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Proton nuclear magnetic relaxation is known to depend on thermal motion. That motion can be affected if an
acoustic wave runs through the sample. Nuclear magnetic relaxation was shown to be modified by acoustic
waves in solids, but the phenomenon was never observed in liquids. A quantitative estimation is here obtained
for liquids whose relaxation is governed by magnetic dipolar coupling, thanks to the calculation of the incre-
ment to spectral density functions due to acoustic stimulation. The result of the calculation leads to the
conclusion that the effect is negligible for monochromatic excitation if the wave amplitude remains compatible
with the safety requirements typical of magnetic resonance imaging.
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I. INTRODUCTION

The idea that ultrasound could influence NMR observa-
tions periodically appears in literature for a long time—an
early quotation, even if not the first one, can be found in a
1952 paper.1 Investigations were therefore carried out, with
the hope to display modifications of relaxation times within
liquid and solid samples under the effect of ultrasound.

The reality of that effect is established for solid samples.1

In solids, resonant acoustic irradiation causes saturation of
the nuclear magnetization, just like resonant irradiation by an
rf field. Providing a qualitative explanation of that effect is
rather straightforward: Phonons are excited by the presence
of an acoustic wave in a crystal. Those phonons modify the
populations in the spin states, and subsequently, the transi-
tions between the spin states whose probability governs the
relaxation times. The phenomenon is interpreted as a reso-
nance between phonon energy and transitions within the
crystal. A summary of experiments and theories about solids
was reported by Shutilov,2 who mainly refers to modulation
by the lattice vibrations of the electric quadrupolar coupling
of individual spins with the lattice.

The effects in liquids are less obvious, beyond the well
known feature that acoustic waves carry on thermal energy,
which could induce a very limited warming up, which in turn
reduces the relaxation rates; we disregard that purely thermal
effect, which is much too tenuous to be of any practical
interest. Using the rigorous quantization of the interaction of
a radio frequency field with the spins3 as a model seems
irrelevant. Experiments on pure liquids showed no signifi-
cant modification.4–6 Relaxation times within inhomoge-
neous liquids �containing Gadolinium for instance� were re-
ported to be modified,6–8 which awoke the interest of
magnetic resonance imaging �MRI� experts: Such an effect
could improve contrast in MRI.

Bowen4 showed that a previous positive prediction by
Al’tschuler9 concerning nuclear magnetic acoustic resonance
absorption in a liquid via magnetic dipole coupling was
based on an erroneous extrapolation of properties that are
typical of elastic lattice vibrations. Bowen’s conclusion was
that “the nuclear magnetic resonance acoustic transition
probability must be obtained by direct calculation of the
magnetic spectral density.” That calculation represents the
aim of our work: Providing quantitative estimations of varia-
tions of relaxation times caused by acoustic waves in pure

liquids, thanks to the calculation of spectral density func-
tions.

The resonant mechanism associated with the presence of
phonons is nonpertinent in liquids. However, if an effect is
expected, it could be due to molecular motions specifically
induced by acoustic waves, as described by fluid kinetics and
diffusion theory. We consider magnetic dipole-dipole inter-
action in the Redfield formalism applied to a system wherein
translational motion is dominant. Rotational motion, which
brings the dominating contribution to relaxation in water, is
expected to be still less affected by acoustic waves.

Going back to qualitative arguments, a significant effect
could perhaps be expected if two time scales coincide: on
one hand, the correlation time that defines the decay of the
autocorrelation function and on the other hand, the period of
the acoustic wave. That is not the case for usual liquids be-
cause the motional correlation time is several orders of mag-
nitude shorter than the acoustic period. Our conclusion con-
firms the previous negative predictions: The calculated
supplementary contribution to relaxation rates is negligible
for monochromatic progressive waves as well as for station-
ary waves.

II. COHERENT MOTION DUE TO ACOUSTIC WAVES

Relaxation is always caused by a time-modulated interac-
tion between magnetic moments within the system. Here,
coupling is supposed to be dipolar, while time modulation
arises from translational diffusion. That modulation is per-
turbed by acoustic waves, because the motion induced by the
acoustic flux modifies the autocorrelation function, which
determines the spectral density.

The remaining question concerns the quantitative impor-
tance of that modification. Our approach is an extension of
the standard derivation of relaxation rates in liquids:10 A hy-
drodynamic description of the elementary motions within the
liquid is used to determine the spin autocorrelation function,
whose Fourier transform is the spectral density needed to
obtain the relaxation rates. That standard derivation assumes
unrestricted diffusion for the water molecules motion, which
was corrected later, with the proper volume of the molecules
being considered as forbidden.11 However, that correction
essentially concerns the high frequency asymptotic regime,
when the spectral density goes to zero, so that the investi-
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gated increment to the relaxation rates itself goes to zero.
The acoustic wave adds a supplementary contribution to

the flux governing Fick’s law; that flux then reads

j��r�,t� = − D�� n�r�,t� + n�r�,t��v��r�,t� , �1�

where D is the diffusion coefficient, n�r� , t� is the number of
interacting spins per volume unit, and �v��r� , t� is the local
velocity resulting from the local pressure oscillation. We ne-
glect the D dependence on temperature and pressure, which
is known to be negligible for the sound wave amplitudes we
are considering.12

Incorporating that acoustic flux in the continuity equation
modifies in turn the diffusion equation, which becomes

�n

�t
= D�n − �v� . �� n − n��� �v�� , �2�

where we specify, respectively, for a progressive plane wave
and for a stationary wave,

�v� = − A sin�k�r� − �t + �� , �3�

�v� = − A cos�k�r� + �1�sin��t + �2� . �4�

For an acoustic wave with a 10 W /cm2 power, A is on the
order of 0.01 m/s. In Eqs. �3� and �4�, the change in velocity

due to the acoustic stimulation is linear in A; the first correc-
tion in A3 being neglected.

The last term in Eq. �2� is negligible in our case: �v� de-
pends on the position through k�r�, which is almost constant
along the distance run during the correlation time. The z
coordinate may thus be substituted by its initial value z0. We
therefore write, if n=n1�x�n2�y�n3�z� and if we assume the
propagation of the sound wave directed along the z axis,
which is defined by the direction of the static magnetic field,

�n3�z,t�
�t

= D
�2n3�z,t�

�z2 − �vz
�n3�z,t�

�z
. �5�

Equation �5� can easily be solved,

n3�z,t;z0,0� =
1

�4�Dt
e−�z − z0 + h�t� − h�0��2/�4Dt�, �6�

where h�t�= �A /��cos�kz0−�t+�� for a running wave and
h�t�= �A /��cos�kz0+�1�cos��t+�2� for a stationary wave.
The phase � was introduced in order to account for the
initial time in Eqs. �5� and �6�, which is not the time when
the sound wave was turned on.

P�R� , t+� ;R� 0 , t�, which is the conditional probability that

the two interacting spins are distant from R� at time �t+��,
knowing they were distant from R� 0 at time t, may be deduced
from Eq. �6�,

P�R� ,t + �;R� 0,t� =
� � n�r�1,t + �;r�01,t�n�r�1 − R� ,t + �;r�01 − R� 0,t�dr�1dr�01

� � � n�r�1,t + �;r�01,t�n�r�1 − R� ,t + �;r�01 − R� 0,t�dr�1dr�01dR�
. �7�

The integration in Eq. �7� can be achieved almost com-
pletely, neglecting the edge effects; more precisely, the spa-
tial inhomogeneity arising from the presence of the sound
wave is cancelled by the integration over z1. Equation �7�
reduces to the following one, after some straightforward cal-
culations:

P�R� ,t + �;R� 0,t� = �8�D��−3/2e−��X − X0�2+�Y − Y0�2�/�8D��

	

� dz01e
−�Z − Z0 + �z�2/�8D��

� dz01

, �8�

where the new position variable �z is due to the acoustic
wave,

�progressive wave� �z = �4A/��sin�kZ0/2�sin���/2�

	cos�kz01 − kZ0/2 + � − ��/2� ,

�9�

�stationary wave� �z = �4A/��sin�kZ0/2�sin���/2�

	sin�kz01 − kZ0/2 + �1�

	sin���/2 + �2� . �10�

The only remaining spatial integration concerns one “free”
variable �z01�. We are now able to estimate the autocorrela-
tion function, which is defined as10

Gmm��t,�� =
8�

15
�smsm�N� � Y2

m�
0��Y2
m��
�

R0
3R3

	P�R� ,t + �;R� 0,t�d3R� 0d3R� , �11�

where sm=4m2−9m+6, Yl
m�
� is a spherical harmonic func-

tion, and N is the mean number of interacting spins per vol-
ume unit and where the singularity in R=0 is avoided by the
introduction of a closest approach distance �d�.

Spatial isotropy implies that Gmm� is diagonal. The sym-
metry is reduced by the presence of an acoustic plane wave,
but remains cylindrical, which is enough to maintain the di-
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agonality of the autocorrelation function. Usually, that auto-
correlation function does not depend on t, because of invari-
ance with respect to a time translation. That property is no
longer obvious in the presence of an acoustic wave. Pre-
cisely, the t dependence of the autocorrelation function �Eq.
�11�� is “hidden” in the phases � characterizing �z. How-
ever, the effective interaction governing relaxation does not
last longer than the time the two interacting spins spend near
each other, i.e., a time on the order of d2 /D, and that time is
much shorter than the sound period.

The displacement due to the acoustic wave, �z in Eq. �8�,
may be handled as a small perturbation, allowing for a power
expansion. The first order contribution is null, because of the
integration over z01, which only appears in a single sinu-
soidal function; for short waves, its integration over the
available space amounts to going over several cycles of the
trigonometric function. If this is not true because of a pos-
sible long wavelength, the slope of the magnetization decay
could then be phase-dependent. The decay could slightly os-
cillate around its value without sound, at the frequency of the
sound wave, but it must be noted that the period of the sound
wave is much shorter anyway than the relaxation times we
are discussing. It is thus necessary to average over � or �2,
in order to obtain a measurable relaxation time, and the in-
variance with respect to a time translation is then restored. At
first order, averaging over the phase also leads to a vanishing
increment to the relaxation rate. We therefore evaluate the
effect of the sound wave at second order in A.

III. ACOUSTIC INCREMENT OF RELAXATION RATES

We obtain for a progressive wave, after defining the dif-
fusion time �D=d2 /D,

�G�S�
mm���� = �mm�

8sm

45d3N� A

�d
�2

sin2���/2�� �D

�
�2�

0

� 	 fm�u�

−
3���

�D
�J3/2�u��2
e−2u2�/�Ddu , �12�

where Jl�u� is a Bessel function of order l and where

fm�u� = �11 − 2m2

7
��u cos u − 3 sin u��u cos u − sin u�/u4

+ �m2 − 4

5
��sin u/u�2 +

3�m2 − 9�
35

	�5u cos u + �u2 − 5�sin u�2/u6.

Considering a stationary wave only multiplies the rhs of Eq.
�12� by a factor of sin2��t /2+�2�.

The derivation of Eq. �12� is based on well known prop-
erties of spherical harmonic functions, as shown in the Ap-
pendix.

The relaxation rates may be written as10

1/T1 =
3

2
�42I�I + 1���0/4��2�J�1���0� + J�2��2�0�� ,

�13a�

1/T1� =
3

8
�42I�I + 1���0/4��2�J�2��2�0� + 10J�1���0�

+ J�0��2�1�� , �13b�

1/T2 =
3

8
�42I�I + 1���0/4��2�J�2��2�0� + 10J�1���0�

+ J�0��0�� , �13c�

where � is the nuclear gyromagnetic ratio,  is Planck’s con-
stant, I is the nuclear spin, and �0 and �1 are the nuclear spin
Larmor frequencies in the static field and in the rf field,
respectively. The spectral densities J�m���� are the Fourier
transforms of the autocorrelation functions defined in Eq.
�11� and specified in Eq. �12�.

The increment to the spectral density function assignable
to the acoustic wave then reads

�JS
�m���I� = � A

�d
�24smN�D

15d3 Mm���D,�I�D� , �14�

Mm��,�� = �
0

�

du��fm�u�
3

	2 tan−1
 −
log�1 + 
2�






−
�sin u − u cos u�2

u4 log�1 + 
2�� , �15�

where 
= � / �2u2+ i�� .
Spectral densities are decreasing functions of the Larmor

frequency. Their value at null frequency, which is given by
Mm�� ,0�, provides therefore an upper bound for the investi-
gated increment. Furthermore, we also know that �=��D
�1: Even for an acoustic wave with a 100 MHz frequency,
� is on the order of 10−3 for water molecules.

The dependence of Mm�� ,0� on � may be analytically
deduced from Eq. �15� by dividing the integration domain
over u in Eq. �15� in two parts, respectively corresponding to

�1�u� �� /2�1/2� and to 
�1�u� �� /2�1/2�. Knowing
that fm�0�= �m2−2� /21, and that both functions go asymp-
totically to zero as 1 /u2, it can be shown that Mm�� ,0�
= �Cm�3/2+O��2��. A numerical computation of the integral
allows estimating constant Cm,

Mm��,0� = 0.012�0.65m2 + 0.05m − 3.7��3/2. �16�

We are now able to put a boundary on the spectral density
increment,

�J�m���I� � 4smN�A/d�2�D
3 ���D�−1/2Cm/�15d3� ,

which results in a relative increment for m=0,

�J�0��0�/J�0��0� � 0.05�15/4����D/�d/A��2���D�−1/2.

�17�

It can easily be checked that the squared factor �D / �d /A�
�i.e., the ratio between the time needed to diffuse a distance
d and the time for the acoustic flux to run the same distance
d� is on the order of 10−3, while �=��D is always larger than
10−3. The relative increment is thus smaller than 10−5. Con-
sidering a stationary wave only brings a slight modification:

ACOUSTICAL ENHANCEMENT OF NUCLEAR… PHYSICAL REVIEW B 77, 212404 �2008�

212404-3



the result given by the rhs of Eq. �14� is divided by 2, as the
result of averaging over �2. The upper bound becomes still
smaller for long waves: the factor sin�kZ0 /2� �Eqs. �9� and
�10�� could then be approximated by kZ0 /2, which intro-
duces in the upper bound a factor of k2Z0

2 /4 instead of 1 in
our estimation.

Spectral densities were numerically obtained from Eq.
�14�, as functions of the Larmor frequency. The solutions are
shown in Fig. 1.

IV. CONCLUSION

Proton nuclear magnetic relaxation rates are potentially
influenced by the presence of an acoustic flux within a liquid.
Our calculation shows that no observable effect is expected
for acoustic waves whose amplitude remains small enough to
avoid cavitation. That negative conclusion agrees with pre-
vious experiments on CHCl3 and CHBr3,7 and is confirmed
by recent new attempts at the University of Valenciennes
�France� to measure relaxation rate modifications under
acoustic excitation in pure water and in aqueous gels.13

That result is a confirmation of intuitive expectations. Re-
laxation is indeed governed by the interactions between spins
determining the autocorrelation function. Now, autocorrela-
tion functions go to zero after the correlation time, i.e., the
diffusion time in our case. As a consequence, the range of the
interactions that have to be taken into account is itself very
short. More precisely, the diffusion time is much shorter than
the sound wave period, and the effective interaction range is
much smaller than the sound wavelength. Relaxation thus
occurs within a region that is affected as a whole by the
acoustic flux, which only adds a constant velocity to the
interacting spins. One can then define a virtual local and
instantaneous relaxation rate, which is automatically aver-
aged by spatial integration. For small wavelengths, that spa-
tial integration also results in a time averaging, while the
time averaging has to be explicitly performed for long wave-
lengths, through its dependence with the initial phase of the
sound wave. Considering the respective contributions from
an expansion with respect to the wave amplitude, the first

correction corresponds to the second order term, which re-
mains much too small to be observed.

The limitation of the wave amplitude is needed if cavita-
tion is to be avoided. That phenomenon is indeed out of the
scope of our work, although it is known to likely happen and
to modify proton relaxation rates in liquids, but any quanti-
tative prediction for that modification is missing, without
mentioning possible damaging effects on patients submitted
to MRI.

Larger effects on relaxation rates could be expected if the
correlation time governing relaxation is on the same order of
magnitude as the sound period, as one can guess from Eq.
�17�. That condition is obviously not fulfilled for the frequen-
cies considered here. We thus consider our result as an upper
bound, indicating that the frequency range usually associated
with ultrasound waves does not lead to observable effects.
An overlap between the acoustic periods and the correlation
times could be provoked by a lengthening of the correlation
times characterizing the relaxation mechanisms, by instance
if larger magnetized particles �namely, superparamagnetic
particles� are suspended in the sample. However, such par-
ticles are MRI contrast agents, which are devoted at increas-
ing relaxation rates, with a much larger effect than the rate
enhancement expected from submitting the sample to ultra-
sound waves.
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APPENDIX

Expanding Eq. �8� in powers of A /�, we get at second
order

P�R� ,t + �;R� 0,t� = �8�D��−3/2e−R� − R� 02/8D�

	�1 +
A2

�2D�
	 �Z − Z0�2

4D�
− 1


	sin2kZ0

2
sin2��

2
� ,

where the zero order is the result without any acoustic wave,
while the second term is associated with the sound wave
correction. Inserting this expression in Eq. �11�, a correction
term appears in the autocorrelation function

�Gm��� =
2A2

15�2���2D��5/2smN sin2��

2
� � Y2

m�
0��Y2
m��
�

R0
3R3

	� �Z − Z0�2

4D�
− 1�e−R� − R� 02/8D�d3R� 0d3R� , �A1�

where the factor sin2�kZ0�, which is time independent and
smaller than 1, has been omitted, which means that Eq. �A1�
must be considered as yielding an upper bound for the spec-
tral densities.

FIG. 1. Spectral density dimensionless increment due to acous-
tic stimulation �sound wave power: 10 W/cm2�, as given by
Mm���D ,��D� defined in Eq. �14�, with �D=3	10−11 s �D=3
	10−9 m2 /s and d=3	10−9 m�, for an acoustic frequency of 10
MHz ���D=0.00188�.
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Equation �A1� can be transformed thanks to the following
properties:

�i�

e−
R� − R� 02

8Dt = �8�Dt�3/2�
R3

e−2Dt�2

�

	 �
�1m1

�2m2

� 1

r0r
�1/2

i�1�− i��2Y�1

m1�
��Y�1

m1�
��Y�2

m2�
0�

	Y�2

m2�
���J�1+ 1
2
��R�J�2+ 1

2
��R0�d�� ,

where 
 and 
0 are the solid angles corresponding to vec-

tors R� and R� 0, 
� corresponds to �� , and Jl�x� is the Bessel
function of order l.

�ii� For half order Bessel functions, Jn+3/2�x� /xn+1/2=
−d /dx�Jn+1/2�x� /xn+1/2�.

�iii� Integrating over the solid angles can be per-
formed thanks to the fact that Z= �4� /3�1/2RY1

0�
� and
Z0= �4� /3�1/2R0Y1

0�
0�, and that spherical harmonics are
orthonormal functions.

�iv� Clebsch–Gordan coefficients allow writing

Y�1

m1�
�Y�2

m2�
�

= �
�,m

��2�1 + 1��2�2 + 1�
4��2� + 1�

C�1,�2;0,0
�;0 C�1,�2;m1,m2

�;m Y�
m�
� .

The integrations on the radial variables R and R0 are per-
formed by using property �ii�. Equation �12� is finally ob-
tained by setting u=�d.
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