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Endohedral N@C60 exhibits an extremely long electron spin relaxation time and offers a great potential in
storing and processing quantum information. Here, we present a microscopic theory of electron spin relaxation
in N@C60. The theory combines �1� the spin-orbit interaction of N 2p electrons, which mixes the ground-state
4S with excited 2P and 2D states, and �2� the coupling between the N 2p electrons and C60 Hg vibrations,
which facilitates transitions between 2P and 2D states. The spin relaxation occurs via a two-phonon �Raman�
process by absorbing a Hg phonon and emitting another at the �approximately� same frequency. The theory
consistently explains measured spin relaxation time T1 and its temperature dependence, and predicts two
independent spin decoherence T2 constants for �3 /2→ �1 /2 transitions.
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I. INTRODUCTION

Electron spin relaxation in nanostructures plays a central
role in designing spintronic devices1 and quantum computing
schemes.2,3 Endohedral N@C60 �Ref. 4� is particularly prom-
ising for these applications because of its long spin relax-
ation time.5–8 This system is unique, wherein the N atom and
its spins, shielded by the C60 cage, are largely immune from
environmental influences.4,9,10 Consequently, existing theo-
ries of spin relaxation for conventional liquids and solids are
not directly applicable. Recent temperature-dependent mea-
surements reveal the central role of C60 vibrations in electron
spin relaxation in N@C60.

7,8 The observed identical T1 con-
stants for different nuclear spin states of N rule out relaxation
mechanisms from the hyperfine interaction. The exponential
temperature dependence of T1 is inconsistent with a weak
temperature dependence expected from the phenomenologi-
cal fluctuating zero-field splitting model,5,7 but resembles
that from an Orbach11 process, which involves resonant tran-
sitions between the ground state and excited states. In addi-
tion, a constant ratio of 2/3 is observed between outer- and
inner-transition T2 constants.

In this paper, we present a microscopic theory that derives
an effective fluctuating Hamiltonian among the ground-state
quartet and elucidates spin relaxation in N@C60 assisted by
C60 phonons. The Hamiltonian describes effects of virtual
excitations of the N electrons via absorbing a Hg phonon and
emitting another on spin dynamics, which is not an Orbach
process.12 The theory, which is also valid for P@C60 �Ref. 9�
and can be readily extended to other endohedral fullerenes,13

suggests a universal importance of the two-phonon process
in determining electron spin relaxation in nanostructures.

The paper is organized as follows. First, we describe in
Sec. II the relevant electronic states in N@C60 with emphasis
on the spin-orbit �SO� interaction. In Sec. III, we examine
the coupling between the N 2p electrons and C60 vibrations
and evaluate the coupling strength. Then, in Sec. IV, we de-
rive an effective Hamiltonian among N spin quartets for spin
relaxation and calculate spin relaxation time T1. We continue
to study spin decoherence in Sec. V by applying the Redfield
theory to the obtained spin Hamiltonian. Finally, we summa-
rize our results in Sec. VI.

II. ELECTRONIC CONFIGURATIONS

Both experimental observations4,10 and first-principles
calculations9 indicate that the electronic configuration of N
in N@C60 retains its atomic form and that no chemical bond-
ing between the N and the C60 cage takes place. In the
ground state of a free N atom, three 2p electrons align their
spins in parallel according to Hund’s rule, forming a degen-
erate quartet 4S with total spin S=3 /2 and total orbital an-
gular momentum L=0. Its orbital wave function, in terms of
single-electron 2p orbitals, is

4S = −
1
�6��−1�1� �0�1� �1�1�

�−1�2� �0�2� �1�2�
�−1�3� �0�3� �1�3�

� , �1�

where �1=− 1
�2

�px+ ipy�, �0= pz, and �−1= 1
�2

�px− ipy�. Be-
cause of its zero orbital angular momentum, the SO interac-
tion does not have any effect within the quartet.

To account for spin relaxation, one must consider the SO
interaction between the ground state and excited states. The
lowest excited states are doublets �S=1 /2�, 2P �L=1�, and
2D �L=2�. For doublets 2P and 2D, without loss of general-
ity, we assume electron 2 and 3 are spin up and electron 1 is
spin down, and their orbital wave functions 2Lm �m=−L ,
−L+1, . . . ,L� can be written as

2D2 =
1
�2

�1�1���0�2� �1�2�
�0�3� �1�3�

� , �2�

2P1 =
1

2
�1�1���−1�2� �1�2�

�−1�3� �1�3�
� −

1

2
�0�1���0�2� �1�2�

�0�3� �1�3�
� .

�3�

The orbital wave functions of other 2Dm and 2Pm can be

obtained by applying the operator L̂−= �L̂x− iL̂y� to 2D2 and
2P1.

Since N has a rather weak SO coupling, the SO interac-
tion is aptly described by the LS scheme,14 where states are
denoted as 2S+1LJ

M, where J= �L−S� , . . . ,L+S and M =
−J , . . . ,J. Hence, through the SO coupling, S4 forms 4S3/2,
2P forms 2P3/2 and 2P1/2, and 2D forms 2D5/2 and 2D3/2,
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2P1/2�3/2�
M =�3/2 − �+ �M

3
2PM−1/2

+

− �+ ��3/2 + �− �M
3

2PM+1/2
− , �4�

2D3/2�5/2�
M =�5/2 − �+ �M

5
2DM−1/2

+

− �+ ��5/2 + �− �M
5

2DM+1/2
− , �5�

where 2Lm
+�−� denotes the up spin �down spin� state with an

orbital 2Lm.
The electronic Hamiltonian for the N 2p electrons is

H=U+�H0+HSO�U, where the basis set U
= �4S3/2 , 2D3/2 , 2P3/2 , 2D5/2 , 2P1/2�T. H0 describes the term en-
ergies of the 4S, 2D, and 2P,

H0 =�
E1 0 0 0 0

0 E2 0 0 0

0 0 E3 0 0

0 0 0 E2 0

0 0 0 0 E3

� , �6�

where E1=ES, E2=ED, E3=EP, and the SO interaction is14

HSO =
1

2
�p�

0 0 2 0 0

0 0 �5 0 0

2 �5 0 0 0

0 0 0 0 0

0 0 0 0 0
� , �7�

where �p is the SO coupling strength for a single 2p electron.
In the LS scheme, 2P1/2 and 2D5/2 are not mixed with states
with J=3 /2. By diagonalizing the Hamiltonian, we obtain in

the J=3 /2 manifold the three eigenenergies Ẽi and eigen-

states, denoted by 2S+1L̃J, which is related to 2S+1LJ through a
transformation matrix K. In particular, the ground state is

4S̃3/2
M = K11

4S3/2
M + K12

2D3/2
M + K13

2P3/2
M . �8�

Hence, these eigenstates 2S+1L̃J are not pure spin states and
transitions between them will cause spin relaxation. Using
the experimental values ED−ES=2.38 eV, EP−ES
=3.58 eV, and �p=76 cm−1 for a free N atom,15–17 we ob-

tain K11=1.0, K12=1.2�10−5, K13=2.6�10−3, and Ẽi	Ei.

III. ELECTRON-VIBRATION COUPLING AND COUPLING
STRENGTH

Vibrations can directly couple to electron orbitals but not
to spins. The three 2p electron orbitals of a N atom at the
center of C60 transform like t1u in the icosahedral group Ih.
According to the Jahn–Teller theorem t1u � t1u=Ag � T1g
� Hg, they can couple only to vibrations with these three
representations. Among them, the total symmetric Ag and

antisymmetric T1g are ineffectual because the former cannot
break the degeneracy of 2p orbitals18 and the latter cannot
couple. C60 has eight Hg�k� branches �k=1, · · · ,8� and each
branch is fivefold degenerate in energy. We focus only on the
lowest branch k=1 since other Hg modes have much higher
energies and are not much excited at room temperature.

The orbital-vibration coupling between the pq orbital and
the five Hg modes Qi �i=1, . . . ,5� is19,20

HOV =
1

2
g�Q5 − �3Q4 − �3Q1 − �3Q2

− �3Q1 Q5 + �3Q4 − �3Q3

− �3Q2 − �3Q3 − 2Q5
� , �9�

where g is the coupling strength. Using the wave functions in
Eqs. �1�–�3�, we find that the matrix elements between 4S,
2P, and 2D are


2P1�HOV�2D1� = 
2P−1�HOV�2D−2�� = −
�3

2
g�Q2 + iQ3� ,

�10�


2P1�HOV�2D1� = − 
2P−1�HOV�2D−1� =
3g

2
Q5, �11�


2P1�HOV�2D0� = 
2P−1�HOV�2D0�� =
3

2�2
g�Q2 − iQ3� ,

�12�


2P1�HOV�2D−1� = − 
2P−1�HOV�2D1�� =
�3

2
g�Q4 − iQ1� ,

�13�


2P0�HOV�2D2� = − 
2P0�HOV�2D−2�� = −�3

2
g�Q4 + iQ1� ,

�14�


2P0�HOV�2D1� = 
2P0�HOV�2D−1�� = −
�3

2�2
g�Q2 + iQ3� ,

�15�

and all other elements 
2Pm�HOV�2Dm�� are zero. With the
wave functions 2S+1LJ

M in Eqs. �4� and �5�, the matrix ele-
ments of orbital-vibration interaction between all possible
2S+1LJ

M and 2S�+1L�J�
M� states can be obtained.

We estimate the coupling strength g by setting Qi=0 for
i=1–4 and a nonzero Q5=�Q�3 cos2 �−1�, with � being the
polar angle, and evaluating the energy change of a N 2p
electron. The 2p electron wave functions in a free N atom
are14

�2pz� =
1

��
	0

5/2re−	0r cos � , �16�
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�2px� =
1

��
	0

5/2re−	0r sin � cos � , �17�

where 	0=Z� /2a0, a0 is the Bohr radius, and Z�=3 is the
valence charge. These wave functions are the eigenstates of a
Schrödinger equation with a Coulomb potential �−e�V0=
−Z�e2 /r in a free space. In the presence of C60, the boundary
condition and the potential will change. We consider a C60

cage in equilibrium as a spherical shell with inner and outer
radii r0 and R0 and a dielectric constant 
=4–5. From the
van der Waals radius of C, r0=1.74 Å and R0=5.09 Å.
Since the radius of 2p electrons is 1 /	0	0.3 Å�R0, it is
safe to assume R0→� here. Thus, to the 2p electrons, the
C60 cage is a cavity with radius r0 in a dielectric medium.
The surface of the cavity is assumed to be conducting, mim-
icking the free � electrons sticking out toward the center,
which also maintains a constant potential on the surface. The
nonzero Q5 makes the C60 sphere shrink along one direction
but elongate along the other two normal directions, resulting
in an ellipsoid described by the equation 
2 /a2+z2 /c2=1,
where 
2=x2+y2, c=r0−2�Q, and a=r0+�Q.

The potential created by a point charge Z�e at the center
of such an ellipsoidal cavity is

V1 = �
Z�e

�a2 − c2
tan−1�a2 − c2

� + c2 : a2 − c2 � � � 0

Z�e


�a2 − c2
tan−1�a2 − c2

� + c2 : � � 0, 

�18�

where � and � are ellipsoidal coordinates, which are related

to the Cartesian coordinates through x=���+a2���+a2�
a2−c2 cos �, y

=���+a2���+a2�
a2−c2 sin �, z= ����+c2���+c2�

c2−a2 , and � is the azimuthal
angle.

The energy changes of the 2p electrons due to �V�V1

−V0 are �Eq= 
2pq�−e�V�2pq� and the coupling strength is

g= 1
2

�Ez−2�Ex

�Q . We obtain g=1.4 eV /Å for 
=5 and

g=1.37 eV /Å for 
=4.5. It is noted that this value is con-
siderably larger than the coupling between a C � electron
and the vibrations in C60,

20 but similar to the displacement
derivative of electrostatic energy of an electron centered in a
C60 cage 	1 eV /Å from ab initio calculations.9 Interactions
between the C60 vibrations and the N nucleus and core elec-
trons are not considered here because they do not contribute
to electron spin relaxation.

IV. SPIN RELAXATION TIME T1

For spin relaxation, the energy loss due to spin flip must
be dissipated into a local environment. Since the energy in-
volved in spin flips is �10−5 eV with a Larmor frequency at
9.7 GHz, whereas, the lowest energy of C60 vibrations is
about 30 meV, it is impossible to flip a spin by absorbing or
emitting a single C60 vibration quanta �one-phonon process�.
One must consider a higher-order “Raman” process,21–23

namely, a C60 phonon is inelastically scattered by flipping a
spin �two-phonon process�. Using the second-order perturba-
tion of HOV, we derive an effective Hamiltonian between the

ground-state quartets 4S̃3/2
i ,


4S̃3/2
i �Heff�

4S̃3/2
j � = �

��
��

LJM


4S̃3/2
i ,n�

−n�
+�HOV�LJM,n�

−n��
LJM,n�
−n��HOV�4S̃3/2

j ,n�n��
ES − ELJ − ���

+ �
LJM


4S̃3/2
i ,n�

−n�
+�HOV�LJM,n�n�

+�
LJM,n�n�
+�HOV�4S̃3/2

j ,n�n��
ES − ELJ + ���

� , �19�

where n� is the phonon number of the �th mode, �� is its
frequency, and n�

�=n��1. The intermediate states �LJM�
include all D̃3/2

M , P̃3/2
M , D5/2

M , and P1/2
M . Since �ES−ELJ�

�2 eV�������	30 meV, the energy of the Hg modes,
we can safely neglect ��� in the denominators in Eq. �19�.
After a lengthy calculation, we find that the fluctuating

Hamiltonian HI�t�=Heff−Heff �Ā is the time average of A�
due to C60 Hg vibrations can be summarized in terms of spin
operators

HI�t� = ����1 − �̄1��Ŝz
2 −

5

4
� + ��2 − �̄2��Ŝ+Ŝz + ŜzŜ+ + Ŝ−Ŝz

+ ŜzŜ−� + ��3 − �̄3��Ŝ+
2 + Ŝ−

2�� ,

� =
K12

2

ES − EP
−

5

3

K13
2

ES − ED
,
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�1 =
9g2

40
�4Q1

2 − Q2
2 − Q3

2 + 4Q4
2 − 4Q5

2� ,

�2 = −
3g2

40
�3�Q2 + iQ3��Q4 − iQ1� + �3Q5�Q2 − iQ3�� ,

�3 =
3g2

80
�4�3Q5�Q4 − iQ1� − 3�Q2 − iQ3��Q2 − iQ3�� ,

�20�

where Q�= � f�
M� �1/2�a�+a�

† �, M =60MC with MC being the
mass of the C atom, a�

† is the phonon creation operator for
the �th mode, and f =�5 /2 is the normalization factor for Hg
modes.

In a system with a definable spin temperature,24,25 the spin
relaxation time T1 can be calculated from

T1
−1 = �

��

W���E� − E��2/2�
�

E�
2 , �21�

where E� is the energy of state � in the presence of an applied
magnetic field and W�� is the transition rate from � to �,

W�� =
2�

�
�
��HI�t�����2
�E� , �22�

with 
�E� being the density of final states in energy. For the
vibrational excitations with a line width �,


�E� =
��

2�
�E2 + ���/2�2�−1. �23�

The transition rate in Eq. �22� can be equivalently expressed
in terms of temporal correlation functions,

W�� = �
−�

+� ei����

�2 
��HI�t����
��HI�t − �����d� , �24�

where ����=E�−E�. For a commonly used correlation time
assumption HI�t�HI�t−��= �HI�t��2e−���/�c, the two transition
rate expressions are identical if �=2 /�c. Equation �24� in-
volves averaged vibrational fluctuations �Q�Q��2 and
�Q�

2 −Q�
2 �2, which can be expressed in terms of phonon oc-

cupations

�Q�Q��2 = � f�

M��
�2

�a�
† a� + a�

†a��2 = 2� f�

M�
�2

n�n + 1� ,

�25�

�Q�
2 − Q�

2 �2 = 4� f�

M�
�2

�n� − n̄��2 = 4� f�

M�
�2

n�n + 1� ,

�26�

where n= n̄��a�
† a�= 1

e���−1
and ��1 /kBT, with kB being the

Boltzmann constant and T being the temperature. Here, a

relation for independent boson �n�− n̄��2= 1
�

�n̄�

��0
= n̄��n̄�+1�

has been used and �0 is the chemical potential of the boson
system.26

Using these relations, we obtain ��2− �̄2�2= ��3− �̄3�2

= 189
400g4n�n+1�. If the motional narrowing approximation


�E�	 2
��� is adopted, which requires ���2E, a condition

usually satisfied, for the Larmor frequency, �L /2�
=9.7 GHz is slower compared to vibrational relaxation in
C60, typically 1011–1012 Hz,27 W1/2−1/2=0, W3/2 1/2
=W3/2−1/2�w, and we have

1

T1
= 2w =

567

8
�2 g4

�M��2�

e−���

�1 − e−����2 . �27�

Figure 1 compares the measured T1 of N@C60 in a nonpolar
CS2 solvent with results from Eq. �27�. We see an excellent
agreement between theory and experiment. The factor of 2.5
difference is considered to be rather small in spin relaxation
studies and may be attributed to the fact that the N properties
in N@C60 may slightly deviate from its free atomic values.

V. SPIN DECOHERENCE TIME T2

Experiments suggest that the system may have more than
one T2 constant. To identify all possible T2, we start from the
Redfield equation in the interaction representation24,25

dS���
� /dt = �

���

R���,���S���
� , �28�

where S���
� �
��Ŝx

����� and Ŝx
��t�=e−i

H0t

� Ŝx�t�ei
H0t

� . H0 is the
time-independent Zeeman term that determines spin reso-
nance frequency and the Redfield matrix is

R���,��� =
1

2�2�J������������� + J�����������

− ������
�

J��������� − ����
�

J������������� ,

J��������� = �
−�

+�


��HI�t�����
���I�t − �����e−i��d� .

0.003 0.004 0.005 0.006 0.007

1/T (K
-1

)

10
-3

10
-2

1/
T

1
(µ

s)
-1

FIG. 1. Logarithm of 1 /T1 against 1 /T. Circles are the measured
data of N@C60, adapted from Ref. 7. Solid line is our theoretical
results with ��=30 meV, g=1.4 eV /Å, and ��=10−4 meV �cor-
responding to a lifetime of 10 ps�. The dashed line is obtained by
multiplying the solid line by a constant 2.46.
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According to the Redfield theory, the matrix elements are
nonzero only for �−��=�−��. Focusing on �−��=1 and
denoting X1=S3/2 1/2

� , X2=S1/2−1/2
� , and X3=S−1/2−3/2

� , we can
rewrite the Redfield equation as

dXi/dt = RijXj . �29�

The nonzero elements in matrix R are

R11 = R33 = −
1

�2�
0

�

��t���t − ��d�

−
1

2� �
��3/2

W3/2� + �
��1/2

W1/2�� , �30�

R22 = −
1

2� �
��3/2

W3/2� + �
��1/2

W1/2�� , �31�

R13 = R31= − W3/2 1/2, �32�

where ��t�=2���1− �̄1�. We find ��1− �̄1�2= 567
200g4n�n+1�

and �0
���t���t−��d� /�2=w. Hence, R11=−3w, R22=−2w,

and R13=−w.
The matrix R indicates that the outer transitions �

3
2

→ �
1
2 , which involve X1 and X3, are decoupled from the

inner transitions �
1
2 → �

1
2 , which involve only X2. The gen-

eral solution of normalized X�t� is thus

X�t� = C1U1e−t/T2o� + C2U2e−t/T2o� + C3U3e−t/T2i, �33�

where U1= �1,0 ,1�T /�2, U2= �1,0 ,−1�T /�2, U3= �0,1 ,0�T,
and Ci ��i�Ci�2=1� are coefficients determined by the initial
condition. T2o� =1 /4w=T1 /2 and T2o� =1 /2w=T1 are two in-
dependent T2 constants for outer transitions and T2i=1 /2w
=T1 is the T2 constant for inner transitions. In the literature,
a single T2 time is always assumed for the outer transitions.
Our results suggest that new experiments and data extraction
schemes are needed to resolve multiple T2 constants. The
measured T2i is similar to but smaller than T1 �T2i	0.7T1�
�Ref. 7� and this discrepancy may be explained by the mo-
tional narrowing approximation used in the theory.28

The resonance line shape as a function of frequency �
can be calculated from X via I���=Re�X†�0�A−1X�0��,
where matrix Amn� i��−�L− �2−m����mn+Rmn. Here, � is
the frequency shift due to second-order hyperfine-interaction
corrections � MI

2 and MI is the N nuclear spin.7 For MI
= �1, three distinct peaks at �=�L− �2−m�� �m=1,2 ,3�
were observed, suggesting �2�w2. In the neighborhood of
�L��, i.e., resonance lines corresponding to the outer tran-

sitions I���	
3w��C1�2+�C2�2�/2

��−�L−�����2+9w2 , and the width, or the averaged

inverse T2 constant T2o
−1=3w, which is independent of values

of Ci. Hence, T2i /T2o=3w /2w=1.5. Figure 2 compares the
measured T2o

−1 and ratio T2i /T2o �Ref. 7� with the theory and
shows good agreements. The excellent agreement on the ra-
tio, which is independent of model parameters, is particularly

remarkable. For MI=0, the three resonance peaks coalesce to
a single one centered at �=�L and the resonant line is a

superposition of Lorentz curves I���=
4w�C1�2

��−�L�2+16w2

+
2w��C2�2+�C3�2�
��−�L�2+4w2 , with a width of T2

−1= �2�C1�2+ �C2�2+ �C3�2�2w,
which, unlike the MI= �1 case, is a function of weights �Ci�2
and ranges from 4w to 2w for different �Ci�2. Experimentally,
it was found that T2

−1	 3
2T1

−1=3w.7,8

VI. SUMMARY

In conclusion, we have developed a microscopic theory of
electron spin relaxation in N@C60, which combines the SO
interaction of N 2p electrons and the coupling between the
N 2p electrons and the C60 Hg vibrations. The spin relaxation
occurs via a two-phonon Raman process by absorbing a Hg
phonon and emitting another at the �approximately� same
frequency. This microscopic theory consistently explains re-
cently measured T1 and T2 and their temperature depen-
dences, and predicts additional T2 constants in N@C60. The
two-phonon Raman process, which is overlooked in studying
spin relaxation in nanostructures such as quantum dots, is
found to be pre-eminent in determining spin relaxation in
N@C60, suggesting the necessity of including the two-
phonon process in other nanostructures.
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sured values, adapted from Ref. 7, and the solid line is our theoret-
ical results. The dashed line is obtained by multiplying the solid line
by a constant 4.0. The inset shows the ratio of T2i /T2o from experi-
ment �circles� and theory �solid line�. Other parameters are as in
Fig. 1.
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