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We present a method for the treatment of correlations in finite Fermi systems in a more consistent way than
the random phase approximation �RPA�. The main differences with respect to previous approaches are under-
lined and discussed. In particular, no use of renormalized operators is made. By means of the method of
linearization of equations of motion, we derive a set of RPA-like equations depending only on the one-body
density matrix. The latter is no more assumed to be diagonal and it is expressed in terms of the X and Y
amplitudes of the particle-hole phonon operators. This set of nonlinear equations is solved via an iterative
procedure, which allows us to calculate the energies and the wave functions of the excited states. After
presenting our approach in its general formulation, we test its quality by using metal clusters as a good test
laboratory for a generic many-body system. Comparison to RPA shows significant improvements. We discuss
also how the present approach can be further extended beyond the particle-hole configuration space, getting an
approximation scheme in which energy weighted sum rules are exactly preserved, thus solving a problem
common to all extension of RPA proposed until now. The implementation of such approach will be afforded in
a future work.
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I. INTRODUCTION

The advent of modern computers and the continuous im-
provement of their performances, together with the increas-
ing ability to exploit them by using more and more refined
algorithms, has made possible to calculate quite accurately
the properties of ground state and low energy excited states
of many-body systems starting from the basic interaction1

within several methods: no-core shell model,2–4 coupled
cluster,5–8 and the Green’s function Monte Carlo9–12 calcula-
tions. However, it is not clear whether in the near future an
accurate description of higher lying states can be achieved
along such paths. Another microscopic approach, particularly
well suited for the study of collective vibrational states, is
based on the Hartree–Fock �HF� plus random phase approxi-
mation �RPA� with an effective interaction derived from the
density-energy functional.13–15 As it is well known, in the HF
approximation, one imposes that the ground state of the sys-
tem is the Slater determinant minimizing the expectation
value of the Hamiltonian. By solving the corresponding
variational equations, one gets the “best” single particle
wave functions by which that Slater determinant is built. A
complete single particle basis is then determined by solving
the one-body Schrödinger equation with the self-consistent
HF potential, both for the states occupied in the ground state
�holes� and the unoccupied ones �particles�. The excited
states are then studied within the RPA, describing them as
superpositions of particle-hole �p-h� configurations, built on
top of the unknown exact ground state including correlations.
However, RPA, while having several very nice properties14,15

and being completely microscopic, contains some approxi-
mations. In fact, since the explicit structure of the correlated
ground state is not known, the standard RPA is obtained by
replacing, in the evaluation of the matrix elements of the
RPA equations, this state by the uncorrelated HF one. The

replacement, also called quasiboson approximation, produces
a missing of some terms in the evaluation of the commuta-
tors in the equations of motion and thus a violation of Pauli
principle. Various attempts have been done to improve over
them or by using boson expansion methods,16–24 or remain-
ing entirely in the fermionic space.25–37 In Ref. 32, an exten-
sion of RPA, named improved RPA �IRPA�, was presented.
The starting point was the introduction of renormalized p-h
operators and, by using the method of linearization of the
equations of motion, a set of nonlinear RPA-like equations
was obtained. The main drawback of IRPA is the fact that
one assumes the one-body density matrix �OBDM� to be
diagonal in the HF basis. Such limit was eliminated in Ref.
33, where a more refined procedure was used. In the present
paper, we move along the line of Refs. 32 and 33 and intro-
duce a more general approach, which we will call extended
RPA �ERPA� for brevity, not based on the renormalized RPA
�RRPA�. We will also show some results obtained by apply-
ing this method to the study of the excitation spectrum and
other properties of metallic clusters within the uniform jel-
lium model38,39 with bare Coulomb interaction both for the
electrons with the jellium and for the electrons among
themselves.40 We are aware that the jellium approximation is
too poor for a quantitative study; on the other hand, our
purpose here is not to make a realistic study of metal clusters
but rather to compare different levels of approximations. In
fact, we believe that such a model is a very good test labo-
ratory since it contains many characteristics of a generic re-
alistic many-body system and, on the other hand, it allows a
more clear comparison among different approaches because
no adjustable parameter is present in it �as it is often the case
with effective interactions�. We stress that the present ap-
proach can be used to study any many-body system, the only
differences being the interaction and the relevant quantum
numbers. In particular, we plan to apply it to nuclei where,
for example, RRPA has been shown to improve the descrip-
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tion of double beta decay with respect to RPA.41,42

As discussed in Secs. II and III, the merits of the present
approach with respect to previous ones32,33 can be traced
back to the fact that one does not move anymore in the
RRPA scheme. On the other hand, the problem remains that,
as in all the extensions of RPA proposed until now, violations
of the energy weighted sum rules �EWSRs� are still present.
In this respect, we recall that the fulfillment of EWSR guar-
antees that spurious excitations corresponding to broken
symmetries as, for example, the translational invariance,
separate out and are orthogonal to the physical states. We
show that by enlarging the configuration space, along the
lines of Ref. 37, within the present framework, it should be
possible to implement a completely self-consistent RPA pre-
serving the EWSR and to overcome the difficulties pointed
out in Ref. 37 where the RRPA enlarged scheme was studied
in a three-level Lipkin model. This possibility will be inves-
tigated in the near future.

In Sec. II, the basic equations of ERPA are shown and
their derivation is outlined, while Sec. III is devoted to tran-
sition amplitudes and sum rules. In Sec. IV, we show the
results and compare them with the RPA ones and with the
available experimental data. An improved agreement with
the latter is obtained. Finally, in Sec. V, we draw the main
conclusions and outline the direction for future work.

II. BASIC EQUATIONS OF ERPA

In Ref. 32, an extension of RPA, named IRPA, was pre-
sented. The starting point was to introduce renormalized p-h
creation and annihilation operators �for notation simplicity,
we do not indicate coupling to total quantum numbers�,

Bph
† = �

p�h�

Nph,p�h�ap�
† ah� �1�

by which one builds the operators

Q�
† = �

ph

�Xph
� Bph

† − Yph
� Bph� , �2�

whose action on the ground state of the system �0� generates
the collective states,

��� = Q�
†�0� , �3�

with �0� defined as the vacuum of the Q�’s,

Q��0� = 0. �4�

By assuming that the one-body density matrix is diagonal

�0�a�
†a��0� = n����, �5�

choosing

Nph,p�h� = �pp��hh��nh − np�−1/2 � �pp��hh�Dph
−1/2, �6�

and following the equations of motion method,14,15 one finds
for the excitation energies �� and the X and Y amplitudes,

� A B

− B� − A� 	�X���

Y��� 	 = ���X���

Y��� 	 , �7�

with

Aph,p�hp = �0�
Bph,H,Bp�h�
† ��0� , �8�

and

Bph,p�hp = − �0�
Bph,H,Bp�h���0� , �9�

where H is the Hamiltonian of the system and the symme-
trized double commutators are defined as


A,B,C� =
1

2
�
A,
B,C�� + 

A,B�,C� . �10�

In IRPA, the X and Y amplitudes satisfy the same orthonor-
mality conditions as in RPA,

�
ph

�Xph
� Xph

�� − Yph
� Yph

��� = ����, �11�

following from Eqs. �4�–�6�. In order to make affordable the
solution of Eqs. �7�, one has to resort to some approximation.
In IRPA, the linearization of the equations of motion was
used: all the two-body terms appearing in the commutator of
the Hamiltonian with a p-h operator are contracted with re-
spect to the reference state �0�. In this way, one obtains a
quantity linear in the p-h operators. Substituting this in the
double commutators of Eqs. �8� and �9�, one gets an expres-
sion for the matrices Aph,p�h�= �0�
ah

†ap ,H ,ap�
† ah���0� and B

containing only the OBDM. The standard RPA equations can
be derived by the same procedure but using the uncorrelated
HF ground state instead of the correlated one �0�. In the
IRPA case, this method leads to a set of RPA-like equations,
but with the A and B matrices depending on the occupation
numbers which, in turn, can be evaluated in terms of the X
and Y amplitudes by using the number operator method.43

The equations of motion are thus nonlinear and have been
solved iteratively. One limitation of IRPA is the fact that one
assumes the OBDM to be diagonal in the HF basis. Such
inconsistency was eliminated in Ref. 33, where a double it-
erative procedure was used: starting from a zero order ap-
proximation and assuming the OBDM to be diagonal, one
solves the IRPA equations, next the number operator method
is used to calculate the OBDM with the so determined X and
Y, then the OBDM is diagonalized and the IRPA calculation
is repeated in the new basis, and so on until convergence is
reached. Of course, this double iterative procedure is quite
demanding from the computational point of view. On the
other hand, use is still made of ansatz �1� and choice �6�.
This is certainly a limitation. In the following, we will
present an improved approach �ERPA�, in which such a limi-
tation is overcome. Thus, ERPA is completely self-consistent
within the linearization of the equations of motion method.

In the present approach, after the single particle basis is
fixed by solving the HF equations, we introduce phonon op-
erators Q� having the same form as the RPA ones,

Q�
† = �

ph

�Xph
� ap

†ah − Yph
� ah

†ap� , �12�

avoiding thus the use of “renormalized” operators and choice
�6�.

The X and Y amplitudes are solutions of the system of
equations
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� A B

B� A� 	�X���

Y��� 	 = ���G 0

0 − G� 	�X���

Y��� 	 , �13�

where

Aph,p�h� = �0�
ah
†ap,H,ap�

† ah���0� , �14�

Bph,p�,h� = − �0�
ah
†ap,H,ah�

† ap���0� , �15�

Gph,p�,h� = �0�
ah
†ap,ap�

† ah���0� , �16�

and satisfy the orthonormality conditions

�
ph,p�h�

�Xph
v Xp�h�

v� − Yph
v Yp�h�

v� �Gph,p�h� = �vv�. �17�

The standard RPA equations can be obtained by replacing, in
the evaluation of matrices �14�–�16�, the state �0� with the
�uncorrelated� HF one. In particular, the norm matrix G ac-
quires the simpler form

Gph,p�,h�
�HF� = �HF�
ah

†ap,ap�
† ah���HF� = �hh��pp�, �18�

and thus for the RPA X and Y amplitudes, we find again the
orthonormality conditions �11�. This substitution introduces a
visible inconsistency since, on one hand, the definition of
ground state �4� as the vacuum of the Q operators is used to
derive the Eqs. �13�, while, on the other hand, the HF state is
used in calculating the expectation values appearing in those
equations. Furthermore, it introduces some violations of the
Pauli principle.15

The explicit form of the ERPA matrices A, B, and G in
terms of the OBDM �, obtained by using the linearization of
the equations of motion, is

Aph,p�h� =
1

2
���h,h����p,p�� + ��p,p����h,h��

− �hh��
p1

��p,p1���p1,p�� − �pp��
h1

��h,h1���h1,h��

+ �
h1h2

�ph1�v�h2p����h1,h����h2,h�

+ �
p1p2

�hp1�v�p2h����p1,p����p2,p�

+ 2 �
h1p1

�h1p1�v�p�h���h1,h����p1,p�

+ �ph ↔ p�h�� , �19�

Bph,p�h� = − � �
h1h2

�h1h2�v�p�p���h1,h����h2,h�

+ �
p1p2

�h�h�v�p1p2���p1,p����p2,p�

+ �
h1p1

�h1h�v�p1p����h1,h����p1,p�

+ �
h1p1

�h1h��v�p1p���h1,h���p1,p�� , �20�

Gph,p�h� = �pp���h,h�� − �hh���p,p�� , �21�

where t and v are the one-body and the two-body parts of the
Hamiltonian, respectively.

In Eq. �19�, the � quantities are defined as

���,�� = t�,� + �
��

����v�������,�� , �22�

in which �, �, �, and � run over all single particle states.
Note that when ��� ,�� is assumed to be diagonal and its
eigenvalues equals to 0 or 1, i.e., in the HF limit, the above
quantities become

���,�� = t�,� + �
h

��h�v��h� � ���HHF��� , �23�

where HHF is the HF one-body Hamiltonian. Since the latter
commutes with the HF one-body density, ��� ,��
=����� ,��, where �� are the HF single particle energies. The
matrix ��� ,�� of Eq. �22� can be diagonalized without going
to the HF limit using instead the OBDM obtained self-
consistently within ERPA. In this way, one gets a kind of
“generalized single particle energies.” We will discuss that in
Sec. IV.

In the expressions for the A, B, and G matrices, the
OBDM appears. By using the number operator method,43 its
matrix elements are expressed in terms of the X and Y am-
plitudes. Therefore, Eqs. �13� are nonlinear. In the present
approach, we have

��p,h� � �0�ap
†ah�0� = 0, �24�

��p,p�� � �0�ap
†ap��0� = �

���

S��,��� �
p1h1

�
p2h2

Yp1h1

� Yp2h2

���

	 �
h

G�ph,p1h1�G��p�h,p2h2� , �25�

��h,h�� � �0�ah
†ah��0� = �hh� − �

���

S��,��� �
p1h1

�
p2h2

Yp1h1

� Yp2h2

���

	 �
p

G�ph,p1h1�G��ph�,p2h2� , �26�

where

S��,��� = ���� −
1

2 �
p1h1,p2h2

Xp1h1

� Xp2h2

���

	 �
p3h3

G�p3h3,p1h1�G��p3h3,p2h2� . �27�

The above equations are exact up to order O��Y�4�. We re-
mark that in Eqs. �25� and �26�, the X and Y amplitudes as
well as the norm matrix G appear. In order to solve the
equations of motions �13�, we use an iterative procedure. At
the nth iterative step, we compute the � matrix, and thus, the
A, B, and G matrices by using the X and Y amplitudes and
the � matrix of the �n−1�th step. As starting point, we take
the solutions of the standard RPA equations and the HF �
matrix. This procedure is carried out until convergence is
reached.
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In the present approach, all calculations are carried out in
the HF single particle basis. The OBDM is calculated in the
correlated ground state �0� state defined as the vacuum of the
Q operators. Another possible choice could be to work in the
basis which diagonalizes OBDM �as it was made in Ref. 33
in the RRPA approach� or the “generalized single particle
energies” 
Eq. �22��. In both cases, at each step of the itera-
tive procedure, one has to diagonalize � or � matrix and,
after that, calculate the G, A, and B matrices in the new
basis. These operations make the procedure more cumber-
some from a numerical point of view.

III. TRANSITION AMPLITUDES AND SUM RULES

As it is well known, if �0� and ��� are a complete set of
exact eigenstates of the Hamiltonian, with eigenvalues E0
and E�, the following identity holds:

�
�

������F�0��2 =
1

2
�0�
F,
H,F���0� , �28�

where ��=E�−E0. The above equality is in general violated
to some extent when �0�, ���, and �� are calculated with
some approximation. To which extent it is satisfied is a mea-
sure of the adequacy of the approximation. We note that the
right-hand side is a quantity which depends only on the
ground state properties.

Let us examine the transition amplitudes ���F�0� induced
by a one-body operator,

F = �
�,�

���F���a�
†a�, �29�

between the ground state �0� and excited states ���. By using
definition �3� and the vacuum property �4�, one gets

���F�0� = �0�
Q�,F��0� . �30�

The above expression is general and it is valid independently
of the explicit form of the Q operators. When the latter has
form �12�, only the p-h components of the transition operator
F are selected. A very important feature of RPA, known as
Thouless theorem,44 can be described as follows. In both
sides of Eq. �28�, the HF state is used, instead of the corre-
lated �0� one. Then, from Eq. �30�, one gets

���F�0� = �
ph

�Xph
���p�F�h� + Yph

���h�F�p� . �31�

i.e., the standard RPA expression. On the other hand, the
right-hand side evaluated in the HF state can be completely
expressed in terms of the A and B matrices of RPA. It is then
easy to show15,44 that, if the left-hand side is calculated by
using Eq. �31� and the RPA values for the energies �� and
the X� and Y� amplitudes, equality �28� is exactly satisfied.
This result is very important also because it guarantees that
spurious excitations corresponding to broken symmetries �as,
for example, the translational invariance� separate out and
are orthogonal to the physical states. We remark that, when
the right-hand side is evaluated in the HF state, only the p-h
components of the transition operator F appear in it.

When the correlated �0� is maintained, it is still true that
only the p-h components of the transition operator F appear
on the left-hand side and one has

���F�0� = �
php�h�

�Xph
���p��F�h�� + Yph

���h��F�p��Gph,p�h�,

�32�

while this is no more the case on the right-hand side, where
the whole structure of F appears. This is the reason why all
extensions of RPA, with only p-h excitations, violate Eq.
�28�. We stress that if only the p-h part of the F operator is
taken in the double commutator and the latter is calculated
by the linearization procedure, just the ERPA matrices A, B,
and G appear on the right-hand side. Therefore, if ERPA
quantities are used also on the left-hand side, the EWSR is
preserved.

Since the deviations present in ERPA can be ascribed to
the fact that the Q�

† operators have the structure of Eq. �12�,
a possible generalization would be to assume

Q�
† = �

�
�

�X��
� a�

†a� − Y��
� a�

†a�� �33�

where � and � denote generic single particle states �occupied
and not�. As shown in Ref. 37 within such “enlarged” RPA
approach, equality �28� holds exactly. This has been also
tested numerically in Ref. 37 where an enlarged RRPA ap-
proach has been applied to a three-level Lipkin model. How-
ever, a difficulty was pointed out, namely, the appearance of
a nonphysical state, which could not be eliminated within
that approach. Within the RRPA, such state could not be
identified a priori but, by comparison, it was found that it did
not correspond to any exact eigenstate. In a realistic calcula-
tion, of course, this is not possible. In the scheme we are
presenting in this paper, this difficulty may be overcome
since nonphysical states, if any, can be singled out by look-
ing for zero eigenvalues of the norm matrix G, thus getting,
within the method of linearization of the equations of mo-
tion, a self-consistent approach. This will be the subject of
future investigations.

IV. RESULTS AND DISCUSSION

As mentioned above, the described method can be used to
study any many-body system. In this section, we apply it to
study the electronic properties of metal clusters. In fact, such
systems show many characteristics of a generic realistic
many-body system and, on the other hand, a more clear com-
parison among different approaches can be done since no
resort to effective interactions, depending on adjustable pa-
rameters, is necessary.

The ERPA results will be compared with those obtained in
the standard RPA approach. The calculations are done in the
jellium approximation. In this model, the ionic background is
described as a uniform positive charge distribution, which
interacts with the delocalized valence electrons, also interact-
ing among themselves, via the bare Coulomb interaction.
The jellium properties are completely determined by one pa-
rameter, the Wigner–Seitz radius rs. Within this model, the
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motion of the valence electrons is determined by the Hamil-
tonian

H = �
i

hi + �
i�j

vij , �34�

with

hi = −
�2

2m
�i

2 + V�ri�; vij =
e2

4

1

�r�i − r� j�
, �35�

and

V�r� =
Ze2

4
��1/2rc��r2/rc

2 − 3� for r � rc

− 1/r for r � rc,
� �36�

where Ne is the number of electrons and rc is the radius of
the jellium sphere, i.e., rc=rsNe

1/3.
The procedure that we have followed consists of the fol-

lowing steps. First of all, we have obtained, by solving HF
equations, the single particle basis, in which all the subse-
quent calculations are carried out. The single particle wave
functions have been represented as linear superposition of
harmonic oscillator ones. After that, we have solved the stan-
dard RPA equations. The so obtained X and Y amplitudes are
used as input quantities in the ERPA iterative procedure. In
the first step, we thus use them and the HF norm matrix �18�
to calculate the OBDM. With the new A, B, and G matrices,
we solve the ERPA 
Eq. �13��. The new X’s and Y’s and the
G matrix of the previous iterative step are used to recalculate
the OBDM and so on until convergence is reached, namely,
until the maximum relative difference in the excitations en-
ergies between two successive iterations is less than a chosen
limit. In the calculations, we are going to present that this
limit has been put equal to 10−5.

We remark that, at each step of the iterative procedure, we
solve the ERPA equations for multipolarities ranging from
L=0 to L=6 for both the spin S=0 and S=1 channels, and
the so obtained X and Y amplitudes, for all L and S, are used
in building the new OBDM. At RPA level, in some cases,
these equations are found to have imaginary solutions. This
happens, for example, for some states with spin S=1 and it is
due to the too much attractive behavior of the bare Coulomb
interaction in the S=1 channel. The states having imaginary
energies are thus not included in the initial steps. However,
with the use of the new OBDM, we find that the final solu-
tions are real for all L and S states.

The present approach has been applied to the study of
neutral and ionized closed shell Na clusters, with a number
of valence electrons ranging from 8 to 92. However, in the
following, we will focus our analysis on the medium-size
Na40 and Na41

+ clusters since the qualitative behavior is the
same for the other closed shell clusters.

In Fig. 1, we show the centroid energies of the strength
distributions for multipolarities from L=0 to L=4 and spin
S=0 and S=1 in Na40. In each panel, the values on the left
and on the right-hand sides are those obtained in RPA and
ERPA, respectively. Note that for S=1 and L=3, RPA col-
lapses. The differences among the two approaches are quite
pronounced in both the S=0 and the S=1 spin channels. In
the latter case, we see that all the centroids are pushed up as

a consequence of the better treatment of ground state corre-
lations in ERPA with respect to RPA. In particular, the col-
lapse of RPA for L=3 is not present in ERPA.

In Figs. 2 and 3, we plot the dipole strength distributions
obtained by folding the discrete lines of RPA and ERPA spec-
tra with a Lorentzian function. In both cases, an artificial
width �=0.1 eV has been used. In Fig. 2, we show the S
=0 dipole strength distribution for the neutral case. The solid
line refers to the calculations performed within the present
approach, whereas the dashed line to those of standard RPA.
The experimental distribution45 exhibits two broad peaks at
about 2.4 and 2.65 eV and the first one is higher than the
second one. As we can observe in Fig. 2, RPA predicts the
first peak at an energy of about 2.45 eV, very close to the
experimental value, and the second one much higher, at
about 2.97 eV. Furthermore, the height of the second peak is
about twice that of the first one. In ERPA, both peaks are
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FIG. 1. RPA and ERPA centroid energies �eV� of Na40 cluster
for multipolarities from L=0 to L=4 and spin S=0 �left panel� and
S=1 �right panel�.
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while the dashed line refers to standard RPA calculations. The ar-
rows roughly indicate the positions of the experimental peaks.
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shifted to lower energies, at about 2.39 and 2.79 eV, in agree-
ment with the experimental values �indicated by arrows in
the figure�. Also, the structure of the distribution changes and
a reshuffling of the strength, qualitatively in better agreement
with the experimental results, are observed. In particular, we
have an increasing of the height of the first peak and a low-
ering of the second one. However, the strength distribution
remains quite different from the experimental one. In Fig. 3,
we show the S=0 dipole strength distribution for the ionized
cluster Na41

+ . Also, in this case, the calculated distribution is
shifted with respect to the RPA results and it fits well with
the experimental results,46 in which a single peak at about
2.6 eV is found. The ERPA energy of this peak is about 2.64
eV, rather better than the RPA one which lies at about 2.77
eV. The improvement obtained in ERPA can be seen by ana-
lyzing also the centroid energy associated with the strength
distribution. The ERPA result �2.70 eV� is lower by �10%
with respect to the RPA one �2.97 eV�, quite close to the
experimental value �2.62 eV�.46

If F is a multipole operator r�Y�0 and the Hamiltonian
contains a kinetic energy term plus a local two-body interac-
tion, one gets15

1

2
�0�
F,
H,F���0� =

�2

2m

��2� + 1�
4

N�0�r2�−2�0� , �37�

with N as the number of particles and

�0�r2�−2�0� =
1

N
�
�,�

���,��� r2�−2���r���
��r�d3r , �38�

where � and � stand for any single particle states with wave
functions ���r� and ���r�.

Let us now consider some results on the sum rules. As we
discussed in Sec. III, Eq. �28� is an identity when a complete
set of exact eigenstates of the Hamiltonian is used. There-
fore, analyzing the deviations from equality when different
approximate schemes are used is a good test to verify and to
compare their adequacy. We recall again that the Thouless
theorem states that Eq. �28� is exactly satisfied if the mean
values in the correlated ground state �0�, appearing in both
sides are approximated by those in the �HF� one. When the

mean values are calculated in the correlated ground state
rather than in the HF one, some differences are expected. In
Table I, we show, for Na40 and multipolarities ranging from 0
to 3, the values of the right-hand side of Eq. �28� calculated
by using Eqs. �37� and �38� in the HF, RPA, and ERPA
ground states and, correspondingly, the left-hand side calcu-
lated by using Eq. �32� with the HF, RPA, and ERPA one-
body density. As above discussed, in standard RPA, the �HF�
state, and thus the HF one-body density, is used in evaluating
the RPA matrices. On the other hand, the RPA ground state,
defined as the vacuum of the Q operators, can be explicitly
obtained15 within the quasiboson approximation. It has the
form

�RPA� � eẐ�HF� , �39�

with

Ẑ =
1

2 �
p1h1p2h2

Zp1h1p2h2
ap1

† ah1
ap2

† ah2
. �40�

where the Z matrix satisfies the following relation:

Z = Y�X�−1
. �41�

By using the number operator method of Ref. 43, one gets

�RPA��,�� = n����, �42�

with
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FIG. 3. As in Fig. 2 but for Na41
+ metal cluster.

TABLE I. For each multipolarity �, we report the values of the
two sides of Eq. �28�, in units of Å2� · eV, calculated in the HF �first
row�, RPA �second row�, and ERPA �third row� ground states �GS�.
The right-hand side is calculated by using Eqs. �37� and �38�, while
the left-hand side by means of Eq. �32�. Equations �24�–�26� and
�42�–�44� are used in the ERPA and RPA case, respectively. The
results refer to Na40.

Multipolarity Left-hand side Right-hand side

�=0

�HF GS� 0.16253	104 0.16199	104

�RPA GS� 0.55083	103 0.23964	104

�ERPA GS� 0.12819	104 0.16551	104

�=1

�HF GS� 0.10960	103 0.10951	103

�RPA GS� 0.14767	102 0.10951	103

�ERPA GS� 0.76098	102 0.10951	103

�=2

�HF GS� 0.20282	105 0.20239	105

�RPA GS� 0.61385	104 0.29955	105

�ERPA GS� 0.15843	105 0.20703	105

�=3

�HF GS� 0.25643	107 0.25517	107

�RPA GS� 0.96030	106 0.83273	107

�ERPA GS� 0.20333	107 0.26591	107
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nh = 1 −
1

2�
p,�

�Yph
� �2, �43�

and

np =
1

2�
h,�

�Yph
� �2. �44�

We remark that the above expressions for the occupation
numbers differ from those obtained by making use of the
QBA by the factor of 1

2 . The same result was obtained in Ref.
47.

From the first rows of Table I, we see that the Thouless
theorem 
i.e., equality of the left-hand side and right-hand
side of Eq. �28� when both are calculated in �HF�� is numeri-
cally well satisfied, better than 1%, for the shown multipo-
larities. From the second and third rows, respectively, we see
that both in RPA and ERPA, equality �28� is not satisfied.
However, in the latter approach, the deviations are much
smaller than those found when the RPA correlated ground
state, and the corresponding X and Y amplitudes are used.

Another important quantity is the static dipole polarizabil-
ity � that is related to the inverse moment,

S−1 = �
�

��
−1����F�0��2, �45�

by

S−1 =
1

2
� . �46�

In the case of Na40, our RPA value is 522.42 Å3, in very
good agreement with that found in Ref. 40. The ERPA value
is somewhat smaller, namely, 434.34 Å3, to be compared
with the experimental value of 605.46�11.40 Å3.48 In this
respect, however, it has to be noted that, as stressed also in
Ref. 49, the jellium approximation may be too poor. Indeed,
in Ref. 50, it is shown that the inclusion of ionic structure
effects by means of pseudopotentials leads to an increase of
30% in the polarizability.

A problem encountered when RPA is applied to the study
of nuclear systems is that the energies of the low lying states
are found quite higher than the experimental values. This is
related to the fact that the equations of motion contain the
single particle HF energies, whose spacing is too large, es-
pecially the gap between the last occupied and the first un-
occupied levels. As said at the end of Sec. II, in the ERPA
equations of motion the quantities ��� ,�� defined in Eq. �22�
appear instead of the HF energies. In order to disentangle
how much the modifications of the energies of the collective
states are related to this, we have diagonalized ��� ,��. In
Fig. 4, the so obtained generalized single particle energies
are compared with the HF ones. The main difference is that
the states above the Fermi level are lowered while those
below are pushed up. This might be one of the reasons why
the energies of the collective states in ERPA are lower than
those in RPA. It would be interesting to see how much this
reduced gap can improve the results in nuclei.

In Fig. 5, we show the occupation numbers np for particle
states and the opposite of the depletion numbers nh−1 for

hole states obtained in RPA 
see Eqs. �43� and �44�� and in
ERPA in the lower and upper panels, respectively. The latter
is calculated by diagonalizing, at the end of the iterative
procedure, the OBDM. All states with L=0–6, both in S
=0 and in S=1 spin channels, are used in the calculation of
these quantities. However, as mentioned above, RPA breaks
down in the L=3, S=1 channel �as well as in the L=5, S
=1 one�, while ERPA solutions are found to be real for all L
and S states. We note that the deviations from the HF limit,
i.e., nh=1 and np=0, are greater in ERPA than in RPA. A
different result was found in Ref. 32 where, however, several
further approximations with respect to the present approach
were introduced �see Sec. II�. It has to be noticed that the use
of quasiboson approximation in the evaluation of RPA ma-
trices is justified only when the HF state does not differ very
much from the correlated one. The big deviations found in
RPA show that the quasiboson approximation, and thus the
standard RPA, is not adequate. As mentioned above, the
ERPA occupation numbers deviate from the HF limit more
than the RPA ones. However, this is not a difficulty in ERPA
since the correlated ground state, rather the HF one, is used
as the reference state.

Other useful information about the ground state properties
can be obtained by looking at the electron density,

��r� =
1

4
�
�,�

���,�����r���
��r� , �47�
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FIG. 4. HF single particle energies �left side� and generalized
single particle ones �right side� �see the text for more details�. A few
lowest particle states �p� and the hole ones �h� are shown above and
below the dashed line, respectively.
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where � and � stand for any single HF particle states with
wave functions ���r� and ���r� and normalized so that

4�
0

�

r2��r�dr = Ne, �48�

where Ne is the number of electrons. In Fig. 6, we show the
electron densities calculated in HF �dotted line�, RPA
�dashed line�, and ERPA �full line�. Note that in HF, the
OBDM is diagonal and one has

�HF�r� =
1

4
�

h

��h�r��2, �49�

where the sum runs only over hole states. Similarly, in RPA,
it is still assumed to be diagonal with occupation numbers
different from the HF ones 
see Eqs. �43� and �44�� and one
gets

�RPA�r� =
1

4
�
�

n�����r��2. �50�

We can see that when RPA correlations are included, the
electron density in the interior part is smaller than in the HF
case while its tail is much longer. On the contrary, the ERPA
electron density comes out to be closer to the HF one and, in
particular, the tails are almost identical. In Fig. 6, we show

also the values �dotted-dashed line, denoted by D-ERPA�,
which are obtained by taking only the diagonal terms of the
OBDM calculated in ERPA. As it is apparent, in this case the
electron density gets closer to the RPA one. The HF electron
density shows some oscillations in the interior part, which
are due to the shell structure and are washed out in the other
approaches. However, we underline that HF and ERPA,
while having occupation numbers so different from each
other, give similar electron densities when the corresponding
complete OBDM is used self-consistently.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented an approach �ERPA�,
going further toward a completely self-consistent RPA. A
significant improvement is achieved over the renormalized
RPA framework of previous extensions of RPA. In particular,
it is less demanding from the point of view of computational
resources. In order to test the merits of the new approach, we
have applied it to the study of the electronic properties of
metal clusters within the jellium approximation. By compari-
son with the available experimental data, we found that it
gives better results than RPA. Sizeable violations of the
EWSR are still present in ERPA as in all extensions of RPA
proposed until now. As discussed at the end of Sec. III, by
enlarging the space of elementary excitations along the lines
of Ref. 37 within the present framework, it should be pos-
sible to implement a completely self-consistent RPA preserv-
ing the EWSR and to overcome the difficulties encountered
in Ref. 37. This will be the object of future investigations. As
it is clearly pointed out, the applicability of the approach is
quite general. Some results shown in the present paper like
those on “generalized single particle energies” and on sum
rules make us confident that our method will display all its
potentialities when applied to the study of atomic nuclei, as
we plan to do in the near future.
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FIG. 6. Electron density � for Na40 cluster as obtained in HF
�dotted line�, RPA �dashed line�, and ERPA �full line�. The D-ERPA
result �dotted-dashed line� means the ERPA result when only the
diagonal terms of the OBDM are taken. The arrow indicates the
radius of the jellium sphere.
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ERPA occupation numbers are calculated by diagonalizing, at the
end of the iterative procedure, the OBDM, while Eqs. �43� and �44�
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