heat plot in Fig. 1, there exist a
peak at lower temperature and a hump at higher temperature.
Although the peak and the hump are more directly related to
energy fluctuation, they may signify the existence of sequen-

tial phase transitions. In what follows, more quantitative
analysis is performed through the evaluation of the order
parameters.

The critical properties of the system are quantified by the
critical temperatures and exponents extracted from the finite
size scaling �FSS� of the order parameters, in particular, from
their moment and correlation ratios. As the probed system is
ferromagnetic, we consider magnetization M = ��s�i� as the or-
der parameter. By defining Mk as the kth order moment of
magnetization and g�R�=�s��r� ·s��r+R� as the correlation
function, the moment and correlation ratios are, respectively,
written as follows:

UL =
�M4�
�M2�2 , �3�

QL =
�g�L/2��
�g�L/4��

. �4�

Precisely, the distance R for the correlation function g�R� is a
vector quantity; here, we take the simple form and choose
convenient distances L /2 and L /4, both in the x and y direc-
tions.

More accurate estimate of parameters of phase transition
is obtained from the temperature dependence of UL and QL.
At very low temperature where the system is approaching the
ground state, both moment and correlation ratios are trivial.
Due to the absence of fluctuation, the distribution of M is a
delta-like function, giving a moment ratio equal to unity.
Correlation ratio also goes to unity as correlation function for
small and large distances is the same due to highly correlated
states. In excited states, the moment and the correlation ra-
tios are not trivial; they depend on temperature. The plot of
the moment ratio for various system sizes, shown in Fig.
2�a�, exhibits a clear crossing point, which indicates a phase
transition. At low-temperature side, there exists a cusp,
which may correspond to another phase transition. A possi-
bility that system has additional phase transition at low tem-
perature, apart from an obvious one at high temperature, is

FIG. 1. �Color online� The temperature dependence of the spe-
cific heat for various system sizes. As shown, there exist a clear
peak and a hump, respectively, at high and at low temperatures. The
peak and the hump signify that system possesses sequential phase
transitions. The error bar, in average, is on the order of symbol size,
except data for L=256 at T�0.65, where the error is larger than the
symbol size.
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also signified by the plot of the correlation ratio shown in
Fig. 2�b�.

We show the FSS plot of the moment and correlation
ratios in Fig. 3; we estimate the critical temperature and ex-
ponents from both ratios, which give consistent results with
the only difference being smaller than estimated statistical
error. The estimate of Tc obtained from moment ratio is Tc
=0.601�1�, slightly smaller than Tc=0.602�1� from the cor-
relation ratio. The number in parentheses is the uncertainty in
the last digit. In general, the moment ratio has larger correc-
tion to scaling than the correlation ratio,15 which happens to
be the case here. However, if the variables of the two corre-
lation functions are not local quantity, in the sense that they
depend on another quantity, then the correlation ratio may
have larger correction to scaling. Our estimate of Tc is based
on the result obtained from the correlation ratio. The esti-

mates of the decay exponent of the correlation length both
give the same results, i.e., �h=1.50�1�. The subscript is used
to remind us that we are dealing with the high-T transition.

In addition to the exponent �, it is possible to extract the
decay exponent � of the correlation function from the corre-
lation ratio. This is done by first looking at the constant value
of the correlation ratio QL for different sizes and then finding
the corresponding correlation function g�L /2�. The correla-
tion function is in power-law dependence on the system size,
g�L /2��L−�.15 Therefore, if we plot g�L /2� versus L for
various QL’s in logarithmic scale, as in Fig. 4, the value of �
will correspond to the gradient of the best-fitted line for each
constant of correlation ratio. There are several lines plotted
in Fig. 4. Since the critical temperature is associated with the
value of QL�0.91 �Fig. 2�b�	, we assign �=0.260�1� as the
best estimate.

Although there is an indication of low-temperature transi-
tion, at this stage, we do not estimate its critical quantities
due to the absence of a crossing point. We need to formulate
a more suitable order parameter able to distinguish the inter-
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FIG. 2. �Color online� Temperature dependence of the �a� mo-
ment ratio and �b� correlation ratio for several system sizes. The
crossing points indicate a phase transition between the disordered
and the intermediate phases. A cusp in the moment ratio and valley
in the correlation ratio suggest another phase transition. The error
bar is on the order smaller than the symbol size.
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mediate and the low-temperature ordered phases. In Sec.
III B, we present the snapshot series of the total magnetiza-
tion and discuss the order parameter of characterizing low-
temperature transition.

B. Snapshot of spin configuration and population number
order parameter

The total vector magnetization is computed for every
snapshot spin configuration. A snapshot magnetization is rep-
resented by a dot that is the intersection of the line parallel to
the magnetization and the cube surface. Thus, we obtain dots
as many as the number of MCSs, and we view these dots
from the �111� direction, as shown in Fig. 5.

For simplicity, we make suitable mirror projection of the
total magnetization so that its orientation is in the region of
the three outer sides of the 1/8 cube. We further project the
surface of the 1/8 cube onto a triangle, as shown in Fig. 6.
The inner triangle is associated with the plane made by three
edge points ��101�, �110�, and �011�	 in Fig. 5. Each pair of
these points together with a middle point of sides viewable
from the corner point �111� constructs three other outer tri-
angles.

The phase of the system is related to spin configuration.
At high temperatures, due to large thermal fluctuation, each
spin is relatively free to point to any direction; therefore,
there is no common orientation of the total magnetization. As
a result, the snapshot point will occupy the whole area of
four triangles. This is indicated in Fig. 6 with T=0.80.

As we reduce the temperature, the thermal fluctuation
starts to be overcome by the magnetic interaction. The snap-
shot points start to be around the middle area of the triangle
�associated with T=0.61�. At this state, three neighboring
spin orientations near a corner of the cube become more
favorable. At T=0.55, the system is in intermediate phase
where almost all snapshots are inside the area of the inner
triangle. Three neighboring orientations around a particular
corner of the cube are chosen; the octahedral symmetry Oh is
completely broken.

The symmetry group associated with the intermediate
phase is the point group C3h, realized, for example, by the
three-state Potts model. As the temperature is further re-
duced, this symmetry breaks down into a ground state with
all spins pointing to the same direction, as shown in Fig. 6
with T=0.40. Therefore, from the symmetry group point of
view, it is natural to expect that the low-temperature phase
transition is in the same universality class as the three-state
Potts model.

Based on the snapshot of magnetization, we define an
order parameter related to population numbers. It is formu-
lated from the fact that at each microscopic state, spins will
be pointing to the 12 possible orientations. The difference
between maximum population among the 12 orientations and
the second largest is assigned as the order parameter, which
is written as follows:

M̄ = M1 – M2, �5�

where M1 and M2 are the largest and the second largest
population numbers, respectively.

At ground state, the value of this order parameter will be
just N because all N spins are in a common alignment. In
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FIG. 5. �Color online� The cube and 1/8 cube �green�. Three
outer sides of the small cube viewable from corner �111� are the
surfaces penetrated by the series of magnetization vectors.
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FIG. 6. �Color online� Plot of the series of
snapshots of total magnetization. The orientation
is viewed from the corner point �111� of the cube.
Each symbol represents the total magnetization of
a snapshot spin configuration.
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contrast, at high temperature, the value of the order param-
eter is very small and vanishes in the thermodynamic limit,
as the 12 possible orientations are occupied by approxi-
mately equal number of spins. Figure 7 shows the tempera-
ture dependence of the 12 population numbers Mi. One could
choose another quantity as an order parameter, but Eq. �5� is
simple and straightforward.

The breakdown of symmetries experienced by the system
can also be detected from temperature dependence of Mi. At
high-temperature side �T�0.8�, 12 lines are approximately
parallel. There is a clear split of lines at around T=0.61,
where three lines go up, and the others go down. This re-
minds us of Fig. 6 with T=0.61, where three neighboring
spins around a cube corner start being favorable. At lower
temperatures �T�0.55�, the upper three lines separate into
two groups, where one continuously goes up while the other
two vanish. This exhibits the breakdown of C3h.

In this part, we make use of the moment and the correla-
tion ratio of the newly introduced order parameter for the
analysis of the low-temperature critical behavior, expressed
as

ŪL =
�M̄4�

�M̄2�2
, �6�

Q̄L =
�ḡ�L/2��
�ḡ�L/4��

. �7�

Here, the correlation function ḡ�R�=�M̄�R+r�M̄�r�, where

M̄�R� is defined as follows:

M̄�R� = M1�R� − M2�R� , �8�

where Mk�R� is 0 or 1. When the spin at R, s��R�, is in the kth
populated direction Mk�R�=1; otherwise, it is 0. This means
the direction 1 �or 2� can be different for different Monte
Carlo steps. With this definition, the correlation function re-
lates points with functional variable of occupation number.
The plot of these ratios for various system sizes, given in
Fig. 8, has shown a clear crossing point separating the inter-
mediate and the low-temperature order phases. The FSS plot
of the moment and correlation ratios, shown in Fig. 9, gives
the estimates of Tc and the exponent �. While the quality of
the plot is not as good as that of the susceptibility discussed
below, we estimate Tc=0.5422�2� and �=0.833�1� based on
the moment ratio. This exponent is in good agreement with
the result of three-state Potts model.16

The decay exponent � for the correlation function of M̄
can also be extracted in the same way for M. After determin-
ing a fixed value of correlation ratio, we search for ḡ�L /2� of
each system size and plot against L in logarithmic scale. The
gradient of the best-fitted line associated with critical value
of correlation ratio is the estimate of �. However, due to
large correction to scaling of the correlation ratio, the esti-
mates of � is off from the three-state Potts model. By ex-
cluding the small system sizes, as indicated in Fig. 10, the
estimated value of � systematically declines. We believe that
the value of the three-state Potts model is approached for
larger system sizes.
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In order to obtain a better estimate of �, we perform an-
other approach, namely, by using the FSS of susceptibility
�L, which is written as follows:

�̄L = L2−��̃̄L��T − Tc�L1/�� , �9�

where �̄L= ��M̄2�− �M̄�2� /L2. The temperature dependence of
�̄L is given in Fig. 11 with the inset as its FSS plot. The
exponents �=0.833�1� and �=0.267�1� belong to three-state
Potts model.

Next, we address the possibility of characterizing the
high-temperature transition by using the order parameter
based on population number. Obviously, the order parameter
introduced in Eq. �5� is only appropriate for low-
temperature, not for high-temperature transition. This is due
to the fact that at high and intermediate temperatures M1 and
M2 have approximately similar values, especially for larger
system sizes. In the intermediate phase, the three neighbor-
ing spin orientations are favorable; thus for probing high-

temperature transition, it is appropriate to subtract M4, the
fourth largest population number, instead of M2, from M1,
and obtain M̃ =M1–M4, analogous to Eq. �5�. The tempera-
ture dependence of the correlation ratio and its FSS is shown
in Fig. 12. The plot of temperature dependence for various
system sizes gives a crossing critical point. The estimate of
Tc=0.603�2� and �=1.50�1� is consistent with that obtained
earlier.

After obtaining the critical exponents, we can now discuss
the universality classes of the phase transitions. Two symme-
try breakings are obvious from the snapshot series of mag-
netization shown in Fig. 6 as well as from temperature de-
pendence of Mi in Fig. 7. At higher temperature, the native
octahedral symmetry Oh breaks into an intermediate phase
C3h symmetry, which then freezes into a ground state of low
temperatures. The high-temperature phase transition with ex-
ponents �h=1.50�1� and �h=0.260�1�, different from Ising’s
exponents, may suggest the existence of cubic universality
class in two dimensions. We expect the low-temperature
transition is in the same universality class of three-state Potts
model, which is a realization of C3h symmetry and exactly
solvable with exponents �=5 /6 and �=4 /15 .16 Our numeri-
cal results affirm this scenario.
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IV. CONCLUDING REMARKS

In summary, we have investigated the ferromagnetic
edge-cubic spin model on square lattice with periodic bound-
ary condition. The octahedral symmetry group Oh of the sys-
tem experiences sequential symmetry breakings as tempera-
ture is reduced. First, the Oh breaks into C3h, which occurs at
a critical temperature of 0.602�1�. Two critical exponents are
estimated, i.e., the exponent of the correlation length �
=1.50�1� and decay exponent of correlation function �
=0.260�1�.

Further cooling down the system, the second phase tran-
sition is observed. Although the magnetization is the order
parameter for the ferromagnetic system, it does not necessar-

ily succeed in the analysis of low-temperature transition of
our system. The introduced order parameter associated with
the maximum number of spins pointing to a particular direc-
tion, in fact, performs better, by which we extract the critical
temperature and exponents.

The low-temperature transition that occurs at T
=0.5422�2� separates the intermediate state belonging to
symmetry group C3h and the ground state. Two critical ex-
ponents of this transition are estimated, namely, � of corre-
lation length and � of decaying correlation function, as tabu-
lated in Table I. The values of the exponents are in very good
agreement with the three-state Potts model.

ACKNOWLEDGMENTS

The authors wish to thank Y. Tomita and T. Suzuki for
valuable discussions. They also thank D. Ueno for the col-
laboration in the early stage of research. The extensive com-
putation was performed using the supercomputer facilities of
the Institute of Solid State Physics, University of Tokyo, Ja-
pan. The present work is financially supported by KAKENHI
Grants No. 19340109 and No. 19052004 and by Next Gen-
eration Supercomputing Project, Nanoscience Program,
MEXT, Japan.

*tasrief@unhas.ac.id
†kawashima@issp.u-tokyo.ac.jp
‡okabe@phys.metro-u.ac.jp

1 J. Zinn-Justin, Quantum Field Theory and Critical Phenomena,
4th ed. �Oxford University Press, Oxford, 2002�.

2 L. D. Landau, in Collected Paper of L. D. Landau, edited by D.
T. Haar �Pergamon, New York, 1965�.

3 J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Phys. Rev. B 16, 1217 �1977�.

4 T. Surungan, Y. Okabe, and Y. Tomita, J. Phys. A 37, 4219
�2004�.

5 A. Aharony, Phys. Rev. B 10, 3006 �1974�.
6 D. Kim, P. M. Levy, and L. F. Uffer, Phys. Rev. B 12, 989

�1975�.

7 J. Sznajd and M. Dudziński, Phys. Rev. B 59, 4176 �1999�.
8 P. Calabrese and A. Celi, Phys. Rev. B 66, 184410 �2002�.
9 J. M. Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B 61,

15136 �2000�.
10 P. Calabrese, E. V. Orlov, D. V. Pakhnin, and A. I. Sokolov,

Phys. Rev. B 70, 094425 �2004�.
11 T. Yasuda, N. Kawashima, and Y. Okabe �unpublished�.
12 J. Ashkin and E. Teller, Phys. Rev. 64, 178 �1943�.
13 U. Wolff, Phys. Rev. Lett. 62, 361 �1989�.
14 P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. Suppl. 26,

11 �1969�; C. M. Fortuin and P. W. Kasteleyn, Physica �Amster-
dam� 57, 536 �1972�.

15 Y. Tomita and Y. Okabe, Phys. Rev. B 66, 180401�R� �2002�.
16 F. Y. Wu, Rev. Mod. Phys. 54, 235 �1982�.

TABLE I. Transition temperatures and exponents � and � of
high- and low-temperature transitions.

Transition Tc � �

High T 0.602�1� 1.50�1� 0.260�1�
Low T 0.5422�2� 0.833�1� 0.267�1�

0.6 0.604 0.608
T

0.85

0.9

0.95

Q
L

L = 64
L = 128
L = 256
L = 512

-0.4 -0.2 0 0.2 0.4
(T-T

c
)L

1/υ

0.85

0.9

0.95

Q
L

T
c

= 0.603, υ = 1.50

~

~

FIG. 12. �Color online� Correlation ratio of the order parameter

M̄ =M1–M4 vs temperature. There is a clear crossing point for
curves of larger system sizes, L=128, 256, and 512. The system
size L=64 seems to have quite large correction to scaling. The inset
is the FSS for the three large system sizes.
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