
Thermal conductivity and terahertz vibrational dynamics of vitreous silica

G. Baldi*
INFM-CNR CRS-SOFT Operative Group in Grenoble, c/o ESRF, Boîte Postale 220, F-38043 Grenoble Cedex, France

V. M. Giordano, G. Monaco, and F. Sette
European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble Cedex, France

E. Fabiani
Département des Technologies pour la Biologie et la Santé, CEA-Léti and Minatec, Grenoble Cedex 9, France

A. Fontana
Department of Physics, Trento University, Via Sommarive 14, 38050 Povo, Trento, Italy

and INFM-CNR CRS-SOFT, c/o Roma University “La Sapienza,” 00185 Roma, Italy

G. Ruocco
Department of Physics and INFM-CNR CRS-SOFT, c/o Roma University “La Sapienza,” 00185 Roma, Italy

�Received 19 February 2008; revised manuscript received 14 May 2008; published 27 June 2008�

The dynamic structure factor of vitreous silica is measured at terahertz frequencies by inelastic scattering of
x rays �IXS� and neutrons �INS�. The IXS experiment is performed at exchanged wave vectors q between 4 and
15 nm−1 and at temperatures above and below the glass transition. The neutron time-of-flight technique is used
as a high-resolution probe in a comparable q region. The data analysis confirms the presence of two inelastic
features in the IXS spectra in the entire explored wave-vector range. The lower-frequency component is
nondispersive and is observed by both IXS and INS around the boson peak frequency. The higher-frequency
one, associated with the longitudinal-acoustic-like branch, is marked by a positive dispersion, confirming the
results of a previous study �Ruzicka et al., Phys. Rev. B 69, 100201 �2004��. As q increases, the vibrational
modes of the disordered structure progressively lose their plane-wave character; for q around that of the first
sharp diffraction peak, the dynamic structure factor converges to an effective density of vibrational states. The
contribution of the terahertz vibrations to the thermal conductivity of vitreous silica is then evaluated by means
of a Kubo-type formula for the diffusivity in disordered systems. The acousticlike modes that persist at
terahertz frequencies represent a heat conduction channel which accounts for only a fraction, although relevant,
of the thermal conductivity. The failure of this approach to fully describe the conductivity data is attributed to
the nondiagonal elements of the heat current operator that are not experimentally accessible.
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I. INTRODUCTION

Amorphous solids are defined by the lack of long-range
structural order. The absence of translational invariance gives
rise to a complex phenomenology in the vibrational proper-
ties of glasses and supercooled liquids. Macroscopically this
complexity is reflected in anomalies in the thermal
properties,1 which distinguish the amorphous materials from
the corresponding crystalline structures.

Vitreous silica is considered the prototype of strong
glasses2 and a model for the typical glass. Its vibrational
dynamics has been widely investigated both experi-
mentally3–17 and by means of computer simulations.18–23 Pre-
vious inelastic-neutron-scattering �INS� studies have focused
on the determination of the density of vibrational states7,10

and on the wave vector8,11 q and on the frequency12 depen-
dence of the dynamic structure factor S�q ,��. The inelastic
x-ray scattering �IXS� technique with meV energy
resolution13 has opened the possibility of measuring the Bril-
louin doublet at exchanged wave vectors on the order of a
fraction of q0, the position of the first sharp diffraction peak
in the static structure factor.

The main results of the IXS experiments in v-SiO2 can be
summarized as follows:14,24

�i� Acousticlike excitations show up in the S�q ,��. At the
lowest exchanged wave vector at present accessible to IXS,
q�1 nm−1, the excitations propagate at the adiabatic longi-
tudinal speed of sound.

�ii� At higher wave vectors, q�4 nm−1, a second peak,
almost nondispersive, appears in the S�q ,��.

�iii� The appearance of the second excitation is associated
with a positive dispersion of the sound velocity of the
longitudinal-acoustic-like mode.

�iv� The damping of the longitudinal mode shows a qua-
dratic dependence on q in the low wave-vector range, q
�4 nm−1.

�v� The dispersion of the longitudinal mode reaches its
maximum at wave vectors q�q0. This behavior has been
confirmed by classical molecular-dynamics �MD�
simulations.20,22

The simultaneous presence of two peaks in the S�q ,��
has been observed in IXS experiments on other amorphous
substances, such as water25 and glassy glycerol.26 The
anomalous positive dispersion effect has been measured, on
the contrary, only in vitreous silica,14 although discrepancies
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between the high- and low-frequency speeds of sound have
been reported also for other materials, such as vitreous Se
�Ref. 27� and a metallic glass.28 A positive dispersion in the
nonergodic glassy phase cannot be attributed to the structural
�or �-� relaxation process, which takes place on a time scale
many orders of magnitude longer than the one accessible to
the x-ray probe.29 Various computer simulation
studies19,20,30–32 have investigated the nature of this effect. In
an MD simulation of a glassy Lennard-Jones system,32 the
positive dispersion was attributed to the onset of a micro-
scopic �or �-� relaxation process, defined in a harmonic de-
scription of the S�q ,��. The effect was thus explained as
arising from the structural disorder of the amorphous net-
work, suggesting its temperature independence.

The present work is devoted to a combined IXS-INS in-
vestigation of the terahertz dynamics in vitreous silica aim-
ing to clarify this point. The IXS experiment is performed at
temperatures above and below the glass transition tempera-
ture, Tg=1450 K, in the exchanged wave-vector range be-
tween 4 and 15 nm−1 in order to verify whether the positive
dispersion is indeed temperature independent. The INS time-
of-flight spectroscopy is used as a high-resolution probe of
the lower-frequency range in a comparable momentum win-
dow. A detailed line-shape analysis is performed in order to
determine the main parameters describing the measured
spectra. The present investigation confirms the harmonic na-
ture of the high-frequency dynamics and indicates the struc-
tural disorder as responsible for both the broadening of the
peaks and their shift with respect to a linear dispersion.

The existence of well defined acousticlike vibrations at
terahertz frequencies naturally suggests their importance as
heat conduction channels. Various attempts were done in the
past to describe the thermal conductivity at high
temperatures,33–39 above the plateau region located around
10 K. The proposed models were affected by the lack of
experimental information on the high-frequency vibrational
dynamics. In this work we will present a comparison be-
tween the mean free path deduced from the IXS data and the
high-temperature thermal conductivity. The analysis shows
the relevance of the high-frequency modes as heat conduc-
tion channels, although they cannot account for the entire
thermal conductivity. This discrepancy is attributed to a dif-
fusion process among different eigenstates, as suggested by
Allen and Feldman.40

The paper is organized as follows: In Sec. II the setup of
the IXS and INS experiment is described. A brief introduc-
tion to the two techniques is followed by the presentation of
the results. Section III is devoted to the description of the
analysis of the experimental spectra. In Sec. IV the possible
description of the dynamics in terms of dispersion curves and
the evolution of the dynamic structure factor toward the den-
sity of vibrational states are discussed. The connection be-
tween the vibrational dynamics and the thermal conductivity
is investigated in Sec. V. An extension of the phonon gas
model to high frequencies is discussed and applied to the
computation of the mode diffusivity. Finally our conclusions
are summarized in Sec. VI.

II. EXPERIMENT

The inelastic neutron and x-ray scattering techniques rep-
resent two complementary probes of the vibrational dynam-

ics. In the case of vitreous silica, both IXS and INS give
access to the dynamic structure factor S�q ,��, since Si and O
atoms have negligible incoherent neutron-scattering cross
sections. The two techniques allow spanning of different q
−� space regions, which can be chosen so as to partially
overlap.

A. IXS experiment

1. Instrument setup

The IXS experiment was carried out at the inelastic x-ray
scattering beamline ID16 of the European Synchrotron Ra-
diation Facility in Grenoble, France. A high energy reso-
lution of 2.8 meV is reached employing the �9,9,9� reflection
of the silicon crystal monochromator. A backscattered beam
of 17.794 keV energy is focused by a grazing incidence tor-
oidal mirror on the sample position to a spot size of
150 �vertical��260 �horizontal� �m2 full width at half
maximum �FWHM�. Spectra at five different momentum
transfers are recorded simultaneously, exploiting the five
crystal analyzer spectrometer arm. At the selected crystal re-
flection, the angular offset between two adjacent analyzers
corresponds to a difference of 2.4 nm−1 in exchanged mo-
mentum. The energy scans are performed by varying the
monochromator temperature with respect to that of the ana-
lyzer crystals, both controlled with a precision of �0.2 mK.
Further details on the IXS setup can be found elsewhere.41

2. Sample environment

The sample used for the experiment is a disk-shaped Su-
prasil fused quartz sample purchased by Goodfellow, with a
2 mm diameter and a 1.4 mm thickness, chosen to match the
photoelectric absorption length of vitreous silica at the used
incident energy of 17.8 keV. The sample is placed in a cy-
lindrical graphite holder of 5 mm diameter which presents
two circular openings of 1 mm diameter along the beam
path. The graphite holder is enclosed in a high-temperature
vacuum chamber specifically designed for IXS experiments.
The sample has been radiatively heated using an 	-shaped
graphite foil with a thickness of 100 �m and a surface of a
few cm2. The power needed to maintain the sample at 1570
K is around 700 W. The sample temperature is measured by
means of two different thermocouples �types B and S� placed
near the sample and near the heating element. The tempera-
ture has been measured and found to be stable during several
days in a range of 
10 K around the set point. The sample
is polished with hydrofluoric acid before the experiment to
reduce the risk of devitrification as suggested in the
literature.42

3. Experiment and results

The dynamic structure factor is measured at the two tem-
peratures T=1570 K and T=920 K. These values are cho-
sen in order to span a wide temperature range from below to
above the glass transition temperature, Tg�1450 K.43 The
spectra are collected on the Stokes side in view of the neces-
sity to cover a wide dynamical range, up to 100 meV, to
properly observe the dispersion of the longitudinal excita-
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tions up to the border of the first pseudo-Brillouin zone. Only
a small portion of the anti-Stokes part is measured to prop-
erly describe the elastic line. To achieve a good signal-to-
noise ratio, each spectrum is collected with a long integration
time of around 15 min per point. In particular the spectra are
collected over an overall time of around 45 and 30 h at 920
and 1570 K, respectively. This long integration time is nec-
essary because vitreous silica is characterized by a low
inelastic-to-elastic-intensity ratio. Moreover, the visibility of
the inelastic intensity on the longitudinal modes tends to be-
come worse on increasing q because of the broadening of the
excitations, often requiring even longer integration times.
The sample did not present any trace of crystallization during
the experiment. The absence of devitrification has been
checked by measuring the static structure factor S�q� at regu-
lar intervals during the experiment.

A selection of spectra at the two measured temperatures
and at different wave vectors is shown in Fig. 1 in logarith-
mic scale in the intensity axis. The good signal-to-noise ratio
can be appreciated by the smoothness of the points on the tail
of the spectrum, where the count rate is on the order of a few
counts per minute. The spectra in Fig. 1 are presented to-
gether with the instrumental response function and the best-
fitting function, the details of which will be discussed in Sec.
III B. Here we simply note that the inelastic part of the spec-
trum is characterized by the presence of two components.
The first component is almost nondispersing and situated
near the elastic line, while the second one presents a marked
dispersion and is well detectable over the entire explored
wave-vector range.

B. INS experiment and results

The neutron inelastic spectra were collected at the cold
neutron time-of-flight spectrometer IN6 at the high-flux re-
actor of the Institut Laue-Langevin in Grenoble. The mea-
surements are performed with an incoming neutron wave-
length of 4.12 Å, corresponding to an energy Ein
=4.82 meV. The use of cold neutrons allows us to span the
wave-vector region between 8 and 25 nm−1, which overlaps
with the one explored by IXS in the present experiment, with
a high energy resolution of around 0.15 meV FWHM, about
20 times higher than that of the IXS experiment. The result-
ing spectra are, however, affected by a relatively small dy-
namical range between −E0 and 30 meV, where the positive
values are associated with the anti-Stokes side, with the
Stokes side limited by the energy of the incoming neutrons.
Measurements were carried out at the three temperatures T
=15, 50, and 300 K. The neutron data were then treated
using the standard conversion of time of flight to energy and
corrected for the aluminum empty cell signal. The detector
efficiency was corrected by using a vanadium sample as ref-
erence. The sample used in the experiment was a Suprasil
v-SiO2 disk of 5 cm diameter and 4 mm width, in order to
match the neutron-beam size and to minimize the multiple-
scattering contribution to the spectra.

A selection of spectra obtained at room temperature in the
explored wave-vector region is plotted in Fig. 2. The data are
presented together with the best-fitting functions, which will
be described in Sec. III B. The high resolution of the time-
of-flight technique with cold neutrons is apparent from the

FIG. 1. �Color online� Selection of IXS spectra at the indicated exchanged wave vectors at the two measured temperatures. The spectra
are plotted together with the best-fitting function �continuous line, red� and its main terms: the elastic line �dashed, black�, the inelastic
contribution �continuous, blue�, and the two inelastic components �dashed-dotted, magenta and green�. The baseline y0 �see Eq. �3�� lies
below the plotted window.
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sharp elastic peak of Gaussian shape. Here we observe that
these spectra are characterized by a well defined nondispers-
ing single component which is located at the Boson peak
frequency.44 Based on direct visual inspection of the IXS and
INS spectra, it appears that the peak observed in the neutron
data is located at the same frequency as the nondispersing
component in the IXS measurement. The other component
that is apparent in the IXS spectra and disperses with increas-
ing q is outside the dynamical range of the neutron tech-
nique. A neutron experiment performed in a similar
frequency-wave-vector space region was reported in Ref. 12
and compared to an early IXS experiment. The presence of
two components was not revealed there because of the lower
statistical accuracy of that early IXS measurement and be-
cause of the low wave-vector region �q�4 nm−1� explored
with the IXS probe in Ref. 12.

III. DATA ANALYSIS

A. Theoretical background

The main quantity describing the dynamics as a function
of time is the normalized autocorrelation function of the den-
sity fluctuations,

�q�t� =
1

S�q�
��q

��0��q�t�� ,

where S�q�= �	�q	2� is the static structure factor and �q�t�
=
le

iq� ·r�l�t� /�N is the density fluctuation of wave vector q� .
The dynamic structure factor is defined as the time Fourier
transform of the density correlator,

S�q,�� = S�q��
−�

�

dtei�t�q�t� .

In the harmonic approximation, the particles vibrate
around the arrested glassy configuration defined by the posi-
tions x�l. In terms of the eigenvectors �� l

m of the dynamical

matrix M̂, the one-phonon contribution to the dynamic struc-
ture factor can be written as7

S�1��q,�� = �	n��� + 1	

m

	Qm	2��2 − �m
2 � ,

Qm =
1

�N
q� · 


l

�� l
m

�ml

eiq� ·x�le−Wl, �1�

where n�� ,T� is the Bose population factor for phonons of
energy �� at temperature T, �m

2 is the mth eigenvalue, and
ml is the mass of atom l. The Debye-Waller exponent Wl

= 1
2 ��q� ·u� l�2� is a function of the displacement u� l of atom l

from its equilibrium position.
The one-phonon term S�1��q ,�� can be written as a func-

tion of the imaginary part of the phonon propagator Ĝ���
= ��2−M̂�−1 in the momentum representation.45,46 The propa-
gator is then conveniently expressed in terms of the complex
self-energy �q���=�q����+ i�q����, resulting in the following
inelastic dynamic structure factor:

Scl
�1��q,�� = −

kBTq2

�m�
e−2W�q� Im��2 − v2q2 + �q����−1, �2�

where kB is the Boltzmann constant and v is the macroscopic
speed of sound. The subscript “cl” indicates the classical
limit kBT���, used to approximate the population factor for
phonons. The Debye-Waller factor is reduced here to the
expression commonly used for disordered systems, where
W�q ,T��q2�u2�T�� /6. It should be remarked that this ex-
pression is strictly valid only for a monoatomic system of
particles with mass m.

The use of the self-energy is convenient because different
approximations can be developed in terms of this
quantity.47–49 Moreover, the real and imaginary parts of the
self-energy in the wave-vector representation have a direct
physical interpretation. The real part describes the shift of the
peak position with respect to the bare long-wavelength
acoustic dispersion and the imaginary part, the peak broad-
ening. Both of these effects are induced by the disorder of
the glass structure.

B. Fitting procedure

The dynamic structure factor obtained in the previously
described theoretical framework is a classical model. The

FIG. 2. �Color online� Selection of INS spectra at the indicated
exchanged wave vectors at room temperature. The spectra are plot-
ted together with the best-fitting function. Due to the kinematic
constraints of the cold-neutron-scattering technique, the spectra are
presented on the anti-Stokes side only. The frequency scale has thus
the opposite sign compared to the IXS spectra.
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quantum nature of the interaction of radiation with matter
reveals itself as an asymmetry between the Stokes and anti-
Stokes sides of the spectra, as dictated by the principle of
detailed balance. The measured intensity can be expressed in
terms of the classical Scl�q ,�� as

I�q,�� = y0 + I0R��� � Scl�q,��
��

kBT
�n��,T� + 1� . �3�

Here the model for the dynamic structure factor is convo-
luted to the instrumental resolution function R��� and mul-
tiplied to the Bose population factor n�� ,T�. The baseline y0
is added in order to take into account the electronic back-
ground of the detector and the environmental background.
The overall intensity factor I0 is a function of the wave vec-
tor q and depends on many factors. In the IXS measurement
it is influenced by the atomic form factors, the efficiency of
the analyzers, and by all other angle-dependent instrumental
correction factors. In the case of neutrons, it is mainly af-
fected by the detector efficiency and by the scattering geom-
etry. In principle one could normalize the spectra to a refer-
ence scatterer, such as vanadium for neutrons. However it is
more straightforward to normalize the spectra to the known
static structure factor S�q�, using the x-ray50 and
neutron-diffraction51 data to respectively scale the IXS and
INS measurements.

As shown in Fig. 1, the IXS spectra are characterized by a
double peak structure. The analysis is performed by fitting
the measured spectra to a two-component model in order to
extract the main parameters such as the positions, widths,
and intensities of the peaks. A formal derivation of the line
shape from the theoretical approach previously described
would require the development of some proper approxima-
tions for the complex self-energy in Eq. �2� in order to re-
trieve the two-component structure in the dynamic structure
factor. We have chosen to follow a simpler approach which
consists of describing the inelastic component of the
Scl�q ,�� as the sum of two phenomenological functions, the
choice of which is based on qualitative arguments.

The choice of the function used to describe the shape of
the nondispersing peak observed in both the IXS and the INS
measurements is dictated by the shape of the neutron spectra,
where this feature is observed with a good signal-to-noise
ratio as shown in Fig. 2. This peak is almost constant as a
function of the wave vector and it has the shape of the boson
peak observed in g��� /�2, where g��� is the effective neu-
tron density of states.44 The shape of the boson peak is usu-
ally described52 by means of a logarithmic-normal function.
The higher-frequency propagating mode visible in the IXS
measurement can be associated with the longitudinal-
acoustic mode13 and can be described by a damped harmonic
oscillator �DHO� model. The validity of this model in de-
scribing the IXS spectra of vitreous silica has been checked
by studying both the frequency13,14,53 and the wave-vector54

dependences of the scattering function.
The dynamic structure factor in Eq. �3� is thus modeled

by the following function:

Scl�q,�� = Ael�q���� + A1�q�
N
�2exp−

ln2�	�	/	1�q��
2�2�q�

�
+ A2�q�

1

�

	2
2�q���q�

��2 − 	2
2�q��2 + �2�2�q�

, �4�

where the subscripts 1 and 2 refers to the lower-frequency
nondispersive component and to the higher-frequency disper-
sive one, respectively. The constant N=

	1�q�

2�2��2�q�
exp�− �2�q�

2 �
is a normalization factor. The resulting model for the mea-
sured intensity in Eq. �3� is defined by eight parameters: the
baseline y0; Ael, which is the intensity of the elastic line; A1,
	1, and �, which describe the lower-frequency component;
and A2, 	2, and �, which are the intensity, position, and
width of the dispersing excitation. The best-fitting param-
eters are estimated from the measured spectra by means of a
minimization routine designed to find the minimum of the �2

in the parameter space. The resulting line shapes for the IXS
experiment are presented in Fig. 1 for a selection of wave-
vector values at the two measured temperatures.

In the INS spectra presented in Fig. 2, the higher-
frequency mode lies outside the available dynamical range.
In this case the model for Scl�q ,�� does not include the DHO
function. It has been necessary however to include a further
contribution to the spectrum in the form of a Lorentzian line
peaked at zero frequency. The fitting procedure gives for this
term a full width at half maximum on the order of 3.5 meV.
This term describes the presence of a quasielastic contribu-
tion in the spectrum, which is visible in Fig. 2 as a weak
broadening of the elastic line. This contribution cannot be
assigned to the resolution function alone, which is an almost
perfect Gaussian as confirmed by the measurement on vana-
dium. The fact that this contribution is not a spurious instru-
mental effect is confirmed by the low-temperature measure-
ment at 15 K. At this temperature there is no signature of a
broadening of the elastic line apart from the almost perfect
Gaussian instrumental resolution function. The nature of the
quasielastic scattering in silica glass has been widely studied
by means of both Raman55 and neutron56 scattering. This
aspect of the dynamics is however outside the scope of the
present work and will not be further investigated here. The
best-fitted line shapes to the INS spectra are presented in Fig.
2, where the good agreement between the data and the fitting
function can be appreciated over the entire explored energy–
wave-vector range.

Because of the wide Lorentzian-type elastic peak which
dominates the IXS spectra in Fig. 1, the inelastic features of
the spectrum are better appreciated by subtracting the elastic
line once its intensity Ael is determined through the fitting
procedure. A selection of IXS inelastic spectra is presented in
Fig. 3, where the wave-vector evolution of the two inelastic
components is shown at the highest measured temperature of
1570 K. The inelastic intensity �left spectra�, in absolute
units, is compared to the inelastic longitudinal current �2

q2 Iinel

�Ref. 57� �right spectra�. The lower-frequency inelastic com-
ponent is better appreciated in the plots of Iinel�q ,��, while
the longitudinal mode is enhanced in Cinel�q ,��� by the �2

factor.
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IV. VIBRATIONAL DYNAMICS AT TERAHERTZ
FREQUENCIES

A. Dispersion relation and density of states

The presence of reasonably well defined peaks in the dy-
namic structure factor suggests that, even in the glassy state
at THz frequencies, a dispersion curve can still be meaning-
fully defined. If the peak position 	�q� is plotted as a func-
tion of the wave vector at which the spectrum is measured,
the dispersion curve presented in Fig. 4 is obtained. Here the
two components measured by IXS in the temperature range
between 920 and 1570 K are presented and compared to the
peak position observed in the INS measurements at room
temperature. The results of previous experiments are also

plotted for comparison.13,53 In the wave-vector region above
4 nm−1, only one experiment was performed in the past14 at
the temperature T=1270 K �open and filled circles in the
figure�. The dispersion curve allows us to identify three dis-
tinct wave-vector regions:

�i� A small wave-vector region, q�4 nm−1, where a
single excitation model well describes the measured S�q ,��.
This mode is characterized by a sound velocity compatible
with the macroscopic longitudinal sound speed, which, in the
range of temperatures of interest here, has been measured by
Brillouin light scattering29 to be about 6400 m/s �the lines in
Fig. 4 correspond to the values of sound velocity at the three
temperatures of 920, 1270, and 1570 K�.

FIG. 3. �Color online� Inelastic part of the IXS spectra at selected exchanged wave vectors. In the left panel the spectra are plotted as
Iinel�q ,��� and compared to the two-component best-fitting function �continuous line, red�. The left panel shows the same spectra plotted as
longitudinal inelastic current Cinel�q ,��� �Ref. 57� to emphasize the dispersion of the longitudinal mode. The two inelastic contributions are
plotted as dashed �magenta� and dashed-dotted �green� lines. The error bars are 
� standard deviations computed taking into account both
the experimental errors on the spectra and the resolution and the standard deviation on the parameter Ael as determined from the fit. The
spectra are normalized to absolute units using the known values for the static structure factor �Ref. 50�.
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�ii� An intermediate wave-vector region, 4�q�10
nm−1, where the apparent sound velocity of the longitudinal
peak speeds up to a value between 8000 and 9000 m/s.

�iii� At still higher wave vectors, the dispersion curve of
the longitudinal mode tends to saturate at a value of around
50 meV.

Concerning the lower-frequency feature, which appears in
both the IXS and the INS spectra, it is almost nondispersing
and located at a frequency of around 8–10 meV. It is worth
noting that the 	i parameters of the model function in Eq.
�4� measure the position of the peaks in the current C�q ,��.
These are shifted to higher energies when compared to the
peaks in S�q ,�� if the peak width is comparable to its posi-
tion. The peak observed by means of neutron scattering is, in
fact, located around the energy of the boson peak, which is
on the order of 4.2 meV, as it can be seen from Fig. 2. The
position of this lower-frequency feature in the IXS spectra
appears to be slightly higher than the one detected by INS.
This discrepancy is more likely due to a systematic error
induced by the strong Lorentzian-type elastic peak which
mixes with the low-frequency component in the IXS experi-
ment, as apparent from Fig. 1. The difference in shape be-
tween the IXS and INS spectra may also be due to the dif-
ference between the atomic form factors and the neutron-
scattering lengths, which respectively weight the scattering
cross section in the IXS and INS experiment.

The comparison with the results of molecular-dynamics
simulations of vitreous silica14,19,20,22 suggests the interpreta-

tion of this lower-frequency feature as the high-frequency
evolution of the transverse-acoustic mode. It appears in the
longitudinal spectrum because of the ill definition of its po-
larization at high wave vectors in a disordered medium.58

The results of MD simulations19 indicate that the mode
merges in an opticlike branch reminiscent of the correspond-
ing optic branch of crystalline quartz. In fact, cristobalite
presents a marked peak in the INS spectra located around the
position of the boson peak in vitreous silica.59 This peak in
cristobalite results in part from the flattening of the
transverse-acoustic modes and is in part due to the presence
of an optical mode in the same energy region.59,60 The pecu-
liar wave-vector dependence of the S�q ,�� in the boson peak
region was interpreted by Buchenau et al.8 in terms of libra-
tions and rotations of coupled SiO4 tetrahedral units. The
optical character of the boson peak modes is indicated also in
hyper-Raman experiments.61

In the following we will use the terms “longitudinal” and
“transverse-optic” to label the high- and low-frequency fea-
tures appearing in the S�q ,��. This notation shall not be
taken as descriptive of their nature, since the polarization
character becomes less and less defined as the wave vector is
increased.

The marked positive dispersion of the longitudinal mode
which sets in for q�4 nm−1 is not affected by temperature
in the temperature range investigated here. This confirms the
interpretation of this effect as resulting from the structural
disorder of the glass and not from anharmonic processes.
Because of disorder, the eigenvectors of the dynamical ma-
trix are not simple plane waves as in the case of crystals. In
other terms the wave vector q cannot be properly used to
label the normal modes. In the Green’s function approach in
Eq. �2�, this is reflected in the presence of a non-negligible
complex self-energy �q���. The structural disorder induces a
broadening of the peak and a shift with respect to the long-
wavelength acoustic linear dispersion, which is reflected in
the real part of the self-energy �q����.

The possibility of assigning an average wave vector q to
the mode of frequency 	�q� becomes less and less justified
as the wave vector is increased. Above 10 nm−1 the concept
of a dispersion curve and the description of the peaks in the
dynamic structure factor as modes or excitations seem
heavily questionable. This is better seen by comparing the
dynamic structure factor determined by IXS with the effec-
tive density of vibrational states g��� determined by means
of INS.7,8,10 The effective density of states is obtained in a
coherent neutron-scattering experiment by averaging the
measured dynamic structure factor over a large wave-vector
range and applying the incoherent approximation.7 The com-
parison with the IXS spectra can therefore be conveniently
performed by recasting the inelastic part of S�q ,�� in terms
of g�q ,��, the function which converges to the density of
states in the high q limit7 as follows:

Scl
inel�q,�� = e−2W�q�kBTq2

2m̃�2 g�q,�� , �5�

where Scl�q ,��=S�q ,��kBT /���n�� ,T�+1�−1 denotes the
dynamic structure factor in the classical limit and the average

FIG. 4. �Color online� Dispersion relation for v-SiO2 in the first
pseudo-Brillouin zone from the IXS and INS data. Open �longitu-
dinal branch� and filled �transverse-optic-like component� dia-
monds: present work, T=1570 K �red�; open and filled squares:
present work, T=920 K �blue�; open and filled circles: Ref. 14, T
=1270 K; up triangles: Ref. 53, T=1375 K; down triangles: Ref.
13, T=1050 K. The position of the peak in the INS spectra is
reported as filled triangles �green�. The parameter 	i with i=1,2 in
Eq. �4� is the position of the peaks in the current correlation func-
tion, thus slightly higher than the corresponding peak positions in
S�q ,��. The lines correspond to the macroscopic sound velocity
measured by Brillouin light scattering �Ref. 29� for the longitudinal
and transverse excitations: vl=6320 m /s and vt=3910 m /s at T
=920 K �dashed blue�, vl=6440 m /s and vt=4040 m /s at T
=1270 K �filled black�, vl=6500 m /s and vt=3980 m /s at
T=1570 K �dotted red�.
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mass is approximated to m̃−1=
lml
−1 /N. The comparison be-

tween g�q ,�� determined from the IXS data and the effec-
tive neutron density of states g��� is shown in Fig. 5. The
Debye-Waller factor has been estimated using literature val-
ues of the mean-square atomic displacement,21 which has a
value of ��u2��0.2 Å at room temperature.

For a wave vector on the order of 12 nm−1, the longitu-
dinal peak is seen to already merge with the 50 meV peak of
the density of states. This observation demonstrates that at
these wave vectors the dynamic structure factor has almost
completely lost its coherence content, giving information
similar to the one present in g���. The other peak in the
density of states around 10 meV corresponds to the excess of
modes at the boson peak.

B. Integrated intensity of the modes

A deeper insight into the nature of the two inelastic com-
ponents appearing in the spectrum can be obtained by look-
ing at their integrated intensities. The one-phonon harmonic
approximation for S�q ,�� introduced in Eq. �1� can be used
to estimate the intensity of the mode as a function of wave
vector. If the eigenvectors can be treated as plane waves
�� l

m= �̂ ·e−iq�m·x�l /�N of polarization �̂, the intensity is

I�q� = �
−�

+�

d�Scl
�1��q,�� = 	q̂ · �̂	2

kBTq2

m�2�q�
e−2W�q�, �6�

where the Bose population factor is estimated in the classical
limit to compare to the intensity parameters obtained from
the fitting model in Eq. �3�. This relation shows that an
acoustic mode with a linear dispersion is expected to have an
integrated intensity constant with q.

In Fig. 6 the normalized intensity of the longitudinal
mode is multiplied by the factor �2	2�q� /q2, in order to get

rid of the effect of the positive dispersion. This is an estimate
of the intensity of the longitudinal mode in the current cor-
relation function C�q ,��, which can be directly compared to
e−2W�q��2kB /m. This curve is presented as a dashed line in the
figure, with m defined as an average mass, m=
lml /N. To
perform this comparison in absolute units, we have carefully
checked the low wave-vector values of the dynamic structure
factor S�q� measured with small-angle x-ray scattering by
different authors.50 The line is seen to overestimate by 25%
the measured intensity at low q, where the plane-wave ap-
proximation is supposed to work. This discrepancy can be
attributed to the fact that the model is strictly valid only for
a monoatomic system. A further source of discrepancy can
come from the definition of the S�q�, which is derived from
the diffracted intensity treating the scattering form factors in
the incoherent approximation.50

In Fig. 7 the integrated intensity Itr of the transverse-optic
peak, in both IXS and INS spectra, is plotted in absolute
units and compared to the q dependence of the S�q ,�� mea-
sured by Buchenau et al.8 for frequencies on the order of 1
THz, around the position of the boson peak. The agreement
between the integrated intensity and the q dependence of the
S�q ,�� confirms that at the boson peak �BP� frequency, the
dynamic structure factor is dominated by the transverse-optic
peak. The continuous line in the figure is the prediction of
Eq. �6� evaluated at the boson peak frequency �=�BP and
multiplied by a normalizing constant which, at least at low
wave vectors, describes the fraction of the transverse-optic
mode polarized along the longitudinal direction. The inelas-
tic intensity measured by neutrons at room temperature is
comparable to the one detected by IXS at much higher tem-
peratures. The cross section of the transverse-optic peak is
thus higher in INS by a factor on the order of 4, with the
intensity proportional to temperature. This observation sug-
gests that the measurement of the transverse-optic mode is
differently weighted in the cross sections of neutrons and x
rays. Because the atomic form factor is proportional to the
number of electrons, IXS is more sensible to silicon atoms.

FIG. 5. �Color online� Evolution of g�q ,��, measured using IXS
at T=1570 K and computed by using Eq. �5�, compared to the
neutron effective density of vibrational states g���. g�q ,�� is plot-
ted at the four indicated q values. The g��� curves are from two
literature measurements �Refs. 7 and 8� �open and filled dots� and a
recent ab initio simulation �Ref. 23� �dashed line� and are normal-
ized to unity. The g��� from the experiment of Carpenter and Price
�Ref. 7� seems to be not reliable in the boson peak region because a
large spectral range around the elastic peak has been neglected.

FIG. 6. �Color online� Integrated intensity of the longitudinal
mode divided by temperature from the IXS data. The intensity is
multiplied by the factor �2	2�q� /q2 to take into account the posi-
tive dispersion effect. The dashed line is the quantity �2kB /m times
the Debye-Waller factor as from Eq. �6�. Symbols are the same as in
Fig. 4. The integrated intensity of the longitudinal mode is obtained
in absolute units as Ilong=S�q�A2 /Atot, where Atot=Ael+A1+A2 is the
total area of the fitting model in Eq. �4�.
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On the contrary, the INS cross section is dominated by the
oxygen contribution.

The peak in Itr located at about 30 nm−1 is not reproduced
by the simple plane-wave model in Eq. �6�. This failure of
the plane-wave description of the boson peak has been
widely investigated in the past and is at the base of the tet-
rahedral model of Buchenau et al.8 For relatively small wave
vectors however, Eq. �6� can still be used to determine the q
dependence of the ratio between the nondispersing and the
dispersing peaks. This ratio is plotted in Fig. 8 in log-log
scale together with the best-fitted q2 slope. This momentum
dependence is eventually expected to be violated in the very
low wave-vector region if the nondispersive peak gets purely
transverse. This lower region however lies at lower q’s than
those explored in the present experiment. The figure illus-
trates the reason why the lower-frequency peak is very dif-
ficult to detect for q�4 nm−1, the spectrum being domi-
nated by the longitudinal mode in the low wave-vector
region probed here.

V. THERMAL CONDUCTIVITY

The peculiar temperature dependence of the thermal con-
ductivity of glasses has been the subject of many investiga-
tions both from the experimental and the theoretical sides. In
dielectric glasses at low temperatures, heat is carried by
acoustic excitations, whose mean free path can be deter-
mined by means of spectroscopic4,15,16 or acoustic3,5,9 mea-
surements. Three temperature ranges can be identified, where
different sound damping mechanisms dominate the sound at-
tenuation process. In the low-temperature range, T�1 K,
the thermal conductivity is quadratic with respect to tem-
perature and the sound damping is governed by tunneling
two level systems.6 For temperatures around 10 K, the con-
ductivity shows a plateau, whose nature has been strongly
debated in the literature1,62–64 and is still an open
issue.39,65–67 Then, around 30 K, the thermal conductivity
rises again above the plateau.33,35 We will be mainly con-
cerned here with this high-temperature range. The IXS tech-
nique is, in fact, limited to q�1 nm−1, which in v-SiO2
corresponds to energies above 4 meV as shown in Fig. 4.
Using the dominant phonon approximation,68,69 this energy
range corresponds to temperatures above 10 K.

A. Mean free path of the high-frequency modes

The mean free path � of an acousticlike mode can be
estimated from the damping parameter � of the DHO func-
tion in Eq. �4�, through the relation70 �=� / �q��=v /�. The
wave-vector dependence of the longitudinal damping � and
of the corresponding energy mean free path is plotted in the
upper and lower panels of Fig. 9, respectively. The present
investigation confirms the temperature independence of the
sound attenuation in this high-frequency range.71 The damp-
ing ��q� is seen to deviate from the low wave-vector q2

behavior for q�4 nm−1. The longitudinal mean free path is
estimated assuming a constant speed of sound v
�6000 m /s, neglecting the positive dispersion and the satu-
ration of 	�q� at high wave vectors.

In order to use the measured sound attenuation to estimate
the thermal conductivity, the wave-vector dependence of � is
fitted to the following phenomenological function:

��q� = D
q�1

�1 + �qc/q���2−�1��1/ . �7�

This function describes a transition from a low q power law
of exponent �1 to a high q one with exponent �2. The change
in slope takes place around qc and the parameter  rules the
sharpness of the transition between the two regimes. The
parameters best fitted to the entire set of IXS data are re-
ported in the caption of Fig. 9; they give the continuous
curve shown in the upper panel. The curve �=� /2 is also
shown for comparison. In contrast to the common
assumption33,35,36,62,63 that the mean free path should saturate
at the value indicated by the Ioffe-Regel criterion �defined
either as ��� or ��� /2�, the measured � is observed to
decrease even further and to saturate at a value on the order
of the interatomic spacing.

FIG. 7. �Color online� Inelastic intensity of the transverse-optic
peak as a function of the exchanged wave vector �Itr=S�q�A1 /Atot in
Eq. �4��. Diamonds �red�: IXS, T=1570 K; squares �blue�: IXS,
T=920 K; filled triangles �green�: INS, T=300 K. The open tri-
angles �purple� correspond to the wave-vector dependence of the
dynamic structure factor as measured by INS in Ref. 8. These points
are arbitrarily rescaled on the present work data. The line is the
behavior of Eq. �6� for a nondispersive excitation as discussed in
the text.

FIG. 8. �Color online� Ratio of the transverse-optic intensity to
the longitudinal integrated intensity as a function of the exchanged
wave vector in log-log scale at the two measured temperatures. The
line is the best-fitted q2 slope, suggested by Eq. �6�.
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B. Theory of the thermal conductivity in disordered systems

The thermal Kubo formula relates the thermal conductiv-
ity to the correlation function of the heat current operator

Ŝ�t�. A detailed derivation of the relevant expressions can be
found in a review by Allen and Feldmann.40 Here we will
simply recall the main results that allow a computation of the
thermal conductivity from the experimental data. Applying
the harmonic approximation, the thermal conductivity can be
expressed in terms of the mode diffusivity D��� as

k�T� =
3N

V
�

0

�

d�C��/T�g���D��� , �8�

where C�� /T�=kBx2ex / �ex−1�2, with x=�� / �kBT�, is the
specific heat of an oscillator of energy �� and the vibrational
density of states g��� is normalized to unity. The mode dif-

fusivity is a function of the heat current operator Ŝ and of the

resolvent Ĝ���= ��2−M̂�−1 of the dynamical matrix M̂,72,73

D��� =
4

3�2�g���
Tr�Ŝ · Im�Ĝ���� · Ŝ · Im�Ĝ����� .

Here Tr denotes the trace of the operator enclosed in brack-
ets. In a crystal with mass disorder, Flicker and Leath72

showed that in the framework of the coherent-potential ap-

proximation, the trace can be computed on the wave vectors
basis. Writing the sum over the wave vectors as an integral
over the frequency, the resulting mode diffusivity reads

D��� =
4v2

3�g���

� �
0

�

d��
��2g���������,����2

���2 − ��2 − ����,����2 + �����,����2�2 .

�9�

Here the phonon propagator G��� is given in terms of the
self-energy �(� ,���q�)=�q���, defined in Sec. III A, and
the prime and double primes denote its real and imaginary
parts, respectively. The expression for the thermal conductiv-
ity resulting from Eqs. �8� and �9� represents an extension of
the phonon gas model in the Peierls-Boltzmann theory.74

This can be seen by taking the limit �→0 and assuming that
the self-energy does not depend on ��. Then computing the
integral over �� in the complex plane, the diffusivity reduces
to

lim
�→0

D��� =
v2�

3�����
=

v����
3

, �10�

where ���� is the energy mean free path of a phonon of
energy �� as defined in Sec. V A. When inserted in Eq. �8�,
this result gives the usual thermal conductivity expression of
the phonon gas model. It is worth noting that this limit is
equivalent to the limit of small �, where the density of vi-
brational states can be safely replaced by its Debye approxi-
mation.

Taking into account the results in Sec. III A, the thermal
conductivity computed from the diffusivity of Eq. �9� is ex-
pressed as a double integral of a quantity which is propor-
tional to the square of the inelastic part of the dynamic struc-
ture factor �see Eq. �2��. This approach allows taking into
account the broadening of the peak even when this is not
negligible compared to the peak position.

The assumption that the heat current operator is diagonal
at the wave-vector base is a strong approximation in the case
of a structurally disordered glass. As discussed by Allen and
Feldman,40 in a topologically disordered system the operator

Ŝ has non-negligible off-diagonal terms when computed on
the dynamical matrix eigenstates basis. However the infor-
mation that one can extract from the experiment is limited to
the diagonal contribution in Eq. �9�.

C. Thermal diffusivity

The evaluation of the thermal conductivity requires the
knowledge of the sound attenuation of both the longitudinal-
and the transverse-acoustic branches. The experimental data
for the transverse modes are, however, limited to the
ultrasound3,6 and Brillouin light scattering �BLS� �Ref. 75�
techniques. These data indicate that the internal friction pa-
rameter, defined as Q−1=�−1� /2�=� /�, assumes roughly
the same value for both the transverse and the longitudinal
modes if taken at the same frequency. This result is con-
firmed by molecular-dynamics simulations76 also in the high-

FIG. 9. �Color online� Upper panel: wave-vector dependence of
the width parameter ��q� of the longitudinal mode as determined by
the fit of the IXS data to the model in Eq. �4� ��� FWHM at low
q�. The dashed line is the q2 law describing the low wave-vector
region. The continuous line is the best-fitted curve to the function in
Eq. �7�, with the parameters �1=0.58, �2=2.1, A=8, qc=4, and 
=4.5. Symbols are the same as in Fig. 4. Lower panel: the energy
mean free path computed as ��q�=v /��q�, where a constant sound
velocity v=6000 m /s is used. The continuous line is the curve of
Eq. �7� and the dotted line is the �=� /2 behavior. Symbols are the
same as in Fig. 4.
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frequency region, where the attenuation is dominated by the
structural disorder. Recast in terms of the mean free path, it
implies �T /�L=vT /vL, where L and T denote the longitudinal
and the transverse branches and vL and vT their sound ve-
locities. In the following evaluation, we will thus assume that
this ratio is constant at all frequencies. It is worth noting that
the prediction of the soft potential model is in agreement
with this assumption.65

Using the Debye approximation for the density of states,
formula �8� for the thermal conductivity reduces to77

k�T� =
3N

V


i=1

3 �
0

�i

d�C��/T�
�2

�i
3Di��� , �11�

where the sum is performed over the three acoustic branches.
The Debye cut-off frequency �i=viqD is the product of the
mode sound velocity times the Debye wave vector qD
= �6�2N /V�1/3, which is on the order of 15.8 nm−1 in v-SiO2.
The use of a different cut-off frequency for the longitudinal
and the transverse modes allows us to give the same total
weight to each mode in the density of states.

The diffusivity computed for the longitudinal mode, using
Eq. �9� with v=vL, is plotted in Fig. 10 as a continuous line.
The self-energy in Eq. �9� is estimated from the damping of
the longitudinal mode in the dynamic structure factor using
�q���= i���q�, the expression leading to the DHO fitting
model in Eq. �4�, discussed in Sec. III B. The wave-vector
dependence of ��q� is described by means of the function
introduced in Eq. �7�. The parameter � at a given frequency,
thus not at the same q, is assumed to have the same value for
the transverse and the longitudinal modes. Figure 10 shows
also the diffusivity estimated directly from the � values us-
ing relation �10�, valid in the phonon gas model. The use of
the more general formula �9� gives a slightly higher diffusiv-

ity, which correctly converges for small frequencies to the
value given by the phonon gas model. The diffusivity for the
transverse mode is computed in the same way from Eq. �9�
using the transverse speed of sound. The temperature and
wave-vector dependences of the sound velocities are ne-
glected in the present estimate and the zero temperature val-
ues vL=6000 m /s and vT=3800 m /s are used.75

D. High-temperature thermal conductivity

In the present evaluation of k�T�, the integral in Eq. �11� is
computed in the energy region spanned by the IXS tech-
nique, above 3 meV in v-SiO2 �see Fig. 4�. This energy range
corresponds to temperature lying above the characteristic
plateau appearing in the thermal conductivity in the 1–10 K
temperature range. The actual nature of the plateau is a
source of debate in the literature16,65–67 and lies outside the
scope of the present work.

The thermal conductivity obtained from Eq. �11� is plot-
ted in Fig. 11 and compared to the measured one. A constant
value, the dotted line in the figure, is added to the computed
thermal conductivity to account for the small contribution of
lower-frequency attenuation mechanisms which give rise to
the plateau. This contribution will eventually decrease at
high temperatures but the error associated with the assump-
tion of a constant term is small, less than 10%, with respect
to the total k�T�. In the figure the prediction of the Kubo-type
formula in Eq. �9� is compared to the one of the phonon gas
model, in which the phonon mean free path is used to com-
pute the diffusivity.

It is of some interest to compare the present result with a
previous estimate by Cahill and Pohl.36 They employed Eq.
�11� using the usual phonon gas model result for the diffu-
sivity �Eq. �10��. Applying concepts which date back to Ein-
stein, they assumed the phonon mean free path to be equal to
half the wavelength. Their result is in good agreement with
the measured thermal conductivity. However the hypothesis

FIG. 10. �Color online� Diffusivity of the longitudinal mode as a
function of frequency. The energy scale is limited by the longitudi-
nal Debye frequency �vLqD�62 meV. The continuous �red� line is
the result for D��� from Eq. �9�, where �(� ,���q�)= i���q�. The
dashed line is the value of the diffusivity expected from the phonon
gas approximation in Eq. �10�. The value used in Ref. 36 is also
included for comparison as a dotted line and corresponds to the
choice �=� /2 in the phonon gas approach. Symbols are the same as
in Fig. 4.

FIG. 11. �Color online� Thermal conductivity of vitreous silica.
Squares �purple�: from Ref. 36; triangles �navy�: from Ref. 62. The
continuous line �red� is the estimate from Eqs. �9� and �11�. The
phonon gas approximation in Eq. �10� is plotted for comparison as
a dashed line �blue�. The dotted line is the constant value added as
an estimate of the plateau value and accounts for the omitted low-
energy, ���3 meV, contributions.
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that ��� /2 does not agree with the damping of the modes
measured by IXS as shown in Sec. V A. In terms of the
diffusivity, the assumption of ��� /2 in the phonon gas
model gives the curve plotted as a dotted line in Fig. 10. This
diffusivity is clearly too high with respect to the one that can
be extracted from the IXS dynamic structure factor, even
when using Eq. �9�.

Various assumptions at the base of the present thermal
conductivity estimate need some further comments. A first
strong assumption is the use of the Debye approximation for
the density of states. This choice can be justified by the fol-
lowing argument: If the total density of states is used in Eq.
�8�, the thermal conductivity is overestimated in the region
of the plateau. This is due to the presence of the excess of
states at the boson peak, which is located at a frequency
around 1 THz and corresponds to the temperature region
between 10 and 40 K, thus in the upper part of the plateau.
This modes are nondispersive, as shown in Sec. IV A, and
for this reason they cannot be included in the evaluation
based on Eq. �9�, where only the diagonal elements of the
heat current operator are used and a nonzero sound speed is
required. For the same reason, the inclusion of the transverse
modes in our estimate is also questionable, although un-
avoidable in the framework of the Debye approximation.

Probably the strongest assumption in the present evalua-
tion is the omission of the off-diagonal contributions to the
heat current operator. Unfortunately the off-diagonal ele-
ments necessary for a complete determination of the heat
current operator are not experimentally accessible. Neverthe-
less the acousticlike excitations detected by the IXS tech-
nique in the terahertz frequency range give a substantial di-
rect contribution to the thermal conductivity. The resulting
heat conductivity is however “minimal”34,36 because these
high-frequency modes are strongly damped, with a mean free
path of only a few angstroms. The mechanism of heat con-
duction is thus more similar to a diffusive process than to the
ballistic regime described by the phonon gas model.78

VI. CONCLUSIONS

The combined use of IXS and INS has allowed the study
of the dynamic structure factor of vitreous silica in a broad
frequency-momentum region and in a wide temperature

range, both below and above the glass transition. The results
confirm the persistence of acousticlike excitations, character-
ized by the macroscopic longitudinal speed of sound, up to
terahertz frequencies. When the wave vector is increased
above 4 nm−1, a second inelastic component appears in the
IXS spectrum. The INS time-of-flight technique allows better
resolution of the shape of the low-frequency peak, which is
nondispersing and located around the boson peak frequency.
In the same frequency region, the longitudinal mode shows a
marked positive dispersion effect and its mean free path
reaches values on the order of the interatomic spacing. The
absence of temperature dependence suggests the structural
disorder to be responsible for both the broadening of the
longitudinal peak and its shift with respect to a linear disper-
sion. As the wave vector is increased, the coherence content
in the dynamic structure factor tends to fade out. The spectra
then merge in an effective density of vibrational states.

A detailed line-shape analysis of the IXS and INS spectra
allows a sensible determination of the various parameters
describing the observed spectral features. The integrated in-
tensity of the modes in the low wave-vector region can be
qualitatively described in terms of a simple plane-wave-like
harmonic model.

We have then computed the contribution of the terahertz
vibrations to the heat transport in the framework of the ther-
mal Kubo equation. The acousticlike modes contribute a
non-negligible diffusivity that can account for a relevant
fraction of the measured high-temperature thermal conduc-
tivity. A diffusivelike heat transport process between differ-
ent eigenvectors can be invoked to explain the missed ther-
mal conductivity, as suggested by Allen and Feldman.40
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