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Based on the concept of band bending at metal/semiconductor interfaces as an energy filter for electrons, we
present a theory for the enhancement of the thermoelectric properties of semiconductor materials with metallic
nanoinclusions. We show that the Seebeck coefficient can be significantly increased due to a strongly energy-
dependent electronic scattering time. By including phonon scattering, we find that the enhancement of ZT due
to electron scattering is important for high doping, while at low doping it is primarily due to a decrease in the
phonon thermal conductivity.
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I. INTRODUCTION

The energy conversion efficiency of thermoelectric de-
vices depends on the figure of merit ZT=S2�T /�, where S,
�, T, and � are the Seebeck coefficient, electrical conductiv-
ity, temperature, and thermal conductivity. In the best ther-
moelectric materials ZT is typically �1, and it is difficult to
increase ZT beyond this value because of competing effects
of electrical and thermal conductivities. Advances over the
past decade show that it is possible to enhance ZT in nano-
structured thin-film systems by taking advantage of quantum
confinement to enhance the power factor S2�,1 or to increase
phonon scattering at interfaces to reduce the lattice contribu-
tion to �.2 On the other hand, many existing and envisioned
thermoelectric applications will require a material that is it-
self of macroscopic dimension. Therefore, recent reports of
property enhancement in bulk alloys possessing nanometer-
scale compositional modulations have generated much
excitement.3–6 ZT values as high as 2.2 have been reported3,4

in the �PbTe�x�AgSbTe2�1−x system and have been ascribed
to a large Seebeck coefficient and low lattice thermal con-
ductivity due to nanoscale clustering of Ag and Sb. Her-
emans et al.5 reported that the Seebeck coefficient in bulk
PbTe can be increased significantly by precipitating a fine
distribution of Pb nanoinclusions, and suggested heuristically
that the increase in Seebeck coefficient originates from an
energy-filtering effect due to a strongly energy-dependent
electronic scattering time. Kim et al.6 observed an enhance-
ment of the thermoelectric properties when ErAs nanopar-
ticles of 2.4 nm average diameter were embedded in a
InGaAs matrix, and ascribed the increase to a reduction in
the phonon thermal conductivity. Given these observations, a
general understanding of the role of nanoinclusions in en-
hancing the thermoelectric properties of materials is needed,
in particular to assess the relative importance of electronic
and phonon scattering.

In this paper we present a theoretical model and numeri-
cal calculations of the thermoelectric properties of bulk
semiconductors containing metallic nanoparticles. Our
model considers scattering of electrons on the band bending
at the interfaces between the semiconductor host and ran-
domly distributed metallic islands. This causes energy-
dependent scattering of electrons, leading to an energy filter-
ing effect that increases the Seebeck coefficient. This

provides an explicit physical model for the proposed energy
filtering effect.5 By combining this model with a model for
phonon scattering on the nanoinclusions, we predict signifi-
cant enhancement of the ZT factor.

We point out that while the role of metallic nanoinclu-
sions may appear at first to be similar to that of point defects
for which extensive work has been done, the physics is ac-
tually quite different. Indeed, in addition to the electronic
scattering, the phonon scattering on nanoinclusions occurs in
a completely different regime than that on point defects, as
will be discussed in Sec. IV B.

The central idea in this paper is illustrated in Fig. 1.
There, spherical metallic nanoinclusions with radius R and
volume fraction x are randomly distributed in a bulk semi-
conductor material. In general, at such metal/semiconductor
interfaces, charge transfer between the metal and the semi-
conductor leads to band bending away from the interface,
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FIG. 1. �Color online� �a� Schematic of the semiconductor host
with metallic nanoinclusions. Panel �b� shows an example of the
calculated potential V�r� and the energy diagram for PbTe at T
=300 K, n=2.5�1019 cm−3, VB=−0.11 eV, and R=1.5 nm.
Panel �c� illustrates the concept of energy filtering: low energy elec-
trons scatter strongly with the potential, but high energy electrons
are unaffected. The calculated electronic relaxation time for the
potential of panel �b� is also shown.
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characterized by the electrostatic potential V�r� �Fig. 1�b��.
The presence of this potential causes energy-dependent scat-
tering of electrons, as illustrated in Fig. 1�c�. The high-
energy electrons are unaffected by the potential, but the low
energy electrons can be strongly scattered. Because the See-
beck coefficient depends on the energy derivative of the re-
laxation time d ln ��E� /dE at the Fermi energy, this type of
energy filtering is precisely the prescription to increase the
Seebeck coefficient of thermoelectric materials.

Our theoretical model is based on the Boltzmann transport
equation �BTE� within the relaxation time approximation.
We apply the model to a system of n-doped PbTe with me-
tallic nanoinclusions because of the availability of experi-
mental data and good understanding of scattering mecha-
nisms in bulk PbTe,7–9 although the theory can be used for
any thermoelectric material.

II. CHARGE AND HEAT TRANSPORT IN BULK PbTe

In this section we will review the expressions7–9 for the
charge and heat transport in bulk PbTe with n-type doping.
The valence band of PbTe contains four energy minima lo-
cated at the L points. The energy dispersion relation near
each minimum is usually described by the Kane model8

�2kl
2

2ml
� +

�2kt
2

mt
� = E�1 + E/Eg� , �1�

where Eg is the direct energy gap of PbTe, � is the Planck
constant, and k and m� are the electron wave vector and
effective mass �at minimum energy point k=0, E=0� along
the longitudinal �suffix l� and transverse �suffix t� directions
of the corresponding L point. For n-type PbTe the electron
concentration is given by

n�EF� =
�2md

�kBT�3/2

3�2�3 �
0

�

	�z�3/2�−
� f0

�z
�dz , �2�

where md
�=42/3�ml

�mt
�2�1/3 is the density of states effective

mass in which the fourfold degeneracy is included, kB is the
Boltzmann constant, and f0�z� is the Fermi function written
in terms of dimensionless variables z=E / �kBT� and zF
=EF / �kBT�. EF is the Fermi energy and the function 	�z�
=z+bz2, where b=kBT /Eg. In the relaxation time approxima-
tion the BTE expressions for electrical conductivity, �, See-
beck coefficient, S, and electron contribution to thermal con-
ductivity, �e, are8

� =
e2

mc
�

�2md
�kBT�3/2

3�2�3 	��z�
 , �3�
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kB

e

	��z��z − zF�

	��z�


, �4�

and

�e = �T
kB

2

e2� 	��z�z2

	��z�


− � 	��z�z

	��z�
 2� , �5�

where mc
�=3 / �1 /ml

�+2 /mt
�� is the effective conductivity

mass, and the average is defined as

	A�z�
 � �
0

� 	�z�3/2

1 + 2bz
�−

� f0

�z
�A�z�dz . �6�

In bulk PbTe at room temperature the dominant contribu-
tions to the total relaxation time, �bulk�z�, are scattering by
the deformation potential of acoustic and optical phonons,
and polar scattering by optical phonons.7–9 We also take into
account scattering on the short-range potential of vacancies
although it gives a much smaller contribution compared to
scattering by phonons. Thus, the total relaxation time for
bulk PbTe is given by

1

�bulk�z�
=

1

�PO�z�
+

1

�a�z�
+

1

�o�z�
+

1

�v�z�
. �7�

The relaxation time due to polar scattering by optical
phonons reads8,9

�PO�z� =
�2	�z�1/2F−1

e2�2md1
� kBT�1/2�
�

−1 − 
0
−1�	��z�

, �8�

where md1
� = �ml

�mt
�2�1/3 is the density of states effective mass

in the single valley, the function 	��z�=1+2bz, 
0 and 
� are
the static and high frequency permittivities, and

F = 1 − � ln�1 +
1

�
� −

2bz�1 + bz�
�1 + 2bz�2

� �1 − 2� + 2�2 ln�1 +
1

�
� . �9�

Here �= �2kr0�−2 with r0 the screening length of optical
phonons:

r0
−2 =

25/2e2md
�3/2�kBT�1/2

3�2�3 �
0

�

	�z�1/2	��z��−
� f0

�z
�dz .

�10�

The relaxation time due to scattering by the deformation
potential of acoustic and optical phonons, and also due to
scattering on the short range potential of vacancies can be
written generally as8,9

�m�z� =
�0,m

	�z�1/2	��z���1 − A�2 − B�
, �11�

where A=bz�1−Km� /	��z�, and B=8bz�1+bz�Km / �3	�2�z��,
with the suffix m=a for acoustic phonons, m=o for optical
phonons, and m=v for vacancies. The constants �0,m and Km
are defined as

�0,a =
2��4Cl

Eac
2 �2md1

� kBT�3/2 , Ka =
Eav

Eac
, �12�

�0,o =
2�2a2���0�2

�Eoc
2 �2md1

� kBT�3/2 , Ko =
Eov

Eoc
, �13�

and
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�0,v =
��4

Uvc
2 md1

� �2md1
� kBT�1/2Nv

, Kv =
Uvv

Uvc
. �14�

Here Cl is a combination of elastic constants, Eac and Eav are
the acoustic phonon deformation potential coupling con-
stants for conduction and valence bands, Eoc and Eov are
optical phonon deformation potential coupling constants for
conduction and valence bands, Uvc and Uvv are coupling
constants of the short range potential of vacancies for con-
duction and valence bands, a is the lattice constant, �0 is the
frequency of optical phonons, and  is the mass density. Nv is
the concentration of vacancies calculated from the condition
that one vacancy gives two charge carriers, Nv=n /2.

The parameters used for calculation of the relaxation
times in bulk PbTe at T=300 K are taken from Ref. 9. These
parameters are shown in Table I. For calculations at different
temperatures we assumed the values of these parameters to
be the same as for T=300 K except for Eg and mt

�, which
were linearly interpolated and extrapolated using T=4.6 K
and T=300 K values,9 with Eg saturating for T�400 K.8

III. ELECTRON SCATTERING ON BAND-BENDING
POTENTIAL OF NANOINCLUSIONS

A. Band-bending potential

In our model we assume that spherical metallic nanoin-
clusions with radius R and volume fraction x are randomly
distributed in a n-doped PbTe host material. In this section
we will calculate the contribution to the relaxation time due
to scattering of electrons on the band-bending potential at the
metal-semiconductor interface.

For a single nanoinclusion, the electrostatic potential V�r�
can be calculated by solving the Poisson equation


0

4�e2

1

r

d2

dr2rV�r� = n�EF� − n�EF − V�r�� . �15�

The right-hand-side of this expression is simply the spatially
varying charge �see Eq. �2�� calculated by assuming a rigid
shift of the electronic bands with the local potential V�r�. We
solve the Poisson equation with the boundary conditions
V���=0 and V�R�=VB. �VB is the potential at the
semiconductor/metal interface. The value of VB is fixed for a
particular metal and depends on the detailed properties of the
interface. However, one may consider it to be an optimiza-

tion parameter provided that the physics of the metal/
semiconductor interface allows tailoring of VB by choosing
the metal.� We used the fourth-order Runge-Kutta and shoot-
ing methods in order to solve Eq. �15�. Figure 1�b� shows an
example of the calculated potential V�r�.

For small values of VB or for large r �when the potential is
screened and small� the right-hand-side of Eq. �15� can be
linearized with respect to small V:

d2

dr2rV�r� =
1

�2rV�r� , �16�

where � is the screening length. The solution of Eq. �16� is

V�r� �
1

r
e−r/�. �17�

For degenerate electrons the expression for � takes the
simple form

1

�2 =
2e2�2md

��3/2


0��3 �EF +
EF

2

Eg
�1/2�1 + 2

EF

Eg
� . �18�

Due to the large value of the dielectric constant in PbTe, 
0
=400, the screening length for typical doping concentrations
is several times larger than the wavelength of electrons on
the Fermi surface. For example, for n=5�1019 cm−3 one
can obtain from Eq. �18� �=11 nm and kF�=7, where kF is
the wave vector of the electron on the Fermi surface. This
value of kF� slowly varies with doping �for degenerate elec-
trons we can use Eqs. �2� and �18� to obtain the dependence
on doping kF��n1/6�. On the other hand, a large value of �
can lead to an overlap of the band bending between nanopar-
ticles, which may change the bulk carrier concentration. We
have restricted our calculations to a parameter range �doping
and inclusion volume fraction� where such effects are not
significant.

B. Relaxation time for scattering on nanoinclusions

When the electron scattering on nanoinclusions is taken
into account, the total relaxation time � is

�−1 = �bulk
−1 + �i

−1, �19�

where the relaxation time for bulk PbTe is given by Eq. �7�
and �i is the relaxation time due to scattering by V�r� at
randomly distributed metallic inclusions

�i
−1 = niv�t. �20�

Here

ni = 3x/�4�R3� �21�

is the concentration of inclusions, �t is the electronic trans-
port scattering cross section, and v=�pEp is the electronic
velocity with p the momentum.

In order to calculate the transport cross section in a sys-
tem with nonparabolic energy dispersion, we consider an
electron with momentum p and wave function �p�r�
=up�r�eipr/� in the periodic field of the unperturbed PbTe
crystal of unit volume. Here up�r� is the periodic Bloch am-

TABLE I. Parameters used to calculate the relaxation times for
bulk PbTe at T=300 K.9 m0 is the free electron mass.

Parameter Value Parameter Value

Eg 0.315 eV ��0 0.0136 eV

mt
� /m0 0.0453 a 6.461 Å

ml
� /m0 0.24  8.24 g /cm


0 400 Eac 15 eV


� 32.6 Eoc 26 eV

Cl 7.1�1010 N /m Ka,o 1.5

Uvc 3�10−34 erg cm3 Kv 1.5
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plitude. As mentioned earlier, the nonparabolicity of the elec-
tron energy dispersion near the conduction band minima is
usually described by the Kane model8

Ep�1 + Ep/Eg� = p2/2md1
� . �22�

The isotropic energy dispersion in a form of Eq. �22� with
density of state mass md1

� is usually assumed in the calcula-
tion of the relaxation time.7–9 The transition probability for
scattering from state �pi

to state �pf
per unit time due to a

perturbation potential V�r� is given by the standard formula
of perturbation theory10

dwfi =
2�

�
�Vpfpi

+� Vpfp1
Vp1pi

Epi
− Ep1

d�1 + . . .�2

� ��Epf
− Epi

�d� f , �23�

where d�=d3p / �2���3. The matrix elements are

Vp�p �� �p�
� �r�V�r��p�r�d3r �� ei�p−p��r/�V�r�d3r ,

�24�

where we used the fact that collisions with a small momen-
tum transfer dominate scattering on the slow-varying bend-
bending potential, therefore, the Bloch amplitudes entering
Eq. �24� are rather close to each other, and the overlap factor
is about unity �up�

� �r�up�r�d3r�1.
Applying Eq. �24� to Eq. �23�, the calculation of dwfi

becomes identical to the calculation of the transition prob-
ability for scattering of a plane wave eipir/� in a model system
described by an equation

�Ep̂ + V�� = Ep� �25�

with unperturbed Hamiltonian Ep̂, p̂�−i��r, and perturba-
tion potential V�r�. Applying the operator 1+Ep̂ /Eg to Eq.
�25� one obtains

p̂2

2md1
� � = � p2

2md1
� +

V2

Eg
− V�1 + 2

Ep

Eg
�� . �26�

Here we neglect the commutator term Eg
−1�Ep̂ ,V�r���

Eg
−1�Ep̂,V�r�� �

EF

Eg

1

�kF��2V�r� � V�r� �27�

using the fact that rV�r� is a slow varying function and
kF��1.

Equation �26� has the form of the usual Schrödinger equa-
tion that can be used for numerical solution of the scattering
problem with a potential

Up�r� = V�r��1 + 2
Ep

Eg
� −

V2�r�
Eg

. �28�

C. Calculation of transport cross section

The transport cross section for scattering on the spheri-
cally symmetric potential is given by10

�t = 2��
0

�

�f����2�1 − cos ��sin �d� , �29�

where f��� is the scattering amplitude defined from the
large -r asymptote of the wave function

� � eipr/� +
f���

r
eipr/�. �30�

The wave function � is a solution of the Schrödinger Eq.
�26� with potential Up�r� given by Eq. �28�. It can be ex-
pressed as a sum of contributions with different angular mo-
mentum l 10

� = �
l=0

�

Pl�cos ��Rkl�r� , �31�

where Pl are the Legendre polynomials and Rkl�r� are solu-
tions of the radial Schrödinger equation �k= p /��:

1

r2�rr
2�rRkl + �k2 −

l�l + 1�
r2 −

2md1
�

�2 Up�r��Rkl = 0. �32�

The large-r asymptote of Rkl�r� has the form

Rkl�r� � sin�kr − l�/2 + �l�/r , �33�

where �l is the phase shift of Rkl�r� relative to the potential-
free solution. The scattering amplitude f��� can be expressed
in terms of the phase shifts as10

f��� =
1

2ik
�
l=0

�

�2l + 1�Pl�cos ���e2i�l − 1� . �34�

The calculation of the transport cross section �29� with
scattering amplitude �34� can be performed in the same
way10 as the usual cross section �without the �1−cos �� fac-
tor in Eq. �29��. In the integrals �0

�Pl�cos ��Pl��cos ���1
−cos ��sin �d� that appear in the evaluation of the transport
cross section �29�, only terms with l�= l , l�1 give nonvan-
ishing contributions.10 After integration over �, Eq. �29� can
be expressed in terms of the �l as

�t =
4�

k2 �
l=1

�

l sin2��l − �l−1� . �35�

We used the following numerical procedure to solve the
Schrödinger equation �32� and calculate the phase shifts. The
spherical Bessel function jl�kr� is a regular solution of Eq.
�32� for r�R, in the region where Up�r�=0. We used the
fourth-order Runge-Kutta method to solve Eq. �32� for r
�R with boundary conditions such that the solution Rl�kr�
and its derivative match the spherical Bessel function at r
=R. At some large r=rmax we assume that the potential Up
vanishes and match the solution Rl�kr� and its derivative
Rl��kr� to a linear combination of the spherical Bessel func-
tion jl�kr� and spherical Neumann function yl�kr� �which is
another solution of Eq. �32� for Up�r�=0�:

�Rl�kr��r=rmax
→ �jl�kr� + �yl�kr� , �36�

with �= �Rlyl�−Rl�yl� / �jlyl�− jl�yl� and �=−�Rljl�−Rl�jl� / �jlyl�
− jl�yl�. Finally the phase shift �l is given by
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�l = − arctan��/�� . �37�

In conjunction with Eqs. �20� and �35� this provide ex-
pressions to numerically calculate �i for a given V�r�. An
example of the numerically calculated �i is given in Fig. 1�c�
for scattering by V�r� of Fig. 1�b�, with an inclusion volume
fraction x=5%. A simple fit gives the dependence �i�E�
�E1.39 as shown by the dashed line in Fig. 1�c�. This energy
dependence of �i is much stronger than that of �bulk and leads
to enhancement of the Seebeck coefficient.

To obtain an analytical description of �i�E�, we also cal-
culated �i in the Born approximation by using Fermi’s golden
rule �first term in r.h.s. of Eq. �23��

1

�i
Born =

p2

2��4

dp

dE
�

0

�

�Vp�p�2�1 − cos ��sin �d� . �38�

Here � is the angle between initial and final momenta p and
p�. The expression for �i

Born can be simplified by taking the
angle integration in Eq. �38� for Vp�p and making the substi-
tutions of integration variables t=2kR sin�

2 and y=r /R. Fi-
nally one obtains

�i
Born�E� = E3/2 �1 + E/Eg�3/2

1 + 2E/Eg

R

x

4�2md1
�

3��E,R�
, �39�

where

��E,R� = �
0

2kR ��
1

�

sin�yt�V�yR�ydy�2

tdt . �40�

Numerical tests show that for �VB��0.1 eV, the Born ap-
proximation is valid, �i�E���i

Born�E�, while for �VB�
�0.1 eV, �i

Born�E� begins to deviate from �i�E� calculated
from the exact solution of Schrödinger’s equation �32�. Nev-
ertheless, Eq. �39� allows us to analyze the energy depen-
dence of the relaxation time that is difficult to do by using
the exact formulas �20� and �35�. For energies E�0.1 eV,
the integral over variable t in �40� weakly depends on the
upper limit of the integration, and the function ��E ,R� varies
slowly with both E and R. Thus, we have �i

Born�E��E3/2, in
good agreement with the full numerical calculations, which
yielded a dependence E1.39. Comparing the result �i

Born�E�
�E3/2 with expression �20� �and using v�E���E�, we find
that the electronic scattering cross section of the band-
bending potential depends on energy as E−2; this strong en-
ergy dependence is responsible for the superlinear energy
dependence of �i�E�.

IV. RESULTS AND DISCUSSION

A. Enhancement of the Seebeck coefficient and power factor

The calculation of the total relaxation time allows us to
obtain S, �, and �e using expressions �3�–�5�. We first con-
sider a specific case by adopting a simple model for the
interface potential VB=�m−�+EF with �m the metal work
function and � the electron affinity, and choose �m−�
=−0.35 eV corresponding to Pb nanoinclusions �work func-
tion �m=4.25 eV �Ref. 11�� and an electron affinity for
PbTe �PbTe=4.6 eV.12 Figure 2 shows the calculated room

temperature Seebeck coefficient as a function of the doping n
and fixed nanoinclusion volume fraction x=5%. We note the
excellent agreement between the experimentally measured S
�filled circles�13 and that calculated numerically �solid line�
for bulk PbTe. In addition, one can see that for any nanoin-
clusion radius, the Seebeck coefficient is always increased
compared to that of the inclusion-free system. In fact, for the
smallest nanoinclusion radius considered here �1.5 nm�, the
enhancement in S is over 100% at high doping.

It is interesting to consider the impact of VB on the calcu-
lated Seebeck coefficient. Figure 3�a� shows S as a function
of VB. It is clearly seen from this figure that the presence of
an extended electrostatic potential leads to an increase in S
regardless of the sign of VB. �VB=0 is equivalent to bulk
PbTe with nanoinclusions. Negative values correspond to the
situation of Fig. 1, and positive values represent a Schottky
barrier�. This general behavior can be understood �at least for
small �VB�� from the Born approximation, which predicts that
the inverse scattering time is proportional to the square of the
perturbation potential. With increase of �VB� the contribution
to the total inverse relaxation time from inclusion scattering
increases, leading to an increase of S because the energy
dependence of � changes from that of �bulk to the more
strongly energy dependent �i. For large values of �VB� the
contribution of island scattering becomes dominant, and S
saturates as seen in Fig. 3�a�.

Figure 3�a� also shows the calculated values of � as a
function of the interface potential VB. The conductivity de-
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FIG. 2. �Color online� Calculated Seebeck coefficient for PbTe
with metallic nanoinclusions as a function of the doping for several
different values of the nanoinclusion radius.
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FIG. 3. Panel �a� shows the calculated Seebeck coefficient and
conductivity for PbTe as a function of the interface potential VB.
Panel �b� shows the resulting power factor. Parameters are R
=1.5 nm, T=300 K, x=5%, and n=2.5�1019 cm−3.
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creases as �VB� is increased, with a fairly symmetric behavior
for �VB. Combining the results for � and S, we obtain the
power factor S2� as depicted in Fig. 3�b�. There, one can see
that the power factor is increased compared to that at VB
=0, in a range of interface potentials −0.15 eV�VB
�0.15 eV. The power factor has two maxima at some opti-
mal values of VB because the Seebeck coefficient saturates
for large �VB�, while the electrical conductivity � continues to
decrease with increase of �VB�.

For the optimal interface potential VB� �0.07 eV, we
find that the power factor is increased by �35%. Impor-
tantly, the power factor does not decrease substantially over a
wide range of values of the interface potential. Thus, it is
possible to take full advantage of the reduction in thermal
conductivity due to phonon scattering at the nanoinclusions,
as we will discuss later.

Instead of optimizing the value of the interface potential
VB to achieve the maximum power factor as shown in Fig.
3�b�, we can keep VB fixed �by choosing a specific metal for
the inclusions� and optimize other parameters, for example
the inclusion volume fraction or radius. To analyze the de-
pendence of the transport coefficients on these parameters,
we can use Eq. �39�. As we noted above, the function ��E ,R�
in Eq. �40� varies slowly with both E and R, so the inverse
relaxation time due to electron scattering by inclusions can
be approximated as �i

−1�E��CE−3/2, where the constant C
depends on VB, x, and R mostly through the combination �at
least for small VB�

C � VB
2x/R . �41�

In turn, the transport coefficients �S, �, and �e� depend only
on this ratio of parameters. This means that if any two pa-
rameters out of these three are fixed, one can always adjust
the third parameter �for example, the one that can be most
easily tuned in the experiment� to maximize the power fac-
tor.

Before closing this section, we remark that we have
searched for resonant tunneling states in the positive VB re-
gime as a way to enhance S. However, we have not found
any significant increase in S beyond that already discussed.
The reason is that, because the potential contains contribu-
tions from several Legendre polynomials l, the appearance of
a resonant state for one value of l is washed out by the
nonresonant conditions in the other channels.

B. Enhancement of the ZT factor

While S and � are quantities of fundamental interest, for
applications it is usually ZT=S2�T /� that is most important.
The electronic relaxation time calculated above leads directly
to the electronic thermal conductivity �e. Since the total ther-
mal conductivity is the sum of electronic and phonon contri-
butions, �=�e+�ph, to obtain ZT we also need to calculate
�ph. For this purpose, we adopt a previous method6,14 that
considered the scattering of phonons on nanoinclusions, with
the scattering mechanism for short wavelength phonons be-
ing the different sound velocities in the host and nanoinclu-
sions. This approach has been shown to give excellent agree-
ment with experiments on nanoscale ErAs inclusions in

InGaAs.6 For T�TD �TD=130 K is the Debye temperature
of PbTe� �ph can be written as8

�ph �
kB

2�2vs�
3�

0

kBTD

�ph����2d���� , �42�

where vs is the speed of sound in PbTe, and �� is the phonon
energy. The phonon relaxation time �ph is given by

�ph
−1 = �U

−1 + �D
−1, �43�

where �U
−1=cT�2 is the contribution of umklapp scattering8

and �D is due to scattering by nanoinclusions. The constant c
was determined from Eq. �42� using the experimental value
�ph

bulk=2.0 W /mK for PbTe at T=300 K. For �D we used the
expression derived in Refs. 6 and 14. In the near-geometrical
scattering regime �qR�1� �D reads

�D
−1 = nivs�2�R2��1 − sin�2��/� + sin2���/�2� , �44�

where �=qR�vs /vs�−1�, q is the phonon wave vector, and vs�
is the speed of sound inside the inclusion. Numerical tests
show that when the difference in the sound velocities is
larger than 20% the integrated quantity �ph weakly depends
on this difference and �D can be approximated by its geo-
metrical limit value

�D
−1 = nivs�2�R2� =

3

2

x

R
vs. �45�

Note that this phonon scattering regime is opposite to that on
point defects where qR�1.

Figure 4 shows ZT and its components calculated for x
=5%, R=1.5 nm, and a doping n=2.5�1019 cm−3, as a
function of temperature. We discuss this doping first because
experimental values of ZT and all of its components are
readily available for inclusion-free PbTe, and can be com-
pared with our calculations; indeed, the calculated values for
ZT, S, �, and � �solid lines in Fig. 4�a�–4�d�� are in good
agreement with experiment15 �filled squares� for T�700 K.
�The deviations for T�700 K originate in our neglect of the
hole contribution to the charge and heat transport�. In the
presence of nanoinclusions, the individual components of ZT
deviate from their bulk PbTe values at all temperatures
shown. For T�400 K the increase of the Seebeck coeffi-
cient is compensated by decrease of the conductivity, and the
optimized power factor is close to that of bulk PbTe �see
inset in Fig. 4�c��. At such temperatures the small increase of
the ZT factor due to ”electron-only” scattering by nanoinclu-
sions �open circles in Fig. 4�a�� is a result of the decrease in
�e �open circles in Fig. 4�d��. Comparing the ZT shown by
filled and open circles in Fig. 4�a�, one can conclude that at
a doping n=2.5�1019 cm−3 the enhancement of the opti-
mized ZT is primarily due to decrease of �ph, at least for T
�400 K.

To get a more comprehensive understanding of the role of
nanoinclusions in enhancing the thermoelectric properties,
we show in Fig. 5 the room-temperature ZT factor as a func-
tion of the interface potential for two values of the doping. In
addition, we plot ZT calculated using the bulk value of the
phonon thermal conductivity �ph

bulk �dotted lines�. We first
consider the situation of high doping, as depicted in Fig.
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5�a�. In the absence of a spatially-varying potential �VB=0�
and without phonon scattering on nanoinclusions, ZT is
given by the filled circle. Turning on the phonon scattering
gives a modest 25% increase in ZT �the star in the figure�.
Similarly, one can consider the increase in ZT without pho-
non scattering on the nanoinclusions �dotted line�; in this
case, a large increase in ZT of up to 224% is obtained. Thus
at this doping, electron scattering can give a much larger
increase in ZT. However, the true advantage of nanoinclu-
sions is realized when both electron and phonon scattering
are included, and the ZT factor can be increased by as much
as 430%. This increase is much larger than simply the sum of
the individual electronic and phonon contributions.

The origin of this behavior lies in the nonadditive effects
of electronic and phonon thermal conductivities, since ZT

depends inversely on their sum. For the large doping situa-
tion of Fig. 5�a� we have �e

bulk=4.2 W /mK, �ph
bulk

=2.0 W /mK, and therefore �ph
bulk��e

bulk. In this case, reduc-
ing �ph by itself does not lead to an appreciable gain in ZT.
However, when �e is also reduced because of scattering and
becomes comparable to �ph, then both work in concert and
lead to a large increase in ZT. Thus, one can imagine that
electron scattering on the electrostatic potential serves as an
amplification mechanism to enhance the impact of the reduc-
tion in phonon thermal conductivity. This mechanism works
here because at high doping �i� �ph

bulk��e
bulk and �ii� the

power factor is maintained or even enhanced in a wide range
of interface potentials.

The situation is quite different in the case of low doping,
where �ph

bulk��e
bulk, as illustrated in Fig. 5�b�. In this case, the

electronic thermal conductivity is already quite low, �e
bulk

=0.6 W /mK��ph
bulk=2.0 W /mK, and the main impact of

nanoinclusions is to decrease the phonon thermal conductiv-
ity. The maximum increase in ZT is 107%, with 94% coming
from phonons alone. In fact, for this low doping, the power
factor is always reduced compared to the inclusion-free
system—–a signature of this effect is the reduction of ZT
below that of the inclusion-free system for larger values of
VB.

Figure 6 shows the calculated ZT as a function of tem-
perature for low �n=5�1018 cm−3� and high �n=5
�1019 cm−3� doping levels. Included in the figure are the ZT
factor calculated with both electron and phonon scattering on
nanoinclusions �filled circles�, that calculated with electron-

FIG. 4. �Color online� Thermoelectric coefficients as a function
of temperature calculated for n=2.5�1019 cm−3, x=5%, and R
=1.5 nm. �a� The optimized ZT factor, with the optimal values of
VB, is shown in the inset. �b� The Seebeck coefficient. �c� The
electrical conductivity. Inset shows optimized �filled circles� and
bulk PbTe �solid line� power factor S2�. �d� The thermal conduc-
tivity. In all panels, solid circles include electron and phonon scat-
tering on the inclusions; open circles include electron scattering on
the inclusions but with bulk PbTe values of �ph; solid lines and
filled squares are the calculated and measured �Ref. 15� values for
bulk PbTe.

FIG. 5. Calculated ZT factor for PbTe illustrating the relative
effects of electronic and phonon scattering on nanoinclusions. In
both panels R=1.5 nm, x=5%, and T=300 K. �a� High doping n
=5�1019 cm−3. �b� Low doping n=5�1018 cm−3. Dotted lines
are calculated using the bulk phonon thermal conductivity. Filled
circles correspond to the bulk PbTe system. Stars include only the
phonon scattering on nanoinclusions.
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only scattering on nanoinclusions and with bulk PbTe values
of �ph �open circles�, and the ZT calculated for inclusion-free
bulk PbTe �solid line�. The corresponding values of VB that
maximize ZT are shown in the insets by filled circles. The
inset in Fig. 6�a� shows that at n=5�1018 cm−3, the optimal
VB is very small �VB��0.03 eV and even vanishes for T
�600 K. Thus, the electron contribution to enhancement of
optimized ZT is negligible �solid line and line with open
circles almost coincide in Fig. 6�a�� and, the enhancement of
the optimized ZT is dominated by the reduction in �ph due to
phonon scattering on the inclusions. This can be explained
by the fact that for bulk PbTe, the Seebeck coefficient in-
creases with decrease of the doping concentration n, and the
relative enhancement of the Seebeck coefficient from its bulk
value due to electron scattering on inclusion is smaller at low
doping compared to high doping �see Fig. 2�. As a conse-
quence the reduction of � at low doping overweights the
increase of S2, and the power factor is reduced compared to
the inclusion-free system, leading to small or vanishing op-
timal VB. From a practical point of view this result means

that in order to enhance the ZT factor at low-doping levels
one needs to find a metal that gives little or no interfacial
potential.

For larger doping the electron contribution to enhance-
ment of ZT becomes important, and the optimized VB in-
creases. It is seen in Fig. 6�b� that for n=5�1019 cm−3, the
electron-only contribution to enhancement of the optimized
ZT makes up over 50% of the enhancement at T�600 K,
and the optimized VB is as large as 0.2 eV. Moreover, at large
doping, �e

bulk��ph
bulk, and the reduction of �e due to scattering

on inclusions amplifies the effect of the reduced �ph. The
upper inset in Fig. 6�b� shows that the power factor �S2 is
enhanced only for T�600 K. The reduction of the power
factor relative to the inclusion-free system at T�600 K is
due to the fact that at high temperature, the Seebeck coeffi-
cient of bulk PbTe is already large �see Fig. 4�b��; the rela-
tive increase in S induced by electron scattering on inclusions
becomes smaller at increased temperature, so the reduction
of � overweights the increase of S2. Nevertheless, the
electron-only contribution results in enhancement of ZT
�open circles in Fig. 6�b�� even at higher temperatures due to
reduction of �e.

Figure 6�b� shows by open squares the ZT factor for PbTe
with Pb inclusions �assuming VB

Pb−EF=−0.35 eV� for pa-
rameters n=5�1019 cm−3, R=1.5 nm, and x=5%. For this
set of parameters the interface potential VB

Pb is close to the
optimal one �see inset in Fig. 6�b�� in a wide range of tem-
peratures, so the ZT factor for the system with Pb inclusions
is very close to the optimal ZT. The enhancement of ZT due
to Pb inclusions is on the order of 400% at room temperature
and 50% at T=900 K, where it reaches a value as high as
1.5.

V. CONCLUSION

In conclusion, we developed a theory that allows the cal-
culation of the ZT factor and its components for a system of
a semiconductor host material with spherical metallic
nanoinclusions. The enhancement of the Seebeck coefficient
can be explained by a strong energy dependence of electron
scattering on the band bending at the interface between me-
tallic inclusions and the semiconductor host. The electronic
contribution to enhancement of ZT is important for high dop-
ing, while at low doping the enhancement of ZT is domi-
nated by the reduction in the phonon thermal conductivity.
The theory can be used to choose the optimal parameters for
the metal nanoinclusions �interface potential, inclusion vol-
ume fraction or radius� in order to maximize ZT.
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FIG. 6. �Color online� Temperature dependence of the optimized
ZT factor for PbTe. �a� low doping n=5�1018 cm−3 and �b� high
doping n=5�1019 cm−3. In both panels filled circles denote the
optimized ZT calculated with both electron and phonon scattering
on nanoinclusions, open circles denote ZT calculated with electron
scattering on nanoinclusions and with bulk PbTe values of �ph, and
the solid line is for bulk PbTe. The inset in �a� shows the values of
VB that maximize ZT. In �b� the bottom inset shows the optimal
values of VB that maximize ZT �filled circles� and VB

Pb for Pb
nanoinclusions. The top inset shows the calculated power factor.
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