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We propose a method that enables a precise control of magnetic patterns and relies only on the fundamental
properties of the wire as well as on the choice of the path in the controlled parameter space but not on the rate
of motion along this path. Possible experimental realizations of this mechanism are discussed. In particular, we
show that the domain walls in magnetic nanowires can be translated by rotation of the magnetic easy axis or
by applying pulses of magnetic field directed transverse to the magnetic easy axis.
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Magnetic patterns such as domain walls, bubbles, or skyr-
mions can serve as information carriers in memory and logic
devices.1 To efficiently implement such devices, a precisely
controlled motion of the magnetic patterns must be achieved.
Several traditional techniques have been employed, includ-
ing magnetic fields,2 field gradients,3 and electric currents.4

These techniques create a gradient of the energy, which over-
comes the pinning of the magnetic patterns on defects. For
example, displacement of a domain wall �DW� in a magnetic
nanowire with an easy magnetic direction along the wire
�Fig. 1� can be induced by applying a magnetic-field pulse
along the wire axis. The resulting displacement of the DW
depends sensitively on the amplitude and the duration of the
pulse.

In this Brief Report, we demonstrated that the position of
a DW can be controlled without a gradient of the magnetic
energy or voltage. Our approach is conceptually similar to
applications of the Berry’s geometric phases in topological
quantum computing5 and to the geometric mechanical
control utilized, for example, for precise positioning of
satellites.6 The general idea of geometric manipulations can
be formulated as follows:7,8 Consider a system exhibiting a
continuous symmetry of steady states, such as invariance
with respect to translation along some coordinate x. The sys-
tem can be controlled by parameters �� = ��1 ,�2 . . .�n�, varia-
tions of which affect the state of this system but do not break
the symmetry. When such parameters are varied along a
closed contour, the final state is generally different from the
initial one by a shift �x along the symmetry axis. This shift is
purely geometrical, such as, it depends only on the choice of
the contour in the controlled parameter space, but, in the
adiabatic approximation, it does not depend on the rate of
motion along the contour. The geometric shift is given by

�x =� A� · d�� , �1�

where A� is a vector function that depends on the parameter
values. A well-known example of the geometric control in
classical mechanics is a falling cat, which is capable to rotate
its body into an upright position by periodic motion of its
body parts.

Geometric control is robust against many errors in the
preparation of controlling field pulses, which explains its
success in applications to quantum computing and robotics.
It is thus worth exploring the possibility of similar manipu-
lations with patterns in ferromagnetic materials. We show
below that the Landau-Lifshitz-Gilbert �LLG� equations de-
scribing the evolution of classical magnetic systems and the
well-known equations for slowly moving domain walls un-
der external perturbations3 lead to a simple realization of the
geometric control over magnetic patterns such as 180° do-
main walls in ferromagnetic nanowires.

The geometric control can be implemented, for example,
by either periodically varying the transverse magnetic field
or the weak magnetic anisotropy perpendicular to the wire.
Unlike an applied electric current or magnetic field directed
along the wire, periodic variation of these parameters results
in the shift of the DW by a distance determined only by the
fundamental properties of the magnetic system, namely, the
shift is robust with respect to fluctuations of the driving
fields. However, pinning on impurities and the intrinsic
Peierls-Nabarro barrier9 destroy translational symmetry and
present a significant problem to demonstrate the effect. Be-
low we estimate the strength of a magnetic-field pulse that
can overcome this problem. To demonstrate the effect, we
separately consider two different directions of the magnetic
easy axis with respect to the axis of the wire.

DW in a wire with axial easy direction. Consider a one-
dimensional �1D� magnetic wire with strong easy axis aniso-
tropy along its axial direction x and a weak easy axis aniso-
tropy in the transverse direction forming an angle �0 with the
y axis. The static magnetic energy is

FIG. 1. The domain wall between two domains with opposing
magnetization directions parallel to the easy axis along the wire.
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E�x� =� dx�J��d�/dx�2 + sin2 ��d�/dx�2�

+ K0 sin2 � + K sin2 � sin2�� − �0�� , �2�

where J, K0, and K denote the exchange constant, the longi-
tudinal anisotropy, and the weak transverse anisotropy
strengths, respectively, �=��x� is the angle between the local
magnetization vector and the axial direction x, and � is the
angle between the projection of the magnetization on the yz
plane and the y axis. We do not include the magnetic field or
the long-range dipolar interactions.

The dynamics of ��x , t� and ��x , t� are given by the LLG
equations, which can be written in the Lagrange form,

�L

�X
−

d

dt	 �L

�Ẋ

 +

�F

�Ẋ
= 0, �3�

where X is either ��x� or ��x�, and

L =� dx�E�x� + �Ms/���̇ cos �� ,

F = ��Ms/2��� dx��̇2 + �̇2 sin2 �� . �4�

Here, F is the dissipation functional, � is the gyromagnetic
ratio, � is the Gilbert damping parameter, and Ms is the
magnetization. The DW �Fig. 1� is the soliton solution of the
stationary form of Eq. �3�,

��x� = 2 tan−1 e�x−q�/�, �5�

where �=�J /K0 is the width of the DW and q is its average
coordinate.

We are interested in the DW dynamics induced by rota-
tion of the weak-anisotropy axis, which can be described by
variation of �0 in Eq. �2�. The simplest implementation of
this rotation is to physically rotate the wire around its axis.
We will discuss more practical implementations later. We
assume that the rotation rate is much slower than the char-
acteristic time scale �10−9 s of the magnetic relaxation, al-
lowing a transition from the original variables ��x , t� and
��x , t� to variables q�t� and ��t� that describe the position of
the DW and its angle with the y axis.2 To derive the effective
DW Lagrangian and the dissipation functional in these new
variables, we substitute the DW solution �5� into �4�, and
integrate over x while assuming that q is time dependent,
yielding,

LDW = �2Ms/���̇q + 2K� sin2�� − �0�t�� ,

FDW =
�Ms

�
	 q̇2

�
+ �̇2�
 . �6�

The equations describing the DW dynamics are found by
inserting Eq. �6� into Eq. �3�

2K� sin�2�� − �0�t��� −
2Ms

�
q̇ +

2�Ms�

�
�̇ = 0, �7�

q̇ = − ��̇/� . �8�

In the adiabatic limit, the last two terms in Eq. �7� are neg-
ligible, yielding ��0�t�. The coordinate of the DW is then
determined from Eq. �8�.

q = q0 −� �

�
d�0 = q0 − 2	n�/� , �9�

where n is the number of rotations of the wire around its
axis, and q0 is the initial position of the DW. The DW motion
thus involves simultaneous rotation together with the aniso-
tropy axis and a shift along the wire. Equation �9� directly
corresponds to the general geometric control expression �1�,
where �� is represented by the cyclically varied Cartesian
components of the weak-anisotropy axis, and A�0

=−� /� is
the connection that relates the evolution in the control pa-
rameter space with the evolution in the “fiber space” repre-
sented by the DW coordinate q. For a steady rotation of the
wire with angular frequency 
, we find q�t�=q0− 
�

� t, i.e.,
the DW moves with a constant velocity v=−
� /�. Equation
�9� shows that the effect is geometrical in the sense that the
displacement of the DW depends only on the change in the
control parameter �0 but does not depend on the rate of
change as long as the adiabatic approximation is valid. Note
also that the velocity does not depend on the strength of
transverse anisotropy K. Such robustness with respect to the
properties of the wire and the rate of the parameter variation
is a general feature of the geometric control making it prom-
ising for practical applications.

It can be shown that the rotation of the wire can overcome
the DW pinning as long as 
�Hc�, where Hc is the critical
axial magnetic field required to move the DW. In permalloy
Py=Ni80Fe20, Hc�1.5 G �Ref. 10�, yielding �=
 / �2	�
=4 MHz, which is too large for practical implementations.
However, the equations of the DW motion derived above
remain valid for any other mechanism driving the rotation of
the DW around the wire axis. We note that the perturbation
does not need to be steady. For example, one can use a short
pulse of circulating transverse magnetic field,

Hy = H0y�t�cos�
t�, Hz = H0z�t�sin�
t� , �10�

with amplitude sufficient to rotate the magnetization in the
DW, and frequency ��4 MHz. For the DW size, �
�20 nm and ��0.01,11 a pulse duration �1 �s can
move the DW by a measurable distance 2	�� /�
�0.06 mm. The main challenge for the proposed experi-
ment will be to create an rf field sufficient to overcome the
transverse anisotropy of the nanowire, which for Py is domi-
nated by the shape anisotropy. Standard nanofabrication
techniques can produce approximately square Py nanowires
with a cross section of 50�50 nm and relative variations of
the transverse dimensions not exceeding 20%. To overcome
the resulting shape-induced anisotropy in Py, it then requires
experimentally attainable H0z100 Oe �Ref. 12� and
H0y—pulse amplitude along transverse anisotropy axis can
be much smaller.

DW in a wire with transverse easy direction. Consider a
1D wire with a strong hard axis along the wire and weak
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anisotropy in the transverse direction described by the energy
functional �Eq. �2�� with K0�0, K�0, and �K0��K. This
anisotropy favors the magnetization direction in the trans-
verse plane, as shown in Fig. 2. If it is sufficiently strong
��K0��K�, then �=	 /2 at any location along the wire. The
energy and the dissipation functionals then can be simplified
as

E � dx�J�d�/dx�2 + K sin2�� − �0�� ,

F � dx��Ms�̇
2/2�� . �11�

Without the driving fields ��0=const�, the ground state is
doubly degenerate at �=�0 or �=�0+	. The DW solution
connecting these two states is given by

�DW�x;�0,q� = �0 + 2 tan−1 e�x−q�/�. �12�

The motion of this wall under circulating transverse mag-
netic field was predicted in Ref. 13. We will explore it from
the point of view of the geometric control �Eq. �1��. The
evolution equation of the angle ��x� has a relaxation form,

�Ms

�
�t� = 2J�x

2� − K sin�2�� − �0�� . �13�

Assume that �0 is slowly changed in infinitesimal steps ��0,
allowing the system to relax after each such step. Assume
that at some moment of time, the position of the DW is q,
and the anisotropy direction is rotated from �0−��0 to �0.
Immediately after this rotation, the magnetic state ceases to
be the stationary solution of Eq. �13�. To find the new equi-
librium state to which the DW will now relax, we linearize
the evolution operator comprising the right-hand side of Eq.
�13� around the equilibrium solution �12�, taking the form,

D̂=2Jd2 /dx2−2K cos�2��DW�x ;�0 ,q�−�0��. The DW can
be expanded in terms of the eigenstates un�x� of this operator
as14

�DW�x;�0 − ��0,q� = �DW�x;�0,q� + �
n

Cnun�x� , �14�

where Cn are time-dependent coefficients characterizing the
evolution of the DW. Due to the relaxation, all the coeffi-
cients Cn will eventually decay to zero, except for C0, which

corresponds to the zeroth mode of the operator D̂, u0�x�
=�x�

DW�x ;�0 ,q�=� /cosh��x−q� /�� �Ref. 7�. Multiplying
Eq. �14� by u0�x�, then integrating over x and using the prop-
erty �−�

� dxu0�x��DW�x ;�0 ,q�=0, we find

C0 =

− ��0�
−�

�

dx�u0�x���0
�DW�x;�0,q��

�
−�

�

dxu0
2�x�

=
− 	����0�

2
.

�15�

The new equilibrium state, ��x�=�DW�x ;�0 ,q�+C0u0�x� is
actually a new DW solution shifted by �q=−C0. This can
be shown by expanding the shifted DW solution as
�DW�x ;�0 ,q+�q��DW�x ;�0 ,q�−�x�

DW�x ;�0 ,q��q, and
noting that u0�x�=�x�

DW�x ;�0 ,q�. For cyclic evolution of
the control parameter, the geometric shift now reads,

�q =� A�0
d�0 = n	2�, A�0

= 	�/2. �16�

In contrast to the case of a wire with axial easy direction, the
shift is independent of the Gilbert damping � as long as the
perturbation is adiabatic. Figure 3 shows the numerical solu-
tion of Eq. �13� demonstrating the DW motion consistent
with Eq. �16�.

The forces driving the DW due to the rotation are sup-
pressed by a small parameter �̇0, where �10−8–10−9 s is
the typical magnetization relaxation time. They are consider-
ably smaller in this geometry than pinning forces. Hence,
rotation alone is not sufficient. However, in combination
with a strong periodic perturbation sufficient to overcome the
pinning, the geometric shift can become important. The
strong perturbation can produce a zero effect on average,
while the small geometric shifts accumulate into a significant
net displacement. A well-known analogy of this configura-
tion in classical mechanics is the Foucault pendulum. Its fast
dynamic oscillations average to zero, while the geometric
angle caused by the earth’s rotation slowly accumulates.

An example of such a perturbation is provided by a fixed
transverse magnetic field Hy, which is much weaker than the

FIG. 2. The domain wall between two domains with opposing
magnetization directions parallel to the easy axis transverse to the
wire.

FIG. 3. Evolution of the profile of the DW ��x , t�−
t. The

parameters used in the calculation are
�Ms

2� =1, �0=
t, 

=−0.00035, K=1, J=1, and Hy =0. Time t and coordinate x are in
arbitrary units.
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effective transverse anisotropy field but is sufficient to over-
come the DW pinning. We consider the same rotating wire,
whose energy �Eq. �11�� is now modified according to

E� = E − HyMs� dx cos��� . �17�

Solving Eq. �3� with a constant �0, we obtain the field-
induced DW velocity,

q̇  �Hy� cos��0�/� . �18�

In the rotating wire frame, the magnetic field becomes oscil-
lating. According to Eq. �18�, it moves the DW in one direc-
tion during one half of the rotation cycle and in the opposite
direction during the other half. These oscillations are super-
imposed on a weak but accumulating geometric effect due to
the rotation of the anisotropy axis. Figure 4 shows the results
of simulations for the same system as in Fig. 3 but in the
presence of the transverse magnetic field. DW oscillation due
to the magnetic field is dominant during each rotation period,
but the accumulation of geometric shifts becomes apparent
after several full rotations. This effect can possibly contribute
to the purification of magnetic samples from topological de-
fects �not only domain walls� during sufficiently long rota-
tion in an external magnetic field.

In summary, we demonstrated that the problem of a clas-
sical dissipative domain-wall motion contains a useful geo-
metric structure enabling new schemes for robust magnetic
manipulations. We discussed two examples of the DW geo-
metric shift in ferromagnetic wires with different directions
of magnetic anisotropy. We showed that adding a periodic
perturbation can alleviate the potentially detrimental effect of
pinning on impurities. The concept of geometric control is
not restricted to the two proposed models, and our work

should stimulate efforts to find its practical implementations
in other magnetic materials. Other magnetic patterns, such as
spin-flop states, spiral waves, and skyrmions, may lend
themselves to similar geometric manipulation schemes. Os-
cillating perturbations have been studied in many systems
described by the Ginzburg-Landau type of equations, includ-
ing domain-wall motion in liquid crystals.3,13,15–18 It may be
possible to similarly interpret many of these results in geo-
metric terms, as expressed by Eq. �1�. Finally, it would be
interesting to explore the geometric domain-wall shifts in
systems with other symmetries of the order parameter, e.g.,
in ferroelectrics and antiferromagnets.
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FIG. 4. Evolution of the DW profile for the same parameters as
in Fig. 3 in an additional magnetic field Hy =0.012.
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