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In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta functions. In
NMR, this assumption leads to the prediction that � pulses do not refocus the dipolar coupling. However,
NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one �

pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between � pulses,
an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate
delays, and a strong sensitivity to �-pulse phase. Experiments that set limits on possible extrinsic causes for the
phenomena are reported. We find that the action of the system’s internal Hamiltonian during any real pulse is
sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory,
identify terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visual-
ization of the entire density matrix shows a unique flow of quantum coherence from nonobservable to observ-
able channels when applying repeated � pulses.
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I. INTRODUCTION

Pulse action is crucial for many fields of study such as
nuclear magnetic resonance �NMR�, electron spin resonance,
magnetic resonance imaging, and quantum information pro-
cessing. In these fields, approximating a real pulse as a delta
function with infinite amplitude and infinitesimal duration is
a common practice when the pulses are much stronger than
the spectral width of the system under study.1–6 Delta-
function � pulses, in particular, play a key role in bang-bang
control,7 which is an important technique designed to isolate
qubits from their environments.8–12

In real experiments, all pulses are finite in amplitude and
have nonzero duration. Nevertheless, for pulse sequences
with a large number of � /2 pulses,13,14 such as in NMR
line-narrowing sequences,3,5,15–19 using the delta-function
pulse approximation yields qualitatively correct predictions.
Furthermore, a more rigorous analysis that includes finite
pulse effects only introduces relatively small quantitative
corrections.3 For this reason, reports20–25 of finite pulse ef-
fects in dipolar solids including 29Si in silicon, 13C in C60,
89Y in Y2O3, and electrons in Si:P are surprising. In all of
these studies, multiple high-powered � pulses much stronger
than both the spread of Zeeman energies and the dipolar
coupling were used; yet, the delta-function pulse approxima-
tion failed to predict the observed behavior.

By using exact numerical calculations and average Hamil-
tonian analysis, we show that the action of time-dependent
terms during a nonzero duration � pulse is sufficient to cause
many surprising effects, which is in qualitative agreement
with experiments. Unfortunately, the complications and limi-
tations of our theoretical approaches prevent us from provid-
ing a quantitative explanation of the experimental results, as
we will explain below. We hope that an improved theory and
new experiments will close the gap and enable a quantitative
test of the model.

We initially set out to measure the transverse spin relax-
ation time T2 for both 31P and 29Si in silicon26–30 doped with
phosphorus, which is motivated by proposals to use spins in

semiconductors for quantum computation.31–36 In doing so,
we discovered a startling discrepancy between two standard
methods of measuring T2 using the NMR spin echo.1

The first method is the Hahn echo �HE�, where a single �
pulse is used to partially refocus magnetization,37

HE : 90X − � − 180Y − � − echo.

The pulses are represented as their intended rotation angle
with their phase as subscripts. For this sequence, each Hahn
echo �Fig. 1�dots�� is generated with a different time delay �.

The second method is the Carr–Purcell–Meiboom–Gill
�CPMG� echo train,38,39

CPMG : 90X − � − �180Y − � − echo − ��n,

where the block in brackets is repeated n times for the nth
echo. Note that CPMG is identical to HE for n=1. In contrast
to the series of Hahn echo experiments, the CPMG echo train
�Fig. 1 �lines�� should give T2 in a single experiment.

As Fig. 1 shows, the T2 inferred from the echo decay is
strikingly different depending on how it is measured. Admit-
tedly, two different experiments that give two different re-
sults is not uncommon in NMR. In fact, in liquid state NMR,
the CPMG echo train is expected to persist after the Hahn
echoes have decayed to zero. In the liquid state, spins can
diffuse to different locations in a static inhomogeneous mag-
netic field.1,6,38 This diffusion leads to a time-dependent fluc-
tuation in the local field for individual spins, which spoils the
echo formation at long �. By rapidly pulsing a liquid spin
system, it is possible to render these diffusive dynamics qua-
sistatic. In this case, the coherence from one echo to the next
is maintained by resetting the start of the precession at each
echo. As a consequence, the CPMG echo train can approach
the natural diffusion-free T2 limit. In contrast, the Hahn echo
experiment with only one refocusing pulse can decay faster
due to diffusion. However, in the solids studied here, the lack
of diffusion makes the local field time independent so the
Hahn echoes and CPMG echo train are expected to agree, at
least for delta-function � pulses.
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The expected behavior of the CPMG sequence can be
modeled by using the density matrix ��t�, which represents
the full quantum state of the system.1,4 The time evolution of
the density matrix is expressed as

��t� = �VPV�n��0��V−1P−1V−1�n, �1�

where n is the number of � pulses applied. The total evolu-
tion time t=n�2�+ tp� depends on �, the duration of the free-
evolution period under V, and tp, the duration of the pulse
period under P. The form of the unitary operators P and V
are not yet specified, so while Eq. �1� is complete, it is not
yet very useful.

Section II outlines methods of calculating the evolution of
��t� by using the delta-function pulse approximation for P
and the Zeeman and dipolar Hamiltonians for V. By using
these approximations, the Hahn echoes and the CPMG echo
train decay identically.

Section III summarizes experiments where multiple �
pulse sequences grossly deviate from the expectations of
Sec. II. In addition to the discrepancy shown in Fig. 1, ob-
served effects include an even-odd asymmetry between the
heights of even-numbered echoes and odd-numbered echoes
when � becomes large, a repeating fingerprint in subsets of
the CPMG echo train for intermediate �, and a sensitivity of
the echo train to � pulse phase.

Section IV details many experiments that explore extrin-
sic effects in the pulse quality and the total system Hamil-
tonian. Specifically, we sought to understand our real pulse P
as it differs from the idealized delta-function pulse. Studies
include the analysis of the nutation experiment, tests of rf
field inhomogeneity, measurement of pulse transients, depen-
dence of effects on pulse strength, and improvements
through composite pulses. Additionally, we looked for con-
tributions to the free evolution V besides the dipolar coupling
and Zeeman interaction by studying nonequilibrium effects,
temperature effects, different systems of spin-1 /2 nuclei, a
single crystal, and magic angle spinning.

Section V presents a series of numerical simulations by
using a simplified model based on the constraints imposed by
the experiments of Sec. IV. These calculations qualitatively
reproduce the long-lived coherence in CPMG and the sensi-
tivity on � pulse phase. In order to get these results with N
=6 spins, the simulations assumed both larger linewidths and
shorter � than in the experiments. A comparison of simula-
tions with different N suggests that similar results could be
obtained with smaller linewidths and longer � provided that
N is increased beyond the limits of our calculations. For
insight into the physics of the exact calculations, the pulse
sequences are analyzed by using average Hamiltonian theory.
From this analysis, special terms are identified that contrib-
ute to the extension of measurable coherence in CPMG
simulations with strong but finite pulses. Furthermore, the
CPMG echo train tail height is sensitive to the total number
of spins that are included in the calculation. This dependence
on system size suggests that real pulses applied to a macro-
scopic number of spins may lead to the observed behaviors
in Fig. 1 and Sec. III.

Section VI visualizes the entire density matrix to show the
effects of the new terms identified in Sec. V. Regions of the
density matrix that are normally inaccessible in the delta-
function pulse approximation are connected to the measur-
able coherence by novel quantum coherence transfer path-
ways that play an important role in the CPMG long-lived
tail, as simulated in Sec. V.

II. CALCULATED EXPECTATIONS FROM
INSTANTANEOUS � PULSES AND DIPOLAR EVOLUTION

In this section, we calculate the expected behavior of N
spin-1 /2 particles under the action of pairwise dipolar cou-
pling and instantaneous � pulses to compare with the experi-
mental results of Fig. 1.

A. Internal spin hamiltonian

In order to calculate the expected behavior, we first write
the relevant internal Hamiltonian for the system. The ideal
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FIG. 1. �Color online� Two NMR experiments
to measure T2 of 29Si in a crushed powder of
Silicon doped with phosphorus �3.94
�1019 P /cm3�. Hahn echo peaks �dots� are gen-
erated with a single � pulse. The CPMG echo
train �lines� is generated with multiple � pulses
spaced with delay 2�=592 �s. Normalization is
set by the initial magnetization after the 90X

pulse. Data taken at room temperature in a 12 T
field.
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Hamiltonian for a solid containing N spin-1 /2 nuclei in an
external magnetic field contains two parts.1–3 In the labora-
tory frame, the Zeeman Hamiltonian

HZ
lab = �

j=1

N

− ���Bext + 	Bj
loc�Izj

�2�

describes the interaction with the applied and local magnetic
fields, while the dipolar Hamiltonian

Hd
lab = �

j=1

N

�
k
j

N ��� j · �� k

	r� jk	3
−

3��� j · r� jk���� k · r� jk�
	r� jk	5


 �3�

describes the interaction between two spins. In these Hamil-
tonians, � is the gyromagnetic ratio and Bext is an external
magnetic field applied along ẑ. For spin j, 	Bj

loc is the local

magnetic field, �� j =��I�j is the magnetic moment, and I�j
= �Ixj

, Iyj
, Izj

� is the spin angular momentum vector operator.
The position vector between spins j and k is r� jk.

We proceed to the rotating reference frame1–3 defined by
the Larmor precession frequency �0=�Bext. The Zeeman
term largely vanishes leaving only a small Zeeman shift due
to spatial magnetic inhomogeneities. The Zeeman shift for
spin j is defined as �zj

=−��	Bj
loc. The scale of the spread of

Zeeman shifts depends on the sample. For highly disordered
samples or samples with magnetic impurities, �zj

wildly var-
ies between adjacent spins. The samples studied in this paper
are much more spatially homogeneous, so �zj

is essentially
the same for a large number of neighboring spins. We there-
fore drop the index j giving the Zeeman Hamiltonian in the
rotating frame,

HZ = �
j=1

N

�zIzj
= �zIzT

, �4�

where IzT
=� j=1

N Izj
is the total Iz spin operator. Strictly speak-

ing, Eq. �4� can only describe a mesoscopic cluster of N
spins �e.g., N
10 are used in the numerical simulations�,
which share a single �z value. We use an ensemble of N-spin
clusters, varying �z from one cluster to the next to simulate
the macroscopic powders studied in this paper. The picture is
that line broadening due to bulk diamagnetism will cause a
spread in �z values across a large sample �e.g., from one
powder particle to the next� but that �z will be nearly con-
stant for most N
10 spin clusters. Experiments that justify
this assumption are presented in Sec. IV.

Even in the absence of the dipolar interaction, Zeeman
shifts from different parts of the sample can cause signal
decay, as shown in the Bloch sphere representation in Fig. 2.
Each colored arrow represents a group of spins that experi-
ence a different 	Bloc resulting in a slightly different preces-
sion frequency �z /� in the rotating frame. The initial mag-
netization at equilibrium starts aligned along the z axis �Fig.
2�a��. After a 90X pulse, the spins are tipped along the y axis
�Fig. 2�b��. Because of the spread of Zeeman shifts, spins in
the rotating frame will begin to drift apart �Fig. 2�c��. The
resultant magnetization or vector sum will consequently de-
cay �Fig. 2�d��. This process is referred to as the free induc-
tion decay �FID� since it is detected in the NMR apparatus as

a decaying oscillatory voltage arising from magnetic induc-
tion in the detection coil.1,40,41

Even without a spread of Zeeman shifts across the
sample, transverse magnetization will decay due to the dipo-
lar coupling. It is appropriate to treat the dipolar Hamiltonian
as a small perturbation1 since the external magnetic field is
typically 4 to 5 orders of magnitude larger than the field due
to a nuclear moment. In this case, the secular dipolar Hamil-
tonian in the rotating frame is

Hzz = �
j=1

N

�
k
j

N

Bjk�3Izj
Izk

− I�j · I�k� , �5�

where the terms dropped from Eq. �3� are nonsecular in the
rotating frame. We define the dipolar coupling constant as

Bjk �
1

2

�2�2

	r� jk	3
�1 − 3 cos2 � jk� , �6�

where � jk is the angle between r� jk and B� ext.
Thus, the relevant total internal spin Hamiltonian is

Hint = HZ + Hzz, �7�

where we note that HZ commutes with Hzz. From this
Hamiltonian, the free-evolution operator is defined as

U � e−�i/��Hint� = e−�i/��HZ�e−�i/��Hzz� � UZUzz, �8�

where UZ and Uzz also commute.

� � � � � �

� � � � � �

FIG. 2. �Color online� Bloch sphere depiction of signal decay
due to a spread of Zeeman shifts. An external magnetic field is
aligned along ẑ. �a� Spins in equilibrium with total magnetization
represented by a large pink arrow. �b� After a 90X pulse, the spins
are aligned along ŷ in the rotating frame. �c� Spins with different
Zeeman shifts precess at different rates and fan apart. Red arrows
represent spins with a positive Zeeman shift ��z
0�, blue arrows
represent spins with a negative Zeeman shift ��z
0�, and black
arrows represent spins on resonance ��z=0�. �d� After some time,
the total magnetization decays to zero.
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B. Simplifying the external pulse

During the pulses, another time-evolution operator is
needed. This pulse time-evolution operator is complicated
since it contains all the terms in the free evolution plus an
additional term associated with the rf pulse.

P� = exp�−
i

�
�HZ + Hzz + HP�

�tp
 , �9�

where

HP�
= − ��1I�T

, �10�

for a radio frequency pulse with angular frequency �1 and
transverse phase �. In practice, the pulse strength and phase
could vary from spin to spin. Studies of the effects of this
type of rf inhomogeneity are reported in Sec. IV, but this
approximate calculation considers the homogeneous case.

Note that HP�
, in general, does not commute with Hint

=HZ+Hzz. Because of this inherent complication, it is ad-
vantageous to make �1 large so that HP�

dominates P�. This
strong-pulse regime is achieved when �1��z /� and �1
�Bjk /�. This paper is primarily concerned with � pulses,
which set the pulse duration tp so that �1tp=�. The delta-
function pulse approximation1–6 of a strong � pulse takes the
limit �1→� and tp→0 so that P� simplifies to a pure left-
handed � rotation

R� = exp�i�I�T
� . �11�

For these delta-function � pulses, the linear Zeeman
Hamiltonian is perfectly inverted, while the bilinear dipolar
Hamiltonian remains unchanged. The time-evolution opera-
tors thus transform as

R�UZR�
−1 = UZ

−1, �12�

R�UzzR�
−1 = Uzz. �13�

In other words, after a � pulse, the Zeeman spread will re-
focus, while the dynamics due to dipolar coupling will con-
tinue to evolve as if the � pulse was never applied. Equation
�13� is the basis for the statement: “� pulses do not refocus
the dipolar coupling.”

C. Analytic expression for the density matrix evolution in the
instantaneous pulse limit

Using the free-evolution operator and the delta-function
pulse, Eq. �1� for CPMG simplifies to

��t� = �URyU�n��0��U−1Ry
−1U−1�n

= �URy�Ry
−1Ry�U�Ry

−1Ry��n��0��inv�n

= �UzzUZUZ
−1UzzRy�n��0��inv�n

= �Uzz�2n�Ry�n��0��Ry
−1�n�Uzz

−1�2n

= �Uzz�2n��0��Uzz
−1�2n = Uzz�t���0�Uzz

−1�t� , �14�

where �inv� is the inverse of the operators in brackets to the
left of ��0�, the dipolar time-evolution operator for time t is

Uzz�t�=exp�− i
�Hzzt�, and we assumed �Ry�n��0��Ry

−1�n=��0�
= IyT

. Invoking Eqs. �8�, �12�, and �13� has allowed the can-
cellation of UZ.

By assuming that the pulses are instantaneous, the density
matrix at the time of an echo is independent of the Zeeman
spread and the number of applied pulses. In other words, the
peaks of the Hahn echoes and the CPMG echo train should
follow the same decay envelope given by the dipolar-only
��z=0� FID.

D. General method to calculate the observable NMR signal

The last step is to calculate the measured quantity that is
relevant to our NMR experiments. The NMR signal is pro-
portional to the transverse magnetization in the rotating ref-
erence frame.1–6 Therefore, we wish to calculate

�IyT
�t�
 = �

j=1

N

Tr���t�Iyj
� . �15�

The real experiment involves a macroscopic number of
spins N but computer limitations force us to use only small
clusters of coupled spins. Since the size of the density matrix
grows as 2N�2N, we are limited to N
10.

To mimic a macroscopic system with only a small cluster
of spins, we first built a lattice with the appropriate unit cell
for the solid under study. Then, we randomly populated the
lattice with spins according the natural abundance. For one
spin at the origin, N−1 additional spins were chosen with the
strongest coupling 	B1k	 to the central spin. Finally, we dis-
order averaged over many random lattice populations to
sample different regions of a large crystal. For powder
samples, we also disorder averaged over random orientations

of the lattice with respect to B� ext. This method is biased to
make the central spin’s local environment as realistic as pos-
sible since the dipole coupling falls off as 1 /r3. We therefore
chose to calculate �Iy1

�t�
 for only the central spin in each
disorder realization instead of �IyT

�t�
 for the entire cluster of
spins.

By using these clusters, the time dependence of the den-
sity matrix is calculated by starting from its conventional
Boltzmann equilibrium value

�B = IzT
, �16�

assuming a strong Bext and high temperature.3 Treating a
strong 90X pulse as a perfect left-handed rotation about x̂, �B
transforms as

��0� = R90X
�BR90X

−1 = IyT
. �17�

From this point, Eq. �14� gives the evolution for ��t� in the
limit of delta-function � pulses,

��t� = Uzz�t�IyT
Uzz

−1�t� . �18�

For each disorder realization �DR�, the density matrix at
time t+dt is calculated by using the basis representation that
diagonalizes the internal Hamiltonian. In this basis, the den-
sity matrix is given by the matrix formula
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�mn�t + dt� = �mn�t�e−�i/���Em−En�dt, �19�

where Em is the mth eigenvalue of Hzz and �mn is the element
at the mth row and nth column of the 2N�2N density
matrix.1 By using the density matrix at each time t, the ex-
pectation value �Iy1

�t�
=Tr���t�Iy1
� is calculated for each DR

and then averaged over many DRs, yielding the expected
decay for both CPMG and Hahn echoes �Fig. 3 �blue curve��.

Though Hzz is the appropriate Hamiltonian to consider,
the small number of spins that we are able to treat can never
describe the true dynamics of a macroscopic system even
after substantial disorder averaging.

E. Ising model truncation

Let us consider another approach that truncates the secu-
lar dipolar Hamiltonian and yields an analytic expression for
�Iy1

�t�
 in the delta-function pulse limit. This truncation en-
ables us to model the behavior of many more spins.

The secular dipolar Hamiltonian from Eq. �5� can be re-
written as

Hzz = �
j=1

N

�
k
j

N

Bjk�2Izj
Izk

−
1

2
�Ij

+Ik
− + Ij

−Ik
+�
 �20�

by defining the raising and lowering operators

I+ = Ix + iIy ,

I− = Ix − iIy .

We call Ij
+Ik

− and Ij
−Ik

+ the flip-flop terms. These terms flip one
spin up and flop another spin down while conserving the
total angular momentum.1

It is a very good approximation to drop the flip-flop terms
whenever spins within a cluster have quite different Zeeman
energies. In this case, the flip-flop would not conserve energy
so this process is inhibited.1 In this limit, Hzz is truncated to
the Ising model Hamiltonian with long-range interactions,

HIsing = �
j=1

N

�
k
j

N

2BjkIzj
Izk

. �21�

This approximation is usually made when considering the
dipolar coupling between different spin species.1 In the
homonuclear systems that we consider, this approximation is
not usually justified but we consider this limit here for com-
parison.

By using HIsing, the product operator formalism42 enables
us to analytically evaluate �Iy1

�t�
 for the central spin

�Iy1
�t�
 = Iy1

�0��
k
1

N

cos�B1kt/�� . �22�

Since the expression in Eq. �22� is analytic,40 the calculation
of the resultant curve �Fig. 3 �black curve�� is not as compu-
tationally intensive as time evolving the entire density ma-
trix. This calculation only requires the numerical value of the
dipolar coupling B1k between the central spin and a random
population of N−1 spins on the lattice. In this way, many
more spins can be treated. The final step is a disorder average
over many random lattice occupancies and random lattice
orientations.

Despite the differences in the two approaches, the simu-
lated curves for the same lattice parameters are in reasonable
agreement. The initial decay due to the secular dipolar
Hamiltonian is two-thirds faster than the decay due to the
Ising Hamiltonian in agreement with second-moment
calculations.1,40,43,44 The Hahn echo experiment in this
sample follows the Ising model decay curve �Fig. 3 �green
circles vs black curve��. In other samples we have studied,
the Hahn echo data lie between the calculated blue and black
curves but always decay to zero. It is surprising then that the
CPMG experiment has a measurable coherence well beyond
the decay predicted by either approach �Fig. 3 �red lines��.
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FIG. 3. �Color online� Expected decay curves
for the delta-function pulse approximation using
Hzz �blue curve� and HIsing �black curve�. The
blue curve uses clusters of N=8 spins and disor-
der averages over 1000 DRs. The black curve
uses N=80 spins and averages over 20 000 DRs.
Both calculations use the realistic silicon lattice
�4.67% natural abundance of spin-1 /2 29Si nu-
clei, diamond lattice constant 5.43 Å�. Hahn echo
data �green circles� and the CPMG echo train
�dashed red lines� from Fig. 1 are plotted in the
background for comparison.
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III. MORE EVIDENCE THAT CONTRADICTS THE
DELTA-FUNCTION PULSE APPROXIMATION

We performed many NMR experiments on dipolar solids
to try to illuminate different facets of the surprising results

observed in Fig. 1. In this section, we summarize our most
striking findings that are inconsistent with the expectations
set by the delta-function pulse approximation.

Our first reaction to the long tail in the CPMG echo train
was to assume that the � pulses were somehow locking the
magnetization along our measurement axis.13,45–50 Increasing
the time delay � between � pulses reduces the pulse duty
cycle down to less than 0.04% but the NMR signal still did
not exhibit the expected behavior. Figure 4 shows three
CPMG echo trains with three different interpulse time de-
lays. For short delays between � pulses, the CPMG echo
train exhibits a long tail �Fig. 4 �top��. For intermediate de-
lays, some slight modulation develops in the echo envelope
�Fig. 4 �middle��. For much longer delays, we observe an
even-odd effect where even-numbered echoes are much
larger than odd-numbered echoes that occur earlier in
time20–22 �Fig. 4 �bottom��.

The slight modulation of the echo envelope for the middle
graph of Fig. 4 is more visible when we perform the same
CPMG experiment on a silicon sample with a lower doping.
Figure 5 shows CPMG echo trains in Si:P �3�1013 P /cm3�
and Si:B �1.43�1016 B /cm3�. Here, the echo shape is much
wider in time than for the higher doped Si:P �1019 P /cm3�
sample because the Zeeman spread is much smaller. The
heights of the echoes in Fig. 5 modulate in a seemingly noisy
way. However, when sampling short segments of echoes, an
unusual fingerprint pattern repeatedly emerges throughout
the echo train. Sections of the echo train are highlighted and
overlapped to help guide the eyes. Figures 4 and 5 are evi-
dence of complicated coherent effects.

From the analysis of Sec. II, the calculated envelope
	�Iy1

�t�
	 is expected to be insensitive to the � pulse phase.
We define the following four pulse sequences:

CP : 90X − � − �180X − 2� − 180X − 2��n,

APCP : 90X − � − �180X̄ − 2� − 180X − 2��n,
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FIG. 4. �Color online� CPMG echo trains of 29Si in Si:P �3.94
�1019 P /cm3� with three time delays between � pulses. �Top� 2�
=592 �s. �Middle� 2�=2.192 ms. �Bottom� 2�=9.92 ms. For com-
parison, T2=5.6 ms in silicon as measured by the Hahn echoes and
as predicted by the delta-function pulse approximation. Data taken
at room temperature in a 12 T field.
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FIG. 5. �Color online� Repeated fingerprint
patterns in the CPMG echo train with 2�
=2.192 ms. Two different samples are shown:
�top� Si:B �1.43�1016 B /cm3�, and �bottom�
Si:P �3�1013 P /cm3�. Data taken at room tem-
perature in a 7 T field.

LI et al. PHYSICAL REVIEW B 77, 214306 �2008�

214306-6



CPMG : 90X − � − �180Y − 2� − 180Y − 2��n,

APCPMG : 90X − � − �180Ȳ − 2� − 180Y − 2��n,

where X̄ indicates rotation about −x̂ and Ȳ indicates rotation
about −ŷ. The Carr–Purcell �CP� sequence38 features �
pulses along x̂, the CPMG sequence39 features � pulses
along ŷ, and the alternating phase �AP� versions flip the
phase after each � pulse. The spin echoes form in the middle
of each 2� time period. For CP and APCP, the spin echoes
alternatingly form along ŷ and −ŷ, while in CPMG and
APCPMG, they form only along ŷ. Though all of these se-
quences are expected to decay with the same envelope, they
differ drastically in experiment �Fig. 6�. The CP sequence
decays extremely fast, while the APCP and CPMG sequences
have extremely long-lived coherence. The pulse sequence
sensitivity exhibited in Fig. 6 demonstrates that the � pulses
play a key role in the system’s response.

IV. EXPERIMENTAL TESTS TO UNDERSTAND THE
PULSE QUALITY AND THE INTERNAL DYNAMICS OF

THE SPIN SYSTEM

Because of the surprising results of the preceding section,
we performed many experiments to test whether certain ex-
trinsic factors were to blame for the discrepancies in Figs. 1
and 4–6. We report that even after greatly improving our
experimental pulses, the tail of the CPMG echo train persists
well beyond the decay of the Hahn echoes. We also report
experiments with many different sample parameters that all
yield the same qualitative result.

These experiments are quite different from the usual array
of NMR experiments that primarily focus on optimizing the
signal-to-noise ratio. In contrast, we have plenty of signal to
observe in the CPMG echo train, but our aim was to find any
sensitivity of the CPMG tail height on some extrinsic param-

eter. Although deliberately imposing a large pulse imperfec-
tion may lead to NMR data that look qualitatively similar to
those outlined in the previous section, experimental improve-
ments that greatly reduced these imperfections did not make
the effects vanish.

A. Nutation calibration, rotary echoes, and pulse adjustments
in Carr–Purcell–Meiboom–Gill

Without proper pulse calibration, it is difficult to predict
the result of any NMR experiment. We calibrate the rotation
angle of a real finite pulse through a series of measurements
resulting in a nutation curve.51 This experiment begins with
the spins in the Boltzmann equilibrium �B= IzT

. During a
square pulse of strength H1=�1 /2� and time duration tnut
applied along x̂ in the rotating frame, the spins will nutate in
the y-z plane. Shortly after tnut, the projected magnetization
along ŷ is measured as the initial height of the FID.

Figure 7 shows a typical nutation curve in Si:Sb �2.75
�1017 Sb /cm3�. The � pulse is determined by the timing of
the first zero crossing of the nutation curve. This nutation
calibration is typically repeated several times during a long
experiment.

The nutation curve is also a measure of the quality of
other aspects of the single-pulse experiment.52 For example,
the homogeneity of the applied rf field may be inferred from
the decay of the nutation curve after several cycles. Figure 7
shows nutation data out to over eight cycles with very little
decay. Extending the nutation experiment out to even longer
pulse times �Fig. 8� enables the study of the decay of its
amplitude.

For such long nutation times, the dipolar coupling be-
tween spins contributes to the decay.53 This decay is calcu-
lated by using the density matrix evolved under the time-
evolution operator for the full pulse �Eq. �9�� for time tnut.
The expected decay envelope �Fig. 8 �dashed curves�� is the
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FIG. 6. �Color online� Four
pulse sequences with � pulses of
different phases applied to 29Si
in Si:Sb �2.75�1017 Sb /cm3�.
�Top left� CP, �top right� CPMG,
�bottom left� APCP, and �bot-
tom right� APCPMG. All are ex-
pected to yield identical decay
curves based on the delta-function
pulse approximation. 2�=72 �s,
T=300 K, and Bext=11.74 T.

INTRINSIC ORIGIN OF SPIN ECHOES IN DIPOLAR… PHYSICAL REVIEW B 77, 214306 �2008�

214306-7



disorder-averaged expectation value �Iy1
�t�
=Tr���t�Iy1

� �see
Sec. II�.

Another significant contribution to the decay of the nuta-
tion curve is rf field inhomogeneity. For a given spread of rf
fields, the decay of the NMR signal depends on the number
of nutation cycles; therefore, a nutation with a weaker H1
�Fig. 8 �top�� will decay slower than a nutation with a stron-
ger H1 �Fig. 8 �middle��. The damped sine curves include the
contribution from dipolar coupling and add the spatial rf field
variations due to the calculated sample skin depth and the
inherent inhomogeneities of our NMR coil.

The rotary echo experiment54 compensates for static spa-
tial rf field inhomogeneities by reversing the phase of the
nutation pulse at a time near tnut /2. By using this technique,
the rotary echo data �Fig. 8 �green dots�� approach the dipo-
lar decay envelope even though the nutation data �Fig. 8
�blue dots�� decay much faster.

So far, the Hahn echoes, the nutation curve, and rotary
experiment all agree with the model for calculating the NMR
signal developed in Sec. II. One significant difference be-
tween these experiments and the CPMG sequence is that
they consist of only one or two applied pulses while the
CPMG sequence has many pulses. It is possible that the cali-
bration for the CPMG sequence could be different than that
set by the nutation curve. We explored this question of cali-
bration by varying tp of the � pulse to see if the expected
decay would be recovered. Figure 9 �bottom� plots a series of
echoes from the CPMG sequence versus the misadjusted �
pulse duration. Spin echo 15 �SE15� and spin echo 16 �SE16�
are representative of coherence that should decay to zero for
delta-function � pulses. Despite the wide range of pulse du-
rations attempted, the tail of the CPMG echo train never
reached zero. Modifying CPMG with more complicated
pulse phase patterns55,56 changes the results, but echoes at
long times are still observed.

B. Characterization of rf field homogeneity and improvements
through sample modification

If the strength of the rf field during a pulse greatly varied
from spin to spin, then the pulse calibration would not be
consistent across the sample. To test whether this extrinsic
effect could cause the results of Sec. III, we examined the rf
field homogeneity in our NMR coil and made improvements
by modifying the sample.

An ideal delta-function pulse affects all spins in the sys-
tem with the same rf field strength. However, a real NMR
coil is a short �approximately ten turn� solenoid with rf fields
that vary in space.57 Figure 10 shows a calculation of the rf
field homogeneity in the quasistatic approximation by using
the Biot–Savart law for our seven-turn NMR coil.58,59 The
grayscale plot indicates the spatial variation of rf fields
where lighter colored regions are areas of higher rf field
strength. The proximity effect would slightly smooth out
these rf fields beyond what is shown.57,60,61

For a given coil, the rf field homogeneity can be improved
by decreasing the sample volume. To this end, we performed
experiments by using two different sample sizes to assess the
influence of rf homogeneity on the long tail in the CPMG
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FIG. 7. �Color online� Nutation curve data
�dots� of 29Si in Si:Sb �2.75�1017 Sb /cm3�
agree with a nondecaying sine curve over
8.25 cycles. H1=8.33 kHz, T=300 K, and Bext

=12 T.
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FIG. 8. �Color online� Extended nutation data of 29Si in Si:Sb
�2.75�1017 Sb /cm3� taken at room temperature in a 12 T field.
�Top� H1=8.33 kHz. �Middle� H1=25 kHz. �Bottom� Rotary echo
data �green dots� and nutation data �blue dots� for H1=25 kHz.
Dashed lines in each graph show the expected decay envelope due
to dipolar coupling during the nutation pulse. Solid traces are cal-
culations that include the dipolar decay, rf field spread from our
NMR coil, and skin depth of Si:Sb.
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echo train. Figure 10 shows histograms of the rf field distri-
bution within the two sample sizes and the corresponding
CPMG echo trains. No noticeable difference in the tail height
was observed despite the marked improvement of rf homo-
geneity.

In addition to the coil dimensions, the sample itself may
have properties that introduce an rf field inhomogeneity. For
example, the skin depth in metallic samples attenuates the rf
field inside the sample.30,58,59 Two approaches were taken to
reduce the contribution of skin depth effects to the rf field
homogeneity. In the first approach, a sample of highly doped
Si:P �1019 P /cm3� was ground, passed through a 45 �m
sieve, and diluted in paraffin wax. This high-doped silicon
sample has a resistivity of 0.002 � cm. At a 12 T field, the rf
frequency applied is 101.5 MHz. Thus, the skin depth at this
frequency is 223.3 �m. Particle diameters on the order of
45 �m would only have a 10% reduction of the field at the
center. Furthermore, dilution in wax helps to separate the
particles. Despite this improvement, the effects summarized
in Sec. III remained.

The second method to reduce the rf field attenuation
caused by the skin depth is to use less metallic samples.
Four different silicon samples were used that differ in do-
pant type �donors or acceptors� and dopant concentrations
�up to a factor of a million less for Si:P with 1013 P /cm3�.
For samples doped below the metal-insulator transition,30 the
calculated skin depth is very large and the rf field attenuation
at the center of the particle is much smaller. For example,
Si:Sb �2.75�1017 Sb /cm3� has a skin depth of 1.05 mm,
which reduces the H1 field by 2% at the center of a 45 �m
particle. Our lowest doped silicon powder sample, Si:P with
3�1013 P /cm3 �resistivity of 0.97–2.90 � cm�, has a skin
depth range of 4.92–8.50 cm, which results in a less than

0.03% reduction in rf field at the particle center. Additionally,
NMR measurements of 13C in C60 and 89Y in Y2O3, two
which are insulating samples, show the same behavior as in
silicon.20–22

Figure 11 shows the four pulse sequences in C60 for two
sample sizes. Despite the improvement in rf field homogene-
ity, the long tail in the CPMG echo train and the pulse se-
quence sensitivity are largely unaffected.

C. Measuring the pulse transients

Pulse transients are another possible source of experimen-
tal error.62–65 In principle, the perfect pulse is square and has
a single rf frequency. In practice, however, the NMR tank
circuit produces transients at the leading and trailing edges of
the pulse. Because the pulse transients have both in-phase
and out-of-phase components, they can cause spins to move
out of the intended plane of rotation. These unintended tran-
sients can contribute to poor pulse calibration and possible
accumulated imperfections. Therefore, it is important to
quantify the pulse transients specific to our apparatus.

To measure the real pulse, we inserted a pickup loop near
our NMR coil and applied our regular pulses.62–64 Figure 12
shows the typical � pulse and � /2 pulse envelopes. The red
traces show the in-phase components of the pulses, while the
green traces show the out-of-phase components. Empirically,
changing parameters such as the resonance and tuning of the
NMR tank circuit changes the shape of the transients and
even the sign of the out-of-phase components.

For short time pulses �e.g., a � /2 pulse�, the transient
constitutes a larger fraction of the entire pulse. Consequently,
the dominant pulse transient in these short pulses could lead
to larger extrinsic effects. Furthermore, since H1tp=1 /2 is
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FIG. 9. �Color online� Finding the minimum
tail height for CPMG. �Top� CPMG data of 29Si
in Si:P �3.94�1019 P /cm3� with 2�=2.192 ms.
�Bottom� Numbered spin echoes �SEn� are plot-
ted versus � pulse duration. SE15 and SE16 are
expected to have zero amplitude. The nutation
calibrated � pulse has duration 12.2 �s. Data
taken at room temperature in a 12 T field.
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fixed for � pulses, one would expect that any extrinsic ef-
fects caused by pulse transients would also be larger for
stronger �i.e., shorter in time� � pulses.

The influence of the pulse transients on the multiple-pulse
sequences may be simulated65 by approximating the real �
pulse along ŷ as a composite pulse of three pure rotations
180Y →4X̄180.1Y3X. Including the pulse transients in simula-
tion yielded only small changes in the expected decay enve-
lope derived in Sec. II and could not reproduce the effects
from Sec. III.

While the pulse transients are sensitive to many changes
in our NMR apparatus, the observed effects from Sec. III are
qualitatively insensitive. Therefore, we infer that the pulse
transients are not the dominant cause of these effects.

D. Pulse strength dependence

How strong does a real pulse need to be in order to be
considered a delta-function pulse? The limit described in
Sec. II assumes pulses of infinite strength. This limit ensures
that all the spins are identically rotated. On the other hand,
weak pulses treat different spins differently. Thus, if the cali-
bration, rf field homogeneity, or pulse strength was grossly

misadjusted,66 then the observed behavior could deviate from
the calculation in Sec. II.

However, Fig. 13 shows CPMG experiments in Si:Sb
�1017 Sb /cm3� for a variety of pulse strengths. The tail height
is extrapolated as a t=0 intercept from the CPMG pulse se-
quence �Fig. 13 �top�� and plotted versus the rf field strength
H1=�1 /2� normalized by the full width at half maximum
�FWHM� of the Si:Sb line shape. For each data point, a
separate nutation curve was measured to calibrate the �
pulse. The tail height of the CPMG echo train is largely
insensitive to the pulse strength for H1 /FWHM from 4 to
450.

The expected CPMG decay may be simulated by using
finite pulses67 in an exact calculation for N=5 spins in sili-
con �Fig. 13 �bottom, open blue triangles��. These calcula-
tions agree with the data when the pulses are extremely weak
�H1 /FWHM
1� but quickly fall to zero once the pulses are
over ten times the linewidth. Thus, these calculations agree
with the conventional assumption that the strong-pulse re-
gime is achieved when H1 /FWHM�1.

Because the experimental tail height in CPMG is so in-
sensitive to large changes in pulse strength, we conclude that

FIG. 10. �Color online� �Top� Sectional calcu-
lation of the rf field homogeneity in our NMR
coil. Two cylindrical sample sizes are outlined.
�Middle� Histograms of rf field strength distribu-
tion. �Bottom� CPMG data for the two sample
sizes of 29Si in Si:P �3.43�1019 P /cm3� are
nearly identical despite the noticeable change in
rf field homogeneity. 2�=2.192 ms, T=300 K,
and Bext=7 T.
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even very strong � pulses are still not the same as delta-
function pulses.

E. Using composite � pulses to improve pulse quality

Another way to improve pulse quality is to use composite
pulses4,6,68 in place of single � pulses. Composite pulses
were designed to correct poor pulse angle calibration, rf in-
homogeneity, and the effects of weak pulses69 by splitting a
full rotation into separate rotations about different axes.
These separate pieces counteract pulse imperfections when
strung together.

Figure 14 shows a series of experiments where the single
� pulses in CP, APCP, CPMG, and APCPMG are replaced by
composite pulses. The Levitt composite pulse68,70 replaces
180Y with 90X180Y90X. The BB1 composite pulse71,72 re-
places 180Y with 180�360�180�180Y, where X=0°, Y =90°,
�=194.5°, and �=43.4°. Even though these composite
pulses should improve pulse quality,71 the CPMG tail height
and the sensitivity to � pulse phase are hardly affected.

F. Absence of nonequilibrium effects

This experiment tests the assumption made in Sec. II that
the equilibrium density matrix is simply �B= IzT

. This �B as-
sumes that equilibrium is reached after waiting longer than
the spin-lattice relaxation time T1 before repeating a CPMG
sequence.1 If, however, an experiment is started out of equi-
librium, then any unusual coherences73,74 present in the ini-
tial density matrix might lead to a different NMR signal.

Figure 15 shows the CPMG echo train in two regimes. In
red, the CPMG echo train is repeated after waiting only a
fifth of the spin-lattice relaxation time T1. In blue, the CPMG
echo train is repeated after waiting 5�T1. Inset �a� shows
the saturation-recovery data that determines T1. A single ex-
ponential is a good fit to the data supporting the assumption
of a single mechanism for spin-lattice relaxation. Inset �b�
shows a close-up of echoes for the two wait times. For
shorter wait times, the echo shape is slightly distorted at the
base of the echoes compared to the much longer wait times.
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FIG. 11. �Color online� Pulse
phase sensitivity and rf homoge-
neity tests in an insulating sample.
CP, CPMG, APCP, and APCPMG
data of 13C in C60 for a large
sample volume �left column� and
a small sample volume �right col-
umn�. All are expected to agree in
the delta-function pulse limit. H1

=45.5 kHz, 13C NMR linewidth
=290 Hz, 2�=180 �s, T=300 K,
and Bext=12 T.
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FIG. 12. �Color online� Measured pulse shapes in phase �red� and out of phase �green� for a typical � pulse �left� and � /2 pulse �right�
at radio frequency 101.5 MHz with pulse strength H1=33.3 kHz. Transients are a larger fraction of short duration pulses like � /2. Data
taken at room temperature in a 12 T field. The real � pulse is approximated as three pure rotations 4X̄180.1Y3X.
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However, the CPMG echo peaks still exhibit a long tail and
is insensitive to the wait time.

G. Absence of temperature dependence

The CPMG tail height could be sensitive to both
temperature-dependent effects specific to each sample and
temperature-independent effects found in all dipolar systems.
To distinguish between the two sets of effects, we performed
the CPMG pulse sequence in Si:P �3.94�1019 P /cm3� at
room temperature and at 4 K. Figure 16 shows that the
CPMG tail height is insensitive to the large change in tem-
perature.

These results update previously reported data in the same
sample.21 Lowering the temperature increases the spin-lattice
relaxation time T1 from 4.9 s at room temperature to over
6 h at 4 K. As a consequence, the increased T1 at low tem-
peratures required us to perform experiments at a much
slower rate where our NMR tank circuit would be suscep-
tible to temperature instabilities. These temperature instabili-
ties caused poor pulse calibration from time to time. To rec-
tify this problem, we repeated the CPMG pulse sequence
many times at 4 K and measured the nutation curve after
each repetition. If the calibration remained consistent be-
tween four applications of the CPMG pulse sequence, we
averaged the four scans together to obtain the 4 K data in
Fig. 16 �blue squares�. None of these issues were present in
the room temperature data.

In addition, the sample was carefully prepared by sieving
the crushed powder to 
45 �m and diluting it in paraffin
wax to reduce the skin depth effect and to reduce clumping
when cooling in a bath of liquid helium.

Absence of temperature dependence supports the assump-
tion that the relevant internal Hamiltonian is Hint=HZ+Hzz.

H. Similar effects found in different dipolar solids

We performed the same pulse sequences in many different
dipolar solids to show that the effects reported in Sec. III
are universal. Table I summarizes the samples used in
these studies and outlines dramatically different features in-
cluding the T1, which varies from 4.8 s to 5.5 h at room
temperature.20,21 Measurements in a variety of silicon
samples with different doping concentrations, different dop-
ant atoms, and even different dopant types �N type and P
type� show the same qualitative results despite the significant
differences in their local environments.

We also performed the same NMR pulse sequences on
different nuclei.20 The CPMG echo trains of 13C in C60 have
long tails that outlast both the measured Hahn echoes and the
predicted decay when calculated by using the Ising model
and delta-function � pulses. Furthermore, we see the same
qualitative results for 89Y in Y2O3. Because the natural abun-
dance �na� of 89Y is 100%, dilution of the spins on the lattice
does not contribute to the results.75,76

Additionally, at room temperature, C60 molecules form an
fcc lattice, and each C60 undergoes rapid isotropic rotation
about its lattice point.77,78 This motion eliminates any
inter-C60 J coupling1 but leaves the dipolar coupling between
spins on different fullerenes. Thus, the J coupling, which we
have not included in Hint �Eq. �7��, does not play a major role
in the results.6,79

I. Single crystal studies

In order to reduce the effects of skin depth,30,58,59 most of
our samples were ground to powder. The calculations out-

� � �

� � �

� � �

� � �

� � �

�
�
	


��


�
�

� �� �� �� �� �� ��

� � � � � � � �

� � �

� � �

� � �

� � �

� � �

� � �

�
�
�
�

�
�
��
�
�
��
�
�
��

�
 �

�
��!

�
"
�

� � �� � �� � �� � ��

� # � � � 
 �  � 
 � � � � � � $ % & � � �

� � � � � � � � ' �  � � $ % & � � ( � � �

FIG. 13. �Color online� Dependence of
CPMG tail height on pulse strength. �Top� Tail
height is extrapolated as a t=0 intercept for
CPMG of 29Si in Si:Sb �2.75�1017 Sb /cm3�
with 2�=2.192 ms. This example is for
H1 /FWHM=222. �Bottom� CPMG tail height
versus pulse strength. Smaller samples and NMR
coils were used to achieve the last two points.
Exact calculations for N=5 spins in silicon �tri-
angles� decay to zero for H1�FWHM.
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lined in Sec. II took this into account in the disorder average
by configuring each disorder realization with a random ori-

entation of the lattice with respect to B� ext. Then, by picking
small clusters of N spins, each disorder realization was de-
signed to represent a realistic cluster in any one powder par-
ticle.

The real ground powder particles have different shapes
and sizes. Though the magnetic susceptibility of silicon is
very low,80 each powder particle would have a slightly dif-
ferent internal field due to its shape.58,59 By approximating
the random powder particle as an ellipsoid of revolution, we
calculated the resultant magnetic susceptibility broadening of
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FIG. 14. �Color online� Pulse sequences CP, APCP, CPMG, and APCPMG using standard � pulses �left column�, Levitt composite �
pulses �middle column�, and BB1 composite � pulses �right column�. H1=35.7 kHz, 2�=72 �s, T=300 K, and Bext=11.74 T.
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FIG. 15. �Color online� Nonequilibrium ef-
fects and spin-lattice relaxation. �Main� CPMG
echo train for 29Si in Si:P �3.94�1019 P /cm3�
with saturation-recovery times trec=1 s �red� and
trec=20 s �blue�. T=300 K, Bext=12 T, and 2�
=592 �s. The initial heights of the FIDs are
scaled to agree. �a� Exponential fit to the
saturation-recovery experiment gives T1=4.9 s in
this sample. �b� Close-up of echo shapes.
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the NMR linewidth.81–86 Convolving the magnetic suscepti-
bility broadening with the dipolar linewidth accounted for
the 290 Hz FWHM of our Si:Sb �2.75�1017 Sb /cm3� pow-
der sample.

In order to reduce the extrinsic broadening due to the
magnetic susceptibility, we studied a single crystal of Si:Sb.
Measurements in a single crystal allow confirmation of the
lattice model and further the understanding of the magnetic
susceptibility broadening. In a single crystal of Si:Sb
�1017 Sb /cm3�, the orientation of the lattice allows only dis-
crete coupling constants and, subsequently, a unique dipolar
line shape. Additionally, the shape and orientation of the

crystal with respect to B� ext yield a smaller spread in the in-
ternal field due to the magnetic susceptibility.84 Figure 17
�inset, blue spectrum� plots the convolution of the dipolar
line shape and the magnetic susceptibility broadening for the
single crystal. The small satellites in the spectrum are due to
the dipolar coupling between nearest neighbors. This simu-
lation is a good fit to the measured spectrum �Fig. 17 �inset,
red spectrum��.

In the single crystal, the CPMG echo train still exhibits a
long-lived coherence for short � �Fig. 17 �middle�� and the
even-odd effect for longer � �Fig. 17 �bottom��.

J. Magic angle spinning

The technique of magic angle spinning1,3,4,87 �MAS� is
used to reduce the dipolar coupling coefficient by rotating
the entire sample about an axis tilted at 54.7° with respect to

B� ext. In the time average, the angular factor �1−3 cos2 � jk� in
the dipolar coupling constant �see Eq. �6�� vanishes. In addi-
tion to reducing the dipolar coupling, MAS eliminates Zee-
man shift anisotropies and first-order quadrupole splittings.
These experiments seek to connect Hzz to the effects outlined
in Sec. III. Also, narrowing the NMR linewidth even further
than in the single crystal leads to a better understanding of
the population of 29Si nuclei in the silicon lattice.

The FWHM of the MAS spectrum of Si:Sb �1017 Sb /cm3�
�Fig. 18 �top graph, red spectrum�� decreased by almost a
factor of 6 compared to the spectrum of the static sample
�Fig. 18 �top graph, black spectrum��. Despite this narrow-
ing, the MAS spectrum does not resolve distinct features in
the NMR line shape. The upper limit on the spread in Zee-
man shifts is consistent with the single crystal data �Fig. 17�.
Therefore, we conclude that only Hint=HZ+Hzz is needed to
produce the static spectrum for this sample.

Figure 18 shows the CPMG echo train for two different
time delays � taken during MAS. The top graph shows that
the echo train decays even more slowly than in the static
sample. Also, for very large inter-pi-pulse spacings, as shown
in the bottom graph, the even-odd effect is not present. The
absence of the dipolar coupling and the dramatic changes in
the observed CPMG echo trains suggest that Hzz plays an
important role in our static NMR studies.

We conclude this section by stating that these studies are
by no means a complete study of all extrinsic effects in
NMR. They are, however, representative of the high quality
of the pulses that we use and the simple spin Hamiltonian of
the nuclei under study. These experiments are near optimal

TABLE I. Properties of dipolar solids used in these studies. Columns display the NMR spin-1 /2 nucleus,
dopant concentrations in number of dopant nuclei per cm3, gyromagnetic ratio ��� in MHz/T, isotopic natural
abundance �na� in percent, full width at half maximum of the measured spectrum �FWHM� in Hz, spin-lattice
relaxation time �T1� in seconds, and transverse relaxation time �T2� as measured by the best exponential or
Gaussian fit of the decay of Hahn echoes in milliseconds. Si:P �1013� and Si:B �1016� data taken at room
temperature in a 7 T field �no Hahn echo data for these two samples�. All other data taken at room tempera-
ture in a 12 T field.

Sample Dopant concentration �cm−3� � /2� �MHz/T� na �%� FWHM �Hz� T1 �s� T2 �ms�

13C in C60 10.7 1.11 260 25.8 14
29Si in Si:P 3�1013 8.46 4.67 350 17640
29Si in Si:B 1.43�1016 8.46 4.67 370 10080
29Si in Si:Sb 2.75�1017 8.46 4.67 200 276 6
29Si in Si:P 3.43�1019 8.46 4.67 3600 4.8 6
89Y in Y2O3 2.09 100 3100 3100 24
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FIG. 16. �Color online� Temperature effects
on CPMG tail height. CPMG echo peaks at room
temperature �red� and 4 K �blue� in Si:P �3.94
�1019 P /cm3� diluted in paraffin wax. 2�
=2.192 ms and Bext=12 T.
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yet still exhibit the unexpected behavior of multiple � pulse
echo trains. From these experimental results, we can make
concrete assumptions about the real pulse P and the real free
evolution V.

The experiments outlined in this section provide the fol-
lowing constraints on any theoretical model that may explain
our results: �1� the relevant internal Hamiltonian should con-
tain only the Zeeman and dipolar Hamiltonians Hint=HZ
+Hzz and �2� the pulses are strong and equally address all
spins, but they are not instantaneous.

V. TREATMENT OF FINITE PULSES IN EXACT
CALCULATION AND AVERAGE HAMILTONIAN THEORY

In Sec. II, we demonstrated how instantaneous � pulses
allow the measurable coherence of the system to evolve as if
there were no pulses applied at all. Additionally, this measur-
able coherence should decay to zero under the action of the
dipolar Hamiltonian with time constant T2.

However, in Sec. III, we reported experiments that con-
tradict these expectations, such as the sensitivity of the echo
train to the phase of the applied � pulses. Some of these echo

trains extend well beyond the expected T2 �CPMG, APCP�,
while others decay much faster �CP, APCPMG�.

Additionally, the experimental explorations of Sec. IV
strongly suggest that extrinsic pulse imperfections are not
responsible for these large discrepancies. Our observed ef-
fects are universal across many different samples all con-
nected by the same form of the dipolar Hamiltonian. Thus,
only the Zeeman and dipolar Hamiltonians are needed but
the validity of the instantaneous � pulse approximation must
be reconsidered.

In this section, we calculate the exact evolution of the
density matrix by numerical means. The action of strong but
finite pulses under the simultaneous influence of the dipolar
Hamiltonian is the intrinsic effect that can lead to the large
discrepancies we have observed.

A. Exact numerical calculation with strong finite pulses

Since the delta-function pulse approximation has failed to
explain our results, we return to the exact form of the pulse
evolution operator from Eq. �9�,
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FIG. 17. �Color online� NMR data in a single crystal of Si:Sb
�2.75�1017 Sb /cm3� oriented with its �110� axis along ẑ �see top
inset�. �Top� NMR spectrum �red� compared to a calculation for
silicon that include dipolar coupling of N=6 spins, magnetic sus-
ceptibility broadening, and skin depth due to the crystal shape
�blue�. FWHM=110 Hz. �Middle� CPMG echo train for 2�
=2.1 ms shows the long tail. �Bottom� CPMG echo train for 2�
=5.2 ms shows the even-odd effect.
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FIG. 18. �Color online� Magic angle spinning in Si:Sb
�1017 Sb /cm3�. �Top� NMR spectrum of a static powdered sample
with FWHM=175 Hz �black� and the MAS spectrum spun at 3 kHz
with FWHM=31 Hz �red�. �Middle� CPMG echo train while spin-
ning. 2�=11.25 ms. Long tail is expected since dipolar coupling is
reduced. �Bottom� CPMG echo train while spinning. 2�=0.2 s. No
pronounced even-odd effect in contrast to Fig. 4 �bottom� and Fig.
17 �bottom�.
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P� = exp�−
i

�
�HZ + Hzz + HP�

�tp
 , �23�

where HZ is the Zeeman Hamiltonian, Hzz is the secular
dipolar Hamiltonian, and HP�

=−��1I�T
is the Hamiltonian

form of an rf pulse applied for time tp along the � axis in the
rotating frame.

To model the evolution of a spin system after n pulses, the
relevant form of Eq. �1� becomes

��t� = �UP�U�n��0��U−1P�
−1U−1�n, �24�

where the free-evolution propagator is given by U
=exp�− i

� �HZ+Hzz���. From here, no approximations are
made. Instead, numerical diagonalization is used during each
P� and U to evaluate ��t� for the four pulse sequences that
we consider.20,88

Figure 19 plots the exact calculation of �Iy1
�t�


=Tr���t�Iy1
� �Eq. �15�� averaged over 150 disorder realiza-

tions �DRs� for the four pulse sequences CP, CPMG, APCP,
and APCPMG. These exact calculations have the same quali-
tative trends as the experiments. Namely, CPMG and APCP
produce long-lived measurable coherence, while CP and
APCPMG decay away to zero. Since these exact calculations
include no extrinsic imperfections, we conclude that the di-
polar Hamiltonian and Zeeman Hamiltonian under the pulse
must be the sole cause for the different time-evolved curves
in Fig. 19.

However, there are two important caveats for these calcu-
lations. First, we used an N=6 spin system to simulate the
behavior of a macroscopic spin system. Because of computer
limitations, using a much larger system is not possible, in-
evitably leaving out many multi-spin entanglements. Second,
to get these results using only N=6 spins, our simulations
used both larger linewidths and shorter interpulse spacing

than in the experiments. We will return to these two impor-
tant points in the last part of this section to show how system
size and coupling strength are related.

B. Understanding the exact calculation using average
Hamiltonian theory

To understand the mechanisms underlying the exact cal-
culation, we turn to average the Hamiltonian theory1,3,5,45,89

to obtain approximate analytic results for the four pulse se-
quences under study. This analysis, in turn, allows the devel-
opment of further calculations to uncover trends in the be-
havior of N spins under strong � pulses.

Average Hamiltonian or coherent averaging theory89 was
developed in NMR to approximate the behavior of multiple-
pulse experiments that use many � /2 pulses. Additionally,
the average Hamiltonian theory can be used to describe
NMR experiments with very long pulses such as spin locking
or the magic echo.16,17

Here, we wish to apply the average Hamiltonian theory to
a train of strong but finite � pulses where the delta-function
pulse approximation �Sec. II� predicts echoes that decay to
zero. Because our pulses are so strong �Fig. 13�, we expected
the nonzero pulse duration to give only a small perturbation
to the delta-function pulse approximation. However, the ex-
act calculations show a dramatic departure from this expec-
tation �Fig. 19�.

The average Hamiltonian analysis starts from the total
time-dependent Hamiltonian of an interacting spin system in
the presence of an rf field,

Htot�t� = HZ + Hzz − ���t�I�T
, �25�

where ��t�=�1 during a pulse and zero during free evolu-
tion. HZ and Hzz are the Zeeman Hamiltonian and the secu-
lar dipolar Hamiltonian, respectively �Eqs. �4� and �5��. The
spin operator along � can be projected along the principle
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FIG. 19. �Color online� Exact
calculation using strong but finite
� pulses. Calculation uses the fol-
lowing parameters: N=6 spins,
simulated pulse strength H1

=40 kHz �tp=12.5 �s�, delay be-
tween � pulses 2�=2 �s, dipolar
coupling scaled by 25�Bjk of
29Si, Zeeman shift �z /h drawn
from a 3 kHz wide Gaussian for
each DR, and the disorder average
is taken over 150 DRs. The full
line shape is 4 kHz, which is a
convolution of the pure dipolar
line of 2.2 kHz and the Zeeman
spread of 3 kHz. Compare these
curves to the data of Fig. 6.
CPMG and APCP display long-
lived tails, while CP and
APCPMG decay to zero.
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axes in the rotating frame I�T
=cos �IxT

+sin �IyT
.

We label the first two terms of Eq. �25� as the internal
Hamiltonian Hint=Hzz+HZ in the language of average
Hamiltonian theory.3,89 The applied pulse term then becomes
the external or rf Hamiltonian Hrf�t�=−���t�I�T

.
The total time-evolution operator

Utot�t� = T exp�−
i

�
�

0

t

dt�H0�t��
 �26�

can then be split into a product of two parts,

Utot�t� = Urf�t�Uint�t� , �27�

Urf�t� = T exp�−
i

�
�

0

t

dt�Hrf�t��
 , �28�

Uint�t� = T exp�−
i

�
�

0

t

dt�H̃�t��
 , �29�

H̃�t� = Urf
−1�t�HintUrf�t� , �30�

where T is the Dyson time-ordering operator1 and H̃�t� is the
toggling frame Hamiltonian.3,5,89 This separation is conve-
nient when Hrf is periodic and cyclic with the cycle time tc.
In this case, Urf�tc�=1 and the Magnus expansion90 gives

Uint�ntc� = exp�−
i

�
ntc�H̄�0� + H̄�1� + H̄�2� + ¯ �
 ,

�31�

for the time evolution after any multiple n of the cycle time.
The first two terms in the expansion are given by

H̄�0� =
1

tc
�

0

tc

dtH̃�t� , �32�

H̄�1� = −
i

2tc�
�

0

tc

dt2�
0

t2

dt1�H̃�t2�,H̃�t1�� . �33�

The advantage of the Magnus expansion is that the full
time-evolution operator Utot�t� is now written as a single
exponential instead of a product of exponentials. Addition-
ally, the terms in the average Hamiltonian expansion

H̄�0� ,H̄�1� ,H̄�2�. . . are time independent and exactly describe
the system at multiples of the cycle time tc. In practice, this
exact expression is replaced by an approximate one when the
series expansion is truncated after the first few terms.1,3,5,45,89

The four pulse sequences studied here all have the same
cycle time tc=4�+2tp consisting of two � pulses with a time
delay of � before and after each pulse. The average Hamil-
tonian description is simplest when the cycle time is short in
the strong-pulse regime ���1��z ,Bjk� since the expansion
in Eq. �31� is then dominated by the first few terms.

By using these steps, we can calculate the leading terms
for the four pulse sequences under study. For example, the
time evolution of ��t� under the CPMG sequence is

��t� = Utot�t���0�Utot
−1�t� = �U5P4U3P2U1�n��0��inv�n,

�34�

where P2=P4 are � pulses along ŷ and include the Zeeman
and dipolar Hamiltonians. Ui, i=1,3 ,5 are the free-evolution
propagators that only include the Zeeman and dipolar Hamil-
tonians.

After identifying the parts of Utot, the next step is to cal-
culate the toggling frame Hamiltonians for each of these

events. As an example, H̃�t3� in CPMG for event U3 is

H̃�t3� = �Urf
−1�t1�Urf

−1�t2�Urf
−1�t3��Hint�inv�

= Ry
−1��zIzT

+ Hzz�Ry = − �zIzT
+ Hzz, �35�

where the unitary operators Urf are applied in reverse time
ordering �Eq. �30��.

Table II gives the expressions for all the toggling frame
Hamiltonians as modified by Hrf in each event of the CPMG
sequence. Note that the difference between the toggling
frame transformation of the U3 interval and the U1 and U5
intervals is only the sign in front of the Zeeman term �zIzT

.
This detail is important because it is an explicit indication
that the pulses are free from any extrinsic errors. Thus, Iz
rotates to −Iz after each � pulse. This rotation flips the sign
of the single-spin Zeeman Hamiltonian but does nothing to
the bilinear dipole Hamiltonian.

For comparison, the toggling Hamiltonians for the APCP
sequence are provided in Table III. The other two sequences
can be obtained with a proper sign change from the toggling
Hamiltonians for CPMG and APCPMG. The toggling frame
Hamiltonians for APCPMG differs from CPMG by the signs

TABLE II. Toggling frame Hamiltonians H̃�ti� during each
event of the CPMG cycle ��−180Y −2�−180Y −�� where tp is the
pulse time and � is the free-evolution time. C�=cos��1t�, C2�

=cos�2�1t�, S�=sin��1t�, and S2�=sin�2�1t�.

Event Time H̃�ti� for CPMG

U1 � +�zIzT
+Hzz

P2 tp +�z�IzT
C�+ IxT

S��− 1
2Hyy +Hy

SC2�+Hy
AS2�

U3 2� −�zIzT
+Hzz

P4 tp −�z�IzT
C�+ IxT

S��− 1
2Hyy +Hy

SC2�+Hy
AS2�

U5 � +�zIzT
+Hzz

TABLE III. Toggling frame Hamiltonians H̃�ti� during each
event of the APCP cycle ��−180X̄−2�−180X−��.

Event Time H̃�ti� for APCP

U1 � +�zIzT
+Hzz

P2 tp +�z�IzT
C�+ IyT

S��− 1
2Hxx+Hx

SC2�+Hx
AS2�

U3 2� −�zIzT
+Hzz

P4 tp −�z�IzT
C�− IyT

S��− 1
2Hxx+Hx

SC2�−Hx
AS2�

U5 � +�zIzT
+Hzz
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of S� and S2� in event P2 of Table II. Similarly, CP differs
from APCP also by the signs of S� and S2� in event P2 of
Table III.

The time-dependent terms of the toggling frame Hamilto-
nians during the pulses are of key interest in this analysis.
The cosine and sine terms directly depend on the strength of
the rf field �1. It is tempting to assume the limit �1→� and
tp→0, which would make these time-dependent terms under
the pulses negligible. After all, most experiments in this
study are conducted by using very strong pulses. However,
by keeping these small terms, we find that they have a large
impact over many pulses.

The toggling frame Hamiltonians from Table II are fed
into Eq. �32� to yield the leading order behavior for the
CPMG sequence.20 This approach is repeated for all four
pulse sequences giving the zeroth-order average Hamilto-
nians

H̄CP
�0� =

1

tc
�4�Hzz − tpHxx� , �36�

H̄CPMG
�0� =

1

tc
�4�Hzz − tpHyy� , �37�

H̄APCP
�0� =

1

tc
�4�Hzz − tpHxx +

4�ztp

�
IyT
� , �38�

H̄APCPMG
�0� =

1

tc
�4�Hzz − tpHyy −

4�ztp

�
IxT
� , �39�

with the following first-order corrections:

H̄CP
�1� =

+ i

2tc�

tp

�
�tp�Hx

A,Hx
S + Hxx�

+ �8� + 2tp���zIyT
,�zIzT

+ Hxx�� , �40�

H̄CPMG
�1� =

− i

2tc�

tp

�
�tp�Hy

A,Hy
S + Hyy�

+ �8� + 2tp���zIxT
,�zIzT

+ Hyy�� , �41�

H̄APCP
�1� = 0, �42�

H̄APCPMG
�1� = 0, �43�

where we define

Hxx = �
j=1

N

�
k
j

N

Bjk�3Ixj
Ixk

− I�j · I�k� , �44�

Hyy = �
j=1

N

�
k
j

N

Bjk�3Iyj
Iyk

− I�j · I�k� , �45�

Hx
A =

3

2�
j=1

N

�
k
j

N

Bjk�Iyj
Izk

+ Izj
Iyk

� , �46�

Hy
A =

3

2�
j=1

N

�
k
j

N

Bjk�Ixj
Izk

+ Izj
Ixk

� , �47�

Hx
S =

3

2�
j=1

N

�
k
j

N

Bjk�Izj
Izk

− Iyj
Iyk

� , �48�

Hy
S =

3

2�
j=1

N

�
k
j

N

Bjk�Izj
Izk

− Ixj
Ixk

� . �49�

Inspection of these expressions leads to several important
conclusions. First, the average Hamiltonian expressions for
all four pulse sequences reduce to the bare dipolar Hamil-
tonian Hzz in the limit when tp→0. The first-order correction

terms H̄�1� vanish in this limit since they are all proportional
to tp. While the instantaneous pulse approximation leads to
an identical decay for all four pulse sequences, real pulses
introduce dynamics unique to each sequence.

Second, all the first-order correction terms H̄�1� are
strictly due to the commonly neglected time-dependent terms
under the pulse. Though the prefactor is small, these first-
order terms provide important contributions to the time evo-
lution of quantum coherences.

Third, by symmetry, the alternating phase sequences
APCP and APCPMG have no odd-order average Hamil-
tonian terms. Some sequences were designed to exploit such
symmetries in an effort to eliminate the first few average
Hamiltonian terms and thus reduce decay. However, in ex-
periments and in simulations, we observe a long-lived coher-
ence in the APCP sequence but a fast decay in the APCPMG
sequence.

Fourth, changing �+Ixj
, + Iyj

�→ �+Iyj
,−Ixj

� maps the aver-
age Hamiltonian expressions for CP �APCP� into those for

CPMG �APCPMG�. Also, for �z=0, H̄CP
�0��H̄APCP

�0� and

H̄CPMG
�0� �H̄APCPMG

�0� leaving only a difference in the first-order
correction terms. Despite these similarities, all four pulse se-
quences produce very different results in experiments �Fig.
6� and in simulations �Fig. 19�.

Fifth, changing �+Ixj
, + Iyj

�→ �−Ixj
,−Iyj

� maps Eqs.
�36�–�43� into the expressions for the phase-reversed partner

of each sequence. For example, if “flip CP” uses �X̄ , X̄�
pulses, then H̄flipCP

�0� = +H̄CP
�0�, while H̄flipCP

�1� =−H̄CP
�0�. As another

example, if “flip APCP” uses �X , X̄� pulses, then H̄flipAPCP
�0�

= 1
tc

�4�Hzz− tpHxx−
4�ztp

� IyT
� �compare with Eq. �38�� while

H̄flipAPCP
�1� =H̄APCP

�1� =0.
Sixth and finally, the alternating phase sequences APCP

and APCPMG have another distinct difference from CP and
CPMG at the level of H�0�. In Eqs. �38� and �39�, a single-
spin operator appears that is proportional to both the Zeeman
shift �z and the pulse duration tp.

C. Second averaging

Though the average Hamiltonian expressions �Eqs.
�36�–�43�� are all different, it is not obvious how they pro-
duce the very distinct expectation values �Iy�t�
 in Fig. 19. In
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order to gain insight into the mechanisms that produce these
results, we rewrite the average Hamiltonian expressions by
using second averaging.3,91,92

Equations �38� and �39� each contain a single-spin opera-

tor term �e.g.,
4�ztp

� IyT
in H̄APCP

�0� � that looks like a transverse

field coupled to the spins. Since H̄�0� is time independent, we

treat this effective transverse field as a continuous field H̄rf
even though it only originates from the pulses. Applying av-
erage Hamiltonian theory in this second toggling frame
yields

H� APCP
�0� = −

1

tc
�2� −

tp

2
�Hyy , �50�

H� APCPMG
�0� = −

1

tc
�2� −

tp

2
�Hxx. �51�

These leading order second-averaged Hamiltonians differ
only in the direction of a single anisotropic dipolar Hamil-
tonian term. The directions for both Hxx and Hyy were dic-

tated by the effective transverse field H̄rf. The effect that
these anisotropic dipolar Hamiltonians have on the measur-
able coherence depends on the initial density matrix. For this
paper, we set ��0�= IyT

. From the commutation relations, we

note that H� APCP
�0� preserves IyT

since �IyT
,Hyy�=0, while

H� APCPMG
�0� does not since �IyT

,Hxx��0. Therefore, this
second-averaging analysis predicts that APCP will have
long-lived coherence, while APCPMG should rapidly decay
toward zero.

However, only considering Eqs. �50� and �51� would be a
mistake since higher order corrections in this second-
averaged Magnus expansion are non-negligible. Strictly trun-
cating the second-averaged Hamiltonian to Eqs. �50� and
�51� is only a good approximation when �ztp�Bjktc. In con-
trast, our experiments are typically in the regime where �ztp

is comparable to Bjktc. Still, our experimental results show
long-lived coherence in APCP, suggesting that the higher-
order corrections do not induce decay.

Because a similar difference exists between the CP and
CPMG pulse sequences, we wish to apply the idea of second
averaging to their average Hamiltonian expressions as well.
However, because Eqs. �36� and �37� do not have similar
effective transverse fields, we must look to their first-order
correction terms.

For CPMG, the first-order term H̄CPMG
�1� �Eq. �41�� contains

a single-spin operator proportional to �z
2IyT

from the com-

mutator �IxT
, IzT

�. Similarly, H̄CP
�1� �Eq. �40�� contains a term

proportional to �z
2IxT

. These single-spin terms are analogous

to the effective transverse fields that produced H� APCP
�0� and

H� APCPMG
�0� . Thus, this analysis predicts long-lived coherence

in CPMG and a fast decay in CP, at least for large �z
�Fig. 19�.

However, in experiments, we observed a long tail in
CPMG even for very small �z. This experimental result in-

spired us to re-examine H̄CPMG
�1� for another single-spin opera-

tor. Evaluating Eq. �41� for �z=0 gives

	H̄CPMG
�1� 	�z=0 =

− i

2tc�

tp
2

�
�Hy

A,Hy
S + Hyy� . �52�

There are many multispin operators in this expression but the
only single-spin operator left in Eq. �52� is

F̄CPMG
�1� � −

9tp
2

16�tc�
�
j=1

N

�
k
j

N

Bjk
2 �Iyj

+ Iyk
� . �53�

Although this term is indeed a single-spin operator, it is not
proportional to the total spin operator IyT

. Nevertheless, the

effect of F̄CPMG
�1� on H̄CPMG

�0� can be examined by calculating

the time evolution of �Iy1
�t�
 using only H̄CPMG

�0� + F̄CPMG
�1� �Fig.

20 �green curve��.
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FIG. 20. �Color online� Calculations for the
CPMG pulse sequence with N=4, 2�=2 �s, tp

=12.5 �s, 25�Bjk of 29Si in silicon, and an av-
erage over 400 DRs. Exact calculations with
�z /h drawn from a 3 kHz wide Gaussian for
each DR �purple curve� and �z=0 �red curve�.
Average Hamiltonian calculations H̄CPMG

�0�

+H̄CPMG
�1� with �z /h drawn from a 3 kHz wide

Gaussian for each DR �teal curve� and �z=0
�blue curve�. Approximate calculation with

H̄CPMG
�0� + F̄CPMG

�1� for �z=0 �green curve�. Zeroth-

order average Hamiltonian H̄CPMG
�0� �black curve�.
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For comparison, Fig. 20 plots exact calculations and av-
erage Hamiltonian calculations for the CPMG sequence.

Without any additions, H̄CPMG
�0� �Fig. 20 �black curve�� decays

to zero. Using the average Hamiltonian H̄CPMG
�0� +H̄CPMG

�1� to
time evolve the expectation value �Iy�t�
 yields a long tail in
good agreement with the exact calculation for the case where
�z /h is drawn from a 3 kHz wide Gaussian for each DR
�Fig. 20 �teal curve compared to purple curve��.

Even for the case of �z=0, the average Hamiltonian

H̄CPMG
�0� +H̄CPMG

�1� �Fig. 20 �blue�� is still in good agreement
with the exact calculation �Fig. 20 �red��. These curves show
that the long tail in CPMG can exist in the absence of the

�z
2IyT

term. Surprisingly, we also find that H̄CPMG
�0� + F̄CPMG

�1�

�Fig. 20 �green curve�� fits together with these two curves
despite the terms that were neglected. However, these ne-
glected terms also contribute to a tail in calculations of

H̄CPMG
�0� + H̄CPMG

�1� − F̄CPMG
�1� . Furthermore, multispin terms play

an even bigger role in systems with stronger coupling or a
larger number of spins.

The emphasis of this section was to highlight the influ-
ence of a few important terms in the average Hamiltonian
�Eqs. �36�–�43��. Focusing on only a few terms allows us to
understand the qualitative results in calculations of �Iy1

�t�
.
The exact calculation contains more physics. As we shall
show in Sec. VI, the qualitative similarities pointed out in the
second averaging of APCP and CPMG, for example, do not
give a complete picture of the evolution of ��t� �Fig. 25�.

D. Reconciling simulations with experiments

We now address the two important caveats that we made
for the exact calculations of Fig. 19. Namely, we included
only a small number of spins in our exact calculation and
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FIG. 21. �Color online� Calculations of the

time evolution of �Iy�t�
 under H̄CPMG
�0� +H̄CPMG

�1�

�Eqs. �37� and �41�� with different coupling
strengths as multiples of Bjk for 29Si in silicon
�Bjk�1 produces a dipolar linewidth of 90 Hz�.
Parameters: N=4 spins, �z=0, H1=40 kHz, 2�
=2 �s, and 1000 DR average. Exact calculations
produce similar curves for these parameters.
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FIG. 22. �Color online� Exact calculations of
the CPMG pulse sequence show that the tail
height of the measurable coherence increases
with system size �even N are compared to avoid
artifacts �Ref. 93��. Parameters: �z=0, H1

=40 kHz, 2�=2 �s, 25�Bjk of 29Si in silicon
with a dipolar linewidth of 2.2 kHz, and 400 DR
average �100 DR average for N=8�.
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inflated the dipolar coupling strength slightly above the ex-
perimental values in order to accentuate the contributions of
the time-dependent terms under the pulses. For simplicity,
this discussion considers only the CPMG pulse sequence
with �z=0.

Figure 21 shows a set of calculations of �Iy�t�
 evolved
under the first two terms of the Magnus expansion for the

CPMG sequence �H̄CPMG
�0� + H̄CPMG

�1� � for different dipolar cou-
pling strengths. For weak dipolar coupling strengths �Bjk
�1 of 29Si in silicon�, the measured coherence decays to
zero in agreement with the delta-function pulse approxima-
tion �see Sec. II�. As Bjk increases, the initial decay rate
increases, which is consistent with the dipolar
linewidth.1,2,40,41,43 For large Bjk, this initial decay is fol-
lowed by a long tail that increases with dipolar coupling
strength.

Figure 22 shows a different set of calculations where the
CPMG tail height increases with system size. In this case,
the coupling strength is fixed at 25 times that of 29Si, while
each exact calculation considers a different number of spins

N. By keeping Bjk fixed, the initial decay is very similar for
the three system sizes shown. However, after some time, the
effect of many strong but finite � pulses appears to produce
a long-lived tail in the measured coherence that depends on
N.

The system size dependence of the CPMG tail height in
Fig. 22 is peculiar and deserves further analysis. In Table IV,
we report our simulated numerical values of the size of both
the external rf pulse Hamiltonian, HPY

=−��1IyT
, and the in-

ternal dipolar Hamiltonian, Hint=Hzz, by using the trace
norm3,45,89 where �A � =�Tr�A†A�. On a per-spin basis, the rf
pulse is �40 times the size of the dipolar Hamiltonian, well
into the strong-pulse regime. Therefore, the deviation from
the delta-function pulse limit should be tiny for any single
pulse. Moreover, there is no N dependence in the per-spin
comparison of energy scales, which is consistent with the
nearly identical initial decays of all three curves in Fig. 22.
On the other hand, the tail height at later times in Fig. 22 is
N dependent; the total internal energy scale �Hzz� in Table IV
is also N dependent.

Since the CPMG tail height is sensitive to both the dipolar
coupling strength and the system size, we performed a com-
parative calculation in an attempt to extrapolate the results of
Fig. 19 toward a system with large N and weak Bjk �as in
silicon�. Figure 23 shows a pair of calculations where N is
increased while Bjk is decreased. The N=4 spin calculation
uses a dipolar coupling strength 25 times stronger than that
of silicon, while the N=6 spin calculation uses a reduced
dipolar coupling strength of 25 /�6 times that of silicon. We
reduced the dipolar coupling strength by the ratio of the sys-
tem sizes by using the trace norm scaling3,45,89 �IzT

�
=�Tr�IzT

2 �=�N2�N−2� in order to keep �Hzz� constant between
the two calculations. The relative agreement in the calculated
CPMG tail height supports the notion that small systems of
strongly coupled spins share similarities with large systems
of weakly coupled spins.

These scaling calculations show that the total dipolar en-
ergy of the system, which increases with system size, is an

TABLE IV. Trace norms of the N-spin pure rf pulse Hamil-
tonian, HPY

=−��1IyT
, compared to that of the internal dipolar

Hamiltonian Hzz. The local energy scale per spin is calculated by
dividing the total energy norms by �IzT

�=�N2N−2. Calculations were
made by using Fig. 22 parameters: �z=0, 25�Bjk of 29Si in silicon,
H1=40 kHz, and averaged over 400 disorder realizations. Values
are given in kHz.

Expression N=4 N=6 N=8

Total trace norms

�HPY
� /h 160.0 391.9 905.1

�Hzz� /h 4.1 10.2 25.9

Trace norms per spin

��HPy
� / �IzT

�� /h 40.0 40.0 40.0

��Hzz� / �IzT
�� /h 1.0 1.0 1.1

� � �
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FIG. 23. �Color online� Exact calculations
changing both dipolar coupling strength and sys-
tem size. By adding more spins, the dipolar cou-
pling strength can be reduced to yield a similar
tail height in CPMG. Parameters: �z=0, H1

=40 kHz, 2�=2 �s, and 400 DR average.
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FIG. 24. �Color online� Dipolar decay of �Iy1
�t�
 with snapshots of the z-basis density matrix evolving in time under the Ising Hamil-

tonian �left� and the secular dipolar Hamiltonian �right�. Parameters: N=6, ��0�= IyT
, �z=0, H1=40 kHz, 2�=2�s, 25�Bjk of 29Si in silicon,

and Bjk=0 during pulses. The phase is colored on a red-white-blue color scale �inset�. Cells are set to black if their magnitude is less than
1 /10 of the largest initially filled cells. In a single DR, the initial phase coherence is lost after many pulses by using HIsing �left�. Using Hzz

�right� spreads coherence to other parts of the density matrix and mixes their phase. After an average over 150 DRs, the initial state has
decayed in both cases �Ref. 95�.
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FIG. 25. �Color online� Expectation value �Iy1
�t�
 and the density matrix ��t� as they evolve under four different pulse sequences with

N=6, �z /h drawn from a 3 kHz wide Gaussian, 25�Bjk of 29Si in silicon, H1=40 kHz, and 2�=2 �s. The phase is colored on a
red-white-blue color scale �inset�. Cells with negligible magnitude are colored black. Compare the single DR density matrix snapshots with
those of Fig. 24. Much more coherence is spread about the density matrix in these exact calculations; yet, the disorder average can yield
long-lived coherence �CPMG and APCP� as well as fast decay �CP and APCPMG�. �Ref. 95�.
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important parameter in finite � pulse effects. It is unknown
whether a saturation would occur at some large N or how
strong the pulses need to be in a real system so that the
delta-function pulse approximation can safely be invoked.

VI. VISUALIZING THE DYNAMIC DENSITY MATRIX:
EFFECTS OF EXTRA QUANTUM COHERENCE

TRANSFER PATHWAYS

The multiple-pulse experiments and calculations pre-
sented thus far have been concerned with the disorder-
averaged expectation value �Iy1

�t�
=Tr���t�Iy1
�. We can gain

more insight into the full quantum dynamics of the spin sys-
tem by visualizing the time evolution of ��t�, both for a
single DR and for an average over many DRs.

For an N=6 spin system, ��t� is a 26�26 matrix1,4 of
complex numbers z=rei� that is difficult to present in com-
pact form. Since the initial state of the system following the
90X pulse is ��0�= IyT

, we found it convenient to visualize the
state of ��t� by using a red-white-blue color scale to repre-
sent the phase angle � of each cell in ��t�. Any cells that have
magnitudes r
1 /10 of the largest initial magnitudes are col-
ored black.

We start with the calculation for the case of CPMG with
delta-function � pulses as we have outlined in Sec. II. By
setting the Zeeman spread �z=0, the evolution of ��t� is
caused by the dipolar Hamiltonian alone.

Figure 24 shows the disorder-averaged expectation value
�Iy�t�
 for N=6 spins coupled by either the truncated Ising
Hamiltonian �Fig. 24 �Ising��,

HIsing = �
j=1

N

�
k
j

N

2BjkIzj
Izk

, �54�

or by the secular dipolar Hamiltonian �Fig. 24 �Secular��,

Hzz = �
j=1

N

�
k
j

N

2Bjk�Izj
Izk

−
1

4
�Ij

+Ik
− + Ij

−Ik
+�
 , �55�

along with snapshots of the corresponding density matrix for
each case.

In a single DR, the final density matrix under HIsing looks
very similar to the initial density matrix; however, the phase
of each nonzero element has been scrambled from its initial
phase �see Fig. 24�. The scrambled phase in a single DR
translates to a decay of the magnitude in the average over
150 DRs and, thus, also the decay of �Iy1

�t�
.
Figure 24 shows that the secular dipolar Hamiltonian also

scrambles the phase of the density matrix as it evolves in
time. In a single DR, Hzz also spreads coherence to addi-
tional cells in the density matrix. The mechanism responsible
for the spreading of coherence in this case are the flip-flop
terms of Hzz. These terms allow the transitions between spin
states that conserve z-angular momentum. Both the flip-flop
terms and the initial density matrix proportional to IyT

dictate
the possible cells that can be reached after time
evolution.1,4,41 Through both the scrambling of the phase and
the spread of coherence, the evolution of the density matrix
for delta-function pulses leads to a decay in the disorder
average.

For finite pulses, the evolution of the density matrix can
be very different. Figure 25 shows the density matrix as it
evolves under the four pulse sequences

CP:90X − � − �180X − 2� − 180X − 2��n,

APCP:90X − � − �180X̄ − 2� − 180X − 2��n,

CPMG:90X − � − �180Y − 2� − 180Y − 2��n,

APCPMG:90X − � − �180Ȳ − 2� − 180Y − 2��n,

where the internal Hamiltonian is present during the strong
but finite pulses. Note that even after the first two � pulses,
��t� looks very similar to ��0� since �1 is big and the differ-
ence from a pure rotation is small. Nevertheless, in contrast
to the delta-function pulse approximation, these pulse se-
quences allow much more coherence transfer to different
cells of the density matrix. In particular, for the CP and
CPMG sequences, the spread of coherence has reached every
single cell of the 26�26 density matrix after evolving under
300 strong but finite � pulses.

The average Hamiltonian expressions for the four pulse
sequences give us a better understanding of the mechanism
of coherence flow to other cells of the density matrix for the
case of finite pulses. For example, the APCP sequence has a
zeroth-order average Hamiltonian

HAPCP
�0� = �

j=1

N

�
k
j

N

Bjk��1Izj
Izk

+ �2�Ij
+Ik

− + Ij
−Ik

+� + �3�Ij
+Ik

+ + Ij
−Ik

−��

+ �4�Ij
+ − Ij

−� , �56�

when expressed by using the raising and lowering operators.
Here, �1=

8�+tp

tc
, �2=

4�+tp

4tc
, �3=−

3tp

4tc
, and �4=−i

2�ztp

�tc
. The last

two terms in Eq. �56� do not appear in the Hamiltonian under
the delta-function pulse approximation �Eq. �55��. Further-
more, these terms are distinct because they do not conserve
z-angular momentum. The appearance of these terms is yet
another intrinsic property of the finite pulse. Regardless of
how well real pulses are engineered to reduce tp, unless tp is
exactly zero, these extra terms will enable the spread of co-
herence to parts of the density matrix fundamentally forbid-
den in the delta-function pulse approximation. Thus, after the
application of many � pulses, the final density matrix could
be nowhere near the expected result, if we fail to consider the
action of real pulses.

The significance of our argument for NMR would be lost
if these extra coherence transfer pathways only led to an
imperceptible difference in the decay of �Iy1

�t�
. However, as
Fig. 25 shows, the enhanced spread of coherence in a single
DR can surprisingly preserve the measurable coherence
�CPMG and APCP� or lead to a decay �CP and APCPMG� in
the disorder average depending on the phase of the � pulses.
Thus, it is of considerable importance to understand the en-
tire density matrix since real pulses connect all cells back to
the measurable channel.

To illustrate the influence of these new coherence transfer
pathways4 to the measurable cells, we performed a “knock-
out” calculation88 that periodically zeros cells in the density
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matrix that should always be zero under the secular dipolar
Hamiltonian and delta-function � pulses �i.e., cells that re-
main black in Fig. 24 �secular dipolar� after 2400 pulses in 1
DR�. The red curve in Fig. 26 is the disorder-averaged
�Iy1

�t�
 for the CPMG sequence with a long-lived tail. The
purple curve is the same CPMG pulse sequence but applies
the knockout procedure after each � pulse and in each DR.
Because of the drastic decay of the knockout curve, we infer
that not only do these extra coherence transfer pathways ex-
ist but they allow coherence to constructively flow back to
the measurable channel leading to the long tail in the CPMG
sequence.

VII. CONCLUSIONS

We have shown experimental evidence of pulse sensitivity
in dipolar solids for a variety of samples and experimental

conditions. We find that the spin system is intrinsically sen-
sitive to the phase and presence of real finite pulses even
when these pulses are much stronger than the spectral line-
width. Furthermore, exact calculations show this pulse se-
quence sensitivity in small clusters of spins with large cou-
pling strength and short interpulse spacing. We suggest that
our findings should apply to large numbers of spins with
weaker coupling and longer interpulse spacing based on a
phenomenological scaling of our exact results. The results of
the exact calculation and average Hamiltonian analysis show
that no extrinsic effects are needed to describe the phenom-
ena.

Conventional expectations from NMR theory suggest that
the delta-function pulse approximation is applicable when
the pulse is much stronger than the spread of Zeeman ener-
gies ���1��z� and much stronger than the coupling
strength ���1�Bjk�. However, we have shown that the delta-
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FIG. 26. �Color online� Knockout calculations
for CPMG. Parameters: N=6, 150�Bjk of 29Si in
silicon, �z=0, H1=40 kHz, 2�=2 �s, and 400
DR average. The knockout trace �purple� is cal-
culated by deleting density matrix cells with
quantum coherence order q� �1 after each �
pulse. �The delta-function pulse approximation
assumes that all coherences stay as q= �1 for all
times.� The long tail in the exact CPMG calcula-
tion �red� requires coherence transfer pathways
between all quantum coherences �Refs. 1, 4, and
88�.
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FIG. 27. �Color online� Calculations for
APCP with N=4, �z /h drawn from a 290 Hz
wide Gaussian, 1�Bjk of 29Si in silicon, H1

=1.5 MHz, 2�=2 �s, and 100 DR average. Even
for H1 /FWHM=5000, the delta-function pulse
approximation �black� misses important physics
from the exact calculation �green�.

LI et al. PHYSICAL REVIEW B 77, 214306 �2008�

214306-24



function pulse approximation can miss important physics for
any real pulse in the presence of an always-on internal
Hamiltonian. These effects are especially pronounced when
considering the action of � pulses since the unique pulse-
dependent terms have no analog in the delta-function pulse
approximation.20

Simply ignoring the intrinsic effects under real finite
pulses can lead to dramatic consequences, as shown in Fig.
27. The green trace shows the exact calculation of �Iy1

�t�
 for
the APCP sequence under the action of finite pulses. The
black trace is the same calculation but where we have artifi-
cially set the internal Hamiltonian to zero during the pulses.
It is particularly alarming to note that we have used a pulse
strength that is 5000 times stronger than the full width at half
maximum of the NMR spectrum; yet, the two curves do not
agree. The validity of the delta-function pulse approximation
needs to be justified carefully and quantitatively, at least in
the limit of many spins, many � pulses, or both.

Our findings have an important connection to the field of
quantum information processing since many quantum algo-
rithms call for the application of repeated � pulses to a quan-
tum system.7–12 Typically, the delta-function pulse approxi-
mation is used in the analysis. While we have not considered
all possible internal Hamiltonians or pulse types, we caution
the reader that the validity of the delta-function pulse ap-
proximation should be checked for each system. Our results
suggest that to obtain the ideal behavior of repeated � pulse

sequences, the internal Hamiltonian should be completely set
to zero during the action of any real pulse. It may not be
enough to simply reduce the coupling strength, even by an
order of magnitude. Furthermore, any effective transverse
field during the pulses could also change the system’s ex-
pected response after many pulses are applied. The effects of
real pulses need to be taken into account if the promise of
quantum control is to be realized.

More theoretical research on this problem could lead to a
deeper understanding of the interplay between the internal
Hamiltonian and real pulse action.88 It should also be pos-
sible to take advantage of the dynamics under the real pulse
in the development of advanced strong-pulse sequences.94
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