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The mechanical properties and pressure-induced structural transitions of single-walled carbon nanotubes
�SWCNTs� are studied in this paper in the theoretical scheme of the higher-order gradient continuum. Both the
first- and second-order deformation gradients are involved in the approximation of the deformations of micro-
scale lattice vectors, and the continuum elastic potential is obtained by equating the deformation energy of a
representative cell with that of an equivalent volume of the continuum, and thus, the established continuum
constitutive model is more reasonable. By setting an appropriate equation as the deformation map from a
graphite sheet to an initial undeformed SWCNT, the elastic constants of SWCNTs are obtained by minimizing
the energy of a representative cell. The response of SWCNTs under axis-symmetrical loadings can also be
obtained by changing the values of the set geometrical parameters. Based on the derived constitutive model, a
computational method is developed to study the response of SWCNTs under hydrostatic pressure.
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I. INTRODUCTION

The discovery of carbon nanotubes �CNTs� in 1991 by
Iijima1 sparked a revolution in chemical physics and materi-
als science. Much research has been carried out on this new
form of structure due to its outstanding physical, mechanical,
and electrical properties. CNTs are generally modeled and
studied through atomistic modeling approaches.2–6 However,
they consume a tremendous amount of computational time
and resources, and their study is limited to a very small size.
Some equivalent continuum models have been developed7–14

and have proved to be very efficient from the computational
point of view. These continuum-based methods are much
faster than molecular simulations for systems of engineering
interest, which makes them attractive. Govindjee and
Sackman7 adopted the Euler beam theory to study the elastic
properties of CNTs and showed the dependency of the elastic
properties at nanoscale dimensions. Ru9 treated a single-
walled carbon nanotubes �SWCNT� as a single-layer elastic
shell with an effective bending stiffness and studied the
buckling behaviors of CNTs. Li and Chou11 developed a mo-
lecular structural mechanics approach to study the elastic
properties of SWCNTs. He et al.12 developed a continuum
model to account for van der Waals interaction between the
different walls of CNTs. Wang and Hu13 and Liew et al.14

used the strain gradient to model the dispersion of the flex-
ural and longitudinal waves in CNTs.

Another continuum modeling approach is to construct the
finite deformation continuum theory through the Cauchy–
Born rule,15,16 in which the constitutive model is written in
terms of the underlying atomistic model. The first use of this
method on the nanoscale emerged from the quasicontinuum
method for two-dimensional problems.16–18 Later, Zhang et
al.19,20 extended the approach to CNTs and studied the axial
Young’s modulus and fracture nucleation. However, as Ar-
royo and Belytschko21,22 indicated, the direct application of
this rule to CNTs is insufficient and inaccurate because a
CNT is essentially a curved crystalline sheet of an atom
thickness, and the curvature effect has to be accounted for. In
Refs. 21 and 22, an exponential Cauchy–Born rule for the

finite deformation membrane and CNTs was formulated,
with the derived hyperelastic potential being dependent on
the stretch and the curvature of the surface. In studying the
planar crystals, Sunyk and Steinmann23 pointed out that the
Cauchy–Born rule requires sufficiently homogeneous defor-
mations of the underlying crystal and suggested the applica-
tion of the higher-order gradient in the continuum modeling
of the inhomogeneous deformations. Guo et al.24 and Wang
et al.25 recently extended the standard Cauchy–Born rule by
considering the effect of the second-order gradient and pro-
posed a higher-order Cauchy–Born rule for SWCNTs

The present work follows the contributions of Refs.
23–25 and investigates the elastic properties and hydrostatic
pressure-induced structural transition of SWCNTs. The the-
oretical framework is similar to the higher-order gradient
continuum theory of linear elasticity,26 in which the strain
energy density is a function of the first- and second-order
deformation gradients. By approximating the deformations
of the bond vectors with the higher-order Cauchy–Born
rule,25 the continuum elastic potential can be obtained by
equating the deformation energy of a representative cell to
that of an equivalent volume of the continuum. The resulting
continuum constitutive model depends only on the inter-
atomic interactions, with no additional phenomenological in-
put. The boundary value problems can be solved in the
scheme of the higher-order continuum theory. In the present
investigation, the map from a planar graphite sheet to an
undeformed SWCNT is written in an analytical form with
three geometrical parameters that correspond, respectively, to
the axial and circumferential stretches and the twisting angle.
By minimizing the energy of the cell structure, the structural
properties and the elastic constants �Young’s moduli, shear
moduli, and Poisson’s ratio� of SWCNTs can be obtained.
The set mapping equations also describe any axis-
symmetrical deformations of SWCNTs, and thus, the re-
sponse of SWCNTs under axis-symmetrical loadings can be
computed. The computational results show that the involve-
ment of the second gradient can provide an accurate analysis
of CNTs.

The response of CNTs under hydrostatic pressure is cur-
rently a topic of interest. Investigations have found that a
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structural transition occurs under a higher hydrostatic pres-
sure, and that this largely changes the mechanical and elec-
trical properties of CNTs.27–29 Currently, most of the work to
simulate the hydrostatic pressure response is based on mo-
lecular dynamics. Using the hyperelastic constitutive model
derived from the higher-order Cauchy–Born rule, we develop
a computational method to study the structural transition of
SWCNTs. The SWCNT is considered as a ring, and the
strain energy of the CNTs can be written in terms of the
radial displacement of the ring and the two geometrical pa-
rameters that correspond to the axial and twisting deforma-
tions. The mesh-free method30–35 is used to determine a
stable configuration in the scheme of the higher-order gradi-
ent continuum.

Empirical potentials are generally used in the analysis of
CNTs to describe the interatomic interactions. A widely used
bond-order potential is the Tersoff–Brenner potential.36,37

This potential is employed in the present work, and the sec-
ond parameter set37 is used in our computations.

II. HIGHER-ORDER GRADIENT CONTINUUM
AND CONSTITUTIVE EQUATIONS

An undeformed SWCNT can be viewed as being formed
by rolling up a graphite sheet into a cylindrical shape �Fig.
1�. This rolling process, however, is not a simple rigid trans-
formation, and the microstructure will readjust to attain the
minimum system energy during the rolling. Here, we decom-
pose this transformation into three steps, as shown in Fig. 1.
Figure 1�a� is an initial equilibrium graphite sheet with
length L and width �, and it is rolled up along the axis X2�. In
Fig. 1�b�, the parameters �1 and �2, respectively, correspond
to the uniform longitudinal and circumferential stretches;
thus, �2� is equal to the perimeter of the tube. The angle �
in Fig. 1�c� corresponds to the skew angle of any surface
longitudinal line in Fig. 1�d�. The deformation map from Fig.
1�a� to Fig. 1�d� �x=x�X��� can be written as

x1 = �1X1�, �1a�

x2 =
�2�

2�
sin�X2�

�
2� + ��1X1�� , �1b�

x3 =
�2�

2�
−

�2�

2�
cos�X2�

�
2� + ��1X1�� , �1c�

where � is the twisting angle per unit length �=� /R, and R
is the radius of the tube�. For any vector R emanating from
point X� in the reference configuration, it is mapped to r
=x�X�+R�−x�X��.

Expanding x�X�+R� in a Taylor series about X� and re-
taining up to the second-order term, we have the approxima-
tion

r � F�X�� · R +
1

2
G�X��:�R � R� , �2�

where F=�x�X�� �rank-2 tensor� and G=�F�X�� �rank-3
tensor� are the first- and second-order deformation gradients,
respectively. In the conventional Cauchy–Born rule,15–20 the
deformation is approximated only with F�X�� ·R. Equation
�2� involves the effect of the second-order deformation gra-
dient, and thus, the approximation is greatly enhanced. This
improvement can be seen from Fig. 2. Maps �1a�–�1c� pre-
cisely transform the vector R to a curved line segment �the
dot line in Fig. 2� on the surface of the tube. In Fig. 2, r�
denotes the spatial vector that connects the two end points of
this curved line segment, and it corresponds to the orienta-
tion of the deformed bond vector since a bond is essentially
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FIG. 1. �Color online�
SWCNT formed by rolling an
equilibrium graphite sheet into a
cylindrical shape through three
steps; the change of the represen-
tative cell is also depicted.

r
r�r ��

planeTangent

FIG. 2. �Color online� F�X�� ·R maps the vector R onto the
tangent plane as r�; the enhanced term G�X�� : �R � R� /2 pulls r� to
r that is closer to the real case.
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a chord that is embedded into this surface. However,
F�X�� ·R only maps the vector R onto the tangent plane that
passes through the emanating point �see the vector r� in Fig.
2�. Equation �2� maps R to r that is closer to the actual case.
The term G�X�� : �R � R� /2 describes the difference between
the vectors r and r�. In particular, this term also describes the
effect of the bending stiffness, which results in a more rea-
sonable physical approximation.

In the higher-order gradient continuum,23–26 the strain en-
ergy density W0 is a function of the deformation gradients F
and G. The first Piola–Kirchhoff stress tensor P and the
higher-order stress tensor Q are denoted as

P =
�W0�F,G�

�F
, Q =

�W0�F,G�
�G

. �3�

To evaluate the strain energy density at a point, a cell struc-
ture is imaged at this point, as shown in Fig. 1. A magnified
representative cell is shown in Fig. 3, in which the atom I is
connected to bonds I−J �J=1,2 ,3�. From Eq. �2�, the defor-
mation of the bond vectors can be approximated as

rIJ = F · �RIJ + �� + G:��RIJ + �� � �RIJ + ���/2 , �4�

where RIJ and rIJ denote the undeformed and deformed bond
vectors, respectively. Moreover, an inner shift vector �
= ��1 ,�2� has been added to the undeformed bond vector due
to the noncentrosymmetry of the atomic structure.16,19–22

The strain energy density at this point can be calculated as

W0�F,G� =
V0

�I
,

V0 =
1

2�
J=1

3

VIJ�rI1,rI2,rI3� = V0�F,G,��F,G�� , �5�

where V0 denotes the energy of atom I, �I is the average area
per atom in the reference configuration, and VIJ is the
Tersoff–Brenner potential.36,37 It is noted that the inner shift
is a function of F and G, and the minimization of the atom
energy often requires �V0 /��=0.

The tangential modulus can be obtained as

MFF =
�2W0

�F � �F
, MFG =

�2W0

�F � �G
,

MGF =
�2W0

�G � �F
, MGG =

�2W0

�G � �G
. �6�

In the calculation of the tangential modulus, we should not
ignore the contribution of the inner shift vector. For example,
MFF is not equal to �2V0 /�0�F � �F, and it should be cal-
culated as

MFF =
�2W0

�0 � F � �F
=

�2V0

�0 � F � �F
+

�2V0

�0 � F � ��

��0

�F
.

�7�

III. STRUCTURAL AND ELASTIC PROPERTIES
OF SINGLE-WALLED CARBON NANOTUBES

The parameters �1, �2, �, �1, and �2 in Sec II can be
obtained by minimizing the atom energy V0 that is equivalent
to

�VI

��1
=

�VI

��2
=

�VI

��
=

�VI

��1
=

�VI

��2
= 0. �8�

Equation �8� can be solved with an optimization approach,
such as the conjugate gradient method.38 Here, we use New-
ton’s method,38 in which the first- and second-order deriva-
tives of V0 with respect to these parameters are required at
each iteration step.

A. Structural properties

With the solution of Eq. �8�, the structural properties of
the initial undeformed CNTs can be determined. Here, the
second parameter set for the Tersoff–Brenner potential is
adopted.37 In the computation, we need to present a value as
the initial bond length in the reference graphite sheet �Fig.
1�a��. Essentially, we can choose any number as the initial
bond length, and the choice of this initial value has no effect
on the final optimized results. Moreover, by setting a very
large tube radius, we can obtain the bond length in the initial
equilibrium graphite sheet. For the second parameter set of
the Tersoff–Brenner potential, our computation indicates that
the bond length in the initial equilibrium graphite sheet is
0.14 507 nm. In the future calculation, we will use
0.14 507 nm as the initial value of the bond length in the
reference configuration. With this choice, the evaluated val-
ues of �1, �2, and � have a clear physical significance, they
are, respectively, the axial and circumferential stretches and
twisting angle of the tube relative to the initial equilibrium
graphite sheet. Table I shows the evaluated values of �1, �2,
and � for the chiral �9,6�, armchair �5,5�, and zigzag �10,0�

TABLE I. Optimization values for �1, �2, and �.

Type of SWCNT �1 �2 � �°�

�9,6� chiral 1.00100 0.99411 0.08554

�5,5� armchair 1.00307 0.98606 0

�10,0� zigzag 0.99820 0.99346 0

FIG. 3. �Color online� Representative cell composed of bonds
I−J�J=1,2 ,3�.
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CNTs. It is worth noting that a nonzero twisting angle �
occurs for the chiral CNT, whereas �=0 for the armchair
and zigzag CNTs. The evaluated bond lengths and tube ra-
dius are listed in Table II, along with the calculated atom
energy. These results display excellent agreement with those
of Jiang et al.39 It is shown that the involvement of the
second-order deformation gradient can provide an accurate
analysis for CNTs.

B. Elasticity properties

A SWCNT can be viewed as a hollow cylinder of only
one-atom thickness. The present model does not actually in-
volve the thickness concept, and W0 means the energy per
unit area on the surface. For convenience of comparison

only, we introduce a volume energy density Ŵ0=W0 / t, with
t as the thickness �it is chosen as 0.334 nm, which is used in
most of the literature�.

Because �1 and �2 correspond, respectively, to the uni-
form longitudinal and circumferential stretches, the axial and
circumferential strains are

	1 = �1 − 1, 	
 = �2 − 1. �9�

The axial and circumferential stresses can be calculated as

�1 =
�Ŵ0

�	1
=

�Ŵ0

��1
, �
 =

�Ŵ0

�	


=
�Ŵ0

��2
. �10�

In the case of hydrostatic pressure, CNTs deform uniformly
along the circumference. The radial strains of the CNTs
equal the circumferential strains, i.e., 	r=	
. Moreover, the
hydrostatic pressure p has a relationship with �
 as

p2R = �
2t . �11�

The axial and circumference Young’s moduli can be obtained
as

E1 =
�2Ŵ0

��1
2 −

�2Ŵ0

��1 � �2

�2Ŵ0

��2
2

, E
 =
�2Ŵ0

��2
2 −

�2Ŵ0

��2 � �1

�2Ŵ0

��1
2

. �12�

Using Eq. �11�, the radial Young’s modulus can be calculated
as

Er = E
t/R . �13�

Poisson’s ratios are

v1
 = v1r =

�2Ŵ0

��2 � �1

�2Ŵ0

��1 � �1

, v
1 = vr1 =

�2Ŵ0

��1 � �2

�2Ŵ0

��2 � �2

. �14�

Moreover, we have the relationship

v1


E1
=

v1r

E1
=

v
1

E


=
vr1

E


. �15�

The angle � also has an obvious physical meaning, and it
equals the shear strain �1
 at the surface. So, the shear stress
at the cross section can be calculated as

1
 =
�Ŵ0

��
=

R � Ŵ0

��
. �16�

The shear modulus can be obtained as

G =
�2Ŵ0

��2 =
R2�2Ŵ0

��2 . �17�

Similar to the way we calculate the tangential modulus, the
contribution of the inner shift should be involved when we
calculate the above elastic constants. Young’s moduli and
Poisson’s ratios of CNTs are the values of Eqs. �12�–�17� at
the initial equilibrium state of the CNTs.

Computations have been carried out for different types of
CNTs. In the results analysis, we use �3n ,2n� CNTs as an
example to illustrate the properties of chiral CNTs. In all of
the calculations, the first- and second-order derivatives are
exactly computed. Figure 4 shows the variation of the axial
and circumferential Young’s moduli with the tube radius.
With an increasing tube radius, the axial and circumferential
Young’s moduli trend to the same constant that corresponds
to Young’s modulus of the graphite sheet. The present esti-
mated value is 0.7049 TPa, which is very close to that pre-
dicted by Arroyo and Belytschko.21 When the tube radius is
larger than 0.5 nm, the moduli are very close to those of the
graphite sheet, and the maximum difference is less than 2%.
Moreover, we also notice a special phenomenon: the axial
and circumferential Young’s moduli of the CNTs are gener-
ally less than those of the graphite sheet, but the circumfer-
ential Young’s moduli of the zigzag CNTs are slightly larger
than those of the graphite sheet. This indicates that the
chirality of CNTs has an effect on their properties, but this
effect is very slight when the tube radius is larger than 0.5
nm. Plotted in Fig. 5 is the radial Young’s modulus versus
the tube radius. The radial Young’s modulus has a large de-
pendence on the tube radius because it is equal to the cir-

TABLE II. Bond lengths, tube radius, and atom energy in the undeformed SWCNT.

Type of SWCNT r1

�nm�
r2

�nm�
r3

�nm�
R

�nm�
V

�eV�

�9,6� chiral 0.14520 0.14516 0.14533 0.51986 –7.33606

�5,5� armchair 0.14567 0.14532 0.14532 0.34150 –7.28637

�10,0� zigza 0.14518 0.14544 0.14544 0.39729 –7.30785
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cumferential Young’s modulus divided by the tube radius.
Figure 6 shows the variation of Poisson’s ratio v
1 with the
tube radius. Similar to the axial and circumferential Young’s
moduli, v
1 trends to Poisson’s ratio of the graphite sheet
�the present estimated value is 0.4123�. When the tube radius
is larger than 0.5 nm, Poisson’s ratio is very close to 0.4123.
Figure 7 shows the dependence of the shear modulus on the
tube radius. When the tube radius is larger than 0.5 nm, the
shear modulus is very close to that of the graphite sheet. The
present estimated shear modulus of the graphite sheet is 0.25
TPa. In conclusion, the elastic properties of CNTs have a
dependence on the chirality and the tube radius, but when the
tube radius is larger than 0.5 nm, the axial and circumferen-
tial Young’s moduli, Poisson’s ratio, and shear modulus are
pretty close to those of the graphite sheet. Therefore, CNTs
can be viewed as a curved surface, on which the elastic prop-
erties at the tangent direct are almost the same with the
graphite sheet.

C. Pressure-radial strain curve

The above method can be viewed as an analytical-
numerical method, in which the first- and second-order de-
rivatives of the strain energy density are calculated exactly,
and Newton’s method is used only to determine the mini-
mum point of energy. Moreover, by varying the values of �1,
�2, and � and then minimizing the energy density, we can
calculate the mechanical response of CNTs under axial ten-
sion or compression �varying �1�, hydrostatic pressure �vary-
ing �2�, and twisting �varying ��. This method can also be
used to study the interaction of different loading conditions,
for example, the twisting behavior of different chiralities of
CNTs under axial or radial compression. Here, we only offer
the pressure-radial strain curve of SWCNTs under hydro-
static pressure. For a given �2 �that corresponds to a radial
compression�, the energy minimization will result in �1 and
�, and then, the hydrostatic pressure can be calculated as
p=�W0 /R��2. By varying �2, the curve of the hydrostatic
pressure versus the radial strain ��2−1� can be obtained.
Plotted in Fig. 8 is the pressure-radial strain curve of a
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�10,10� CNT. It is almost a straight line within a small range
of compression ratios. Of course, this is only a theoretical
relationship curve. As shown in Sec. IV, buckling occurs
when the pressure reaches a critical value.

IV. STRUCTURAL TRANSITIONS OF SINGLE-WALLED
CARBON NANOTUBES UNDER HYDROSTATIC

PRESSURE

In this section, we apply a mesh-free method to study the
structural transitions of SWCNTs under hydrostatic pressure.
In the study in Ref. 40, we developed a mesh-free method to
model the buckling behavior of SWCNTs under axial com-
pressing and twisting loadings. Under hydrostatic pressure, a
SWCNT uniformly deforms along the axial direction, and we
only need to consider the deformation of a cross section.
Thus, the problem is similar to that of an elastic ring �Fig.
9�b��. However, the interactions between the radial deforma-
tion, the uniform axial deformation, and the possible twisting
deformation should also be considered. This ring can be
mapped directly from a line segment in the reference con-
figuration �Fig. 9�a��, and this line segment has a width of
�2� �here, we use Fig. 1�c� as the reference configuration
and the cell structure in Fig. 1�c� as the image of all of the
cell structures�. The deformation relative to the undeformed
SWCNT can be expressed in terms of the displacements u2
and u3 and �2 and �. The gradient components F22, G222,
F32, and G322 can be calculated with u2 and u3, and the other
gradient components are determined by �1 and �. Thus, the
strain energy density is a function of F22, G222, F32, G322, �1,
and �. The stable configurations of the system are identified
with the minimization of the total energy,

E = 	
B0

W�F22,G222,F32,G322,�1,��dS	
B0

uNpdS . �18�

In the mesh-free simulation, a series of nodes is collo-
cated on the line segment �they can also be viewed as being
on the undeformed ring�. The displacement relative to the
undeformed ring is approximated as


u2

u3
� = �

i=1

N

�i
u2i

u3i
� , �19�

where �i is the mesh-free shape function that is defined on
the one-dimensional line segment, u2i and u3i are the nodal
parameters, and N is the number of nodes which supporting
domain cover the evaluated point.30–35 The deformation gra-
dients are approximated as

F22 = F̄22 + �
i=1

N

�i,2u2i, G222 = Ḡ222 + �
i=1

N

�i,22u2i,

F32 = F̄32 + �
i=1

N

�i,2u3i, G322 = Ḡ322 + �
i=1

N

�i,22u3i, �20�

where F̄22, Ḡ222, F̄32, and Ḡ322 are the gradients of the unde-
formed ring and can be calculated exactly; �i,2 and �i,22 are,
respectively, the first- and second-order derivatives of �i
with respect to X2.

Assuming that N nodes are used, the total unknown vector
can be written as

U = �u21,u31, . . . ,u2i,u3i, . . . ,u2N,u3N,�1,��T. �21�

The nonequilibrium force and the stiffness matrix can be
calculated as

f =
�E

�U
, K =

�2E

�U2 . �22�

The equilibrium configurations can be obtained by itera-
tively solving K�U= f until f reaches zero. It should be
noted that K may not be positive-definite around the buck-
ling �structural transition�. A simple way to overcome this
difficulty is to replace K with K+�I, where I is the identity
matrix, and � is a positive number that is slightly larger than
the magnitude of the most negative eigenvalue of K.38
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FIG. 9. �Color online� �a� SWCNT simplified as an elastic ring
�b� that can be mapped from a line segment with length �2�. With
increasing hydrostatic pressure, the shape of the cross section trans-
forms from a circle to an ellipse, then to a peanut shape �c�.
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Numerical simulation is first carried out for the �10,10�
SWCNT. The computation reveals that the first structural
transition occurs when the pressure reaches 1.168 GPa, and
the cross section of the tube transforms from a circle to an
ellipse �Fig. 9�c��. With the increasing pressure, the length of
the long axis increases, but the short axis reduces its length.
At about a pressure of 1.3 GPa, the second structural transi-
tion occurs, and the cross section of the tube transforms from
an elliptical to a peanut shape �Fig. 9�c��. When the pressure
further increases, the short axis continues to reduce its
length, but the length of the long axis remains almost un-
changed. Figure 9�c� shows the configuration transforma-
tions of the cross section at several pressure values. Figure
10 shows the variation of the long and short axes with the
pressure �prior to the first structural transition, the cross sec-
tion is a circle, and the two axes have the same lengths�. To
reveal the dependence of the critical pressure of the first
structural transition on the chirality and radius of the CNTs,
the computations are performed for �n ,0�, �n ,n�, and
�3n ,2n� CNTs with different radii. Figure 11 plots the varia-
tion of the first transition pressure with the tube radius for
�n ,0�, �n ,n�, and �3n ,2n� CNTs. It is found that the first
transition pressure has no obvious dependence on the chiral-
ity of the CNTs.

V. CONCLUDING REMARKS

The mechanical properties of SWCNTs are studied in the
scheme of the higher-order gradient continuum. The effect of
the second-order deformation gradient is considered in the
approximation of the deformations of the microscale bond
vectors, and the continuum elastic potential is obtained by
equating the deformation energy of a representative cell with

that of an equivalent volume of the continuum. Thus, the
continuum constitutive model can be established. The defor-
mation map from a graphite sheet to an undeformed CNT is
set in an appropriate form with three geometrical parameters,
and the structural and elastic properties can be obtained with
the minimization of the cell structure. The response of the
CNTs under the axis-symmetrical loadings can be computed
by changing the values of the three geometrical parameters.
Computations reveal that the elastic properties of CNTs have
a dependence on the chirality and the tube radius, but when
the tube radius is larger than 0.5 nm, the axial and circum-
ferential elastic properties of CNTs are pretty close to those
of the graphite sheet, and the maximum error is less than 2%.
Therefore, CNTs can be viewed as a hollow cylinder with a
minor thickness, and the elastic properties at the tangent di-
rects are almost the same with the graphite sheet.

Under hydrostatic pressure, CNTs deform uniformly
along the axial direction, and a SWCNT can be simplified as
an elastic ring. The strain energy of CNTs can be written in
terms of the radial displacement of the ring and the two
geometrical parameters corresponding to the axial and twist-
ing deformations. The mesh-free method is used to deter-
mine a stable configuration in the scheme of the higher-order
gradient continuum. The pressure-induced structural transi-
tions are studied for different chiralities of CNTs. It is found
that the chirality of CNTs has a slight effect on the critical
transition pressure.
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