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We describe two metamaterial waveguide designs which display negative refraction. Both use quantum well
nanostructures to engineer tunable resonances in the dielectric response, which can be designed using the rules
of quantum mechanics. One uses coupling to a “plasmonic” resonance in adjacent metallic layers to enhance
the size of the negative refraction effect. The negative refraction appears close to the quantum well intersub-
band transition energy, and is sensitive to the two-dimensional concentration of electrons within the wells and
in adjacent conducting layers, thus offering the potential for switchable devices. These “quantum metamateri-
als” are highly distributed multilayered optically anisotropic systems with comparatively low absorption in the
negatively refracting spectral region, and they can readily be grown by conventional semiconductor epitaxial
growth technologies.
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I. INTRODUCTION

Metamaterials1 have generated much interest in the field
of classical linear optics because of their promise of realizing
such exciting concepts as an invisibility cloak2 or a perfect
lens,3 which hinge on their ability to generate tunable and
spatially varying optical properties including negative refrac-
tion. In this paper we extend the metamaterial idea by using
nanotechnology methods which enable us to engineer mate-
rials on a length scale much smaller not just than the wave-
length of light, but also the electrons. This gives us a means
of controlling the materials’ macroscopic electromagnetic re-
sponse, and hence a route to generating negatively refracting
device structures.

Negative refraction and negative index were described
theoretically by Veselago4 in 1968, where he considered two
different, but equivalent, physical mechanisms. In essence,
the dot product of the Poynting vector and the k vector of the
traveling wave needs to be negative; this can be achieved
either in a material possessing negative group velocity and
positive k vector �typically by working in the anomalous
dispersion region�, or in a material with positive group ve-
locity and negative k vector �� and ��0�. Causality implies
that both mechanisms will be accompanied by optical
absorption,4 but in practice this can be offset in structures
which either provide gain to offset the losses, or which con-
centrate the fields5 after the refraction has taken place.

Experimental work on negative refraction typically ex-
ploits the anomalous dispersion around the plasma resonance
of metallic structures, such as conducting anisotropic slab
structures6 and parallel plate metallic waveguides.7 In this
paper we propose the use of anomalous dispersion around
the intersubband transition of a quantum well �QW� to in-
duce negative refraction through the first of the mechanisms
described above. We investigate two slab waveguide designs,
both based around semiconductor QWs. The first, a “plas-
monically coupled” design �Sec. II B� supports a mode simi-
lar to the so-called long-range plasmon �LRP� mode8 famil-
iar from metallic layer studies, and the second �Sec. II C�
supports a mode more akin to the transverse magnetic �TM0�
mode of a dielectric slab waveguide.

The effects of varying the two-dimensional �2D� electron
density in the quantum wells are modeled, and we show that
by increasing the number of electrons in the quantum wells
one can induce a negative index region in the dispersion
curves of the LRP and TM0 modes while preserving the abil-
ity to efficiently couple plane wave beams directly into the
modes without having to use evanescent wave coupling tech-
niques. For device applications, the 2D electron density in
the quantum wells could be varied by either optical
pumping,9 or electrical gating.10

Section II provides the theoretical framework. In Sec. II A
we present a general description of the modes bound to an
anisotropic layer but propagating in its plane. Section II B
outlines the effective medium approach appropriate for a
LRP-type waveguide with quantum wells embedded in it,
and Sec. II C details the effective medium approach for a
stack of multiple quantum wells �MQWs�. In Sec. III we
present the dispersion curves, the absorption, the effective
refractive index, and the effects of field compression in these
two waveguide designs. Section IV is a brief conclusion.

II. THEORETICAL FRAMEWORK

A. Bound modes supported by an anisotropic layer

We start by considering the general case of a central ho-
mogeneous slab, of thickness d and anisotropic dielectric
tensor �̄2. It is clad by a medium of homogeneous and iso-
tropic dielectric constant �1 �Fig. 1�. �1 is real and positive
while �̄2 is written as

�̄2 = ��xx 0 0

0 �yy 0

0 0 �zz
� , �1�

where �xx=�yy and �zz are complex values with as yet no
restriction.

We follow the procedures outlined by Yeh11 and solve
Maxwell’s equations for the boundary conditions in Fig. 1, to
find the linearly polarized modes which are bound in the z
direction but which propagate, in the plane of the slab, in the
x direction. In the case of the transverse magnetic �TM� po-
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larization, the lowest loss modes are composed of fields at
the upper and lower interfaces of the slab, coupled together
to give a mode which is symmetrical in z. This mode has
dispersion relations given by

h tan�hd/2� = q�xx/�1, �2�

where h and q are defined by

h2 = K2�xx − kx
2�xx/�zz, �3�

q2 = kx
2 − K2�1, �4�

where K is the free-space wave vector. kx is the x component
of the wave vector and is known as the complex propagation
constant, kx=kx

�r�− ikx
�i�. The magnetic fields themselves are

given by

Hy�x,z,t� = exp�i��t − kxx��Hm�z� , �5�

Hm�z� = �A cos�hz� , �z� � d/2,

B exp�− qz� , z � d/2,

B exp�qz� , z � − d/2.

�6�

Now, more specifically, we consider a central slab region
�with dielectric response �̄2� which is made from a multilay-
ered stack of N repeats, each of which is structured at the
nanoscale and has a total thickness Ls, giving a central slab
thickness d=NLs. Ls is much shorter than the optical wave-
length of the mode, allowing us to use an effective medium
approach12 to describe the slab’s dielectric response, �̄2.

B. Effective medium for “plasmonically coupled” central slab
design, using doped metallic layers adjacent to the

quantum wells

Figure 2 shows a subunit, of thickness Ls, of such a stack
design which features a metallic conducting layer coupled to
a closely adjacent quantum well �QW�. The metallic layer is
a heavily n-doped semiconductor which supports collective

many-electron plasmonic resonances. It is thin compared to
an optical wavelength, but still thick compared to a typical
electron wavelength in the semiconductor, so its conductivity
can be well approximated by a simple classical Drude model.

The QW on the other hand, as well as being much thinner
than an optical wavelength, is also thin enough for the en-
ergy spacings of the confined electron states it contains to be
larger than kT. Its single particle “intersubband transitions”
�ISBT’s� have energies, E12, which can be independently
tuned, e.g., by the choice of QW design parameters. For the
moment we suppose a simple GaAs /AlGaAs single QW de-
sign, but more complex multibarrier and coupled QW nano-
structure designs can be envisaged for the future. The QW
has the extremely anisotropic dielectric response of a 2D
electron gas.13 Fields polarized in the QW plane see a metal-
lic dielectric response but fields polarized normal to the QW
layer see an atomiclike response, with a Lorentzian absorp-
tion line, centred at E12, whose strength is proportional to the
doped-in sheet electron density, ns.

The Fourier components of the electric field, E, general-
ized displacement, D, and electron current density, j, are
connected by the relation

D̄�z,kx;�� = ��z�Ē�z,kx;�� +
i4�

�
j̄�z,kx;�� , �7�

where ��z� is the background dielectric constant at point z,
and kx is the in-plane component of the photon wave vector.
Since we are working in the long wavelength limit, we set
j�z ,kx ;��= j�z ,kx=0;�� and omit further references to kx in
the derivation of �̄2,

j̄�z,�� = Ē�z,���̄�z,�� . �8�

Standard boundary conditions require Ex and Dz to be con-
tinuous at the interfaces, but Ez and Dx are discontinuous,
and must be suitably averaged over the central slab to obtain
its dielectric response when it is viewed as an effective me-

FIG. 1. Schematic of the overall waveguide comprising a central
slab, of thickness d, whose anisotropic dielectric response tensor,
�̄2, is determined by its nanoscale layered structure. It is surrounded
by two semi-infinite dielectric layers with the same real, isotropic,
and positive dielectric constant, �1.

FIG. 2. �Color online� Detail of the layers making a single pe-
riod of a “plasmonically coupled” quantum metamaterial multilayer
which, in turn, makes up the central slab in Fig. 1. Layer 1 acts as
a bulk metallic conducting layer whose collective plasma resonance
couples electrostatically to the single electron intersubband transi-
tions in the QW, layer 3. The resulting quantum metamaterial be-
haves as an anisotropic effective medium with the dielectric re-
sponse tensor �̄2 as described in the text.
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dium. We define the corresponding effective dielectric func-
tion as14

�xx��� = 	Dx���
/Ex��� , �9�

�zz
−1��� = 	Ez���
/Dz��� , �10�

where

	Dx���
 =
1

Ls
�

−Ls/2

Ls/2

Dx�z,��dz , �11�

	Ez���
 =
1

Ls
�

−Ls/2

Ls/2

Ez�z,��dz . �12�

For the four-layer plasmonically coupled design �Fig. 2� Eq.
�7� relates the background dielectric constant and current
density of each layer to its generalized displacement, D���.
As discussed above, layer 1 is thick enough for its electrons
to be treated as a classical 3D Drude gas, and the current
distribution in layer 3 is treated as an ideal quasi-two-
dimensional sheet. Layers 2 and 4 are undoped and therefore
carry no current.

For the quasi-two-dimensional electron gas �layer 3� we
have12

�zz
�2D� =

1

Ez����−�

�

jz�z,��dz =
jz
�2D����
Ez���

, �13�

which describes the nonretarded response of the electron gas
to the z component of the external electric field, E, which we
will take to be the z component of the electric field in layer 2.
�Later, we will make use of the continuity of Dz across the
boundary from layer 2 to layer 3 in the derivation of �zz.�
Assuming for the moment that the QW contains only two
strongly confined levels, with only the lower one occupied,
using the local density approximation15 leads to

�zz
�2D���� = 	

− i

�E21
2 − �
��2�/2
�� − i

, �14�

where 	=nse
2f21h /2m�. E12 is the intersubband transition

energy modified by depolarization effects, f21
=2mE21�z21�2 /h2 is the oscillator strength and �=h /� the
dephasing time associated with the 1→2 intersubband tran-
sitions. ns is the sheet electron concentration in the QW, z12
the dipole matrix element between the confined states 1 and
2, and e and m are the electron charge and effective mass,
respectively.

The parallel conductivity of layer 3 is written as

�xx
�2D���� =

1

Ex����−�

�

jx�z,��dz =
jx
�2D����
Ex���

. �15�

Again, we assume a Drude-like response and write

�xx
�2D���� =

nse
2

m���
−1 − i��

, �16�

where ������ is the intrasubband relaxation time.
Similarly, for layer 1, also assuming a Drude-like form,

we have16

�xx
�3D���� = �zz

�3D���� =
nbe2

m��b
−1 − i��

, �17�

where nb is the bulk 3D electron density and �b is the 3D
bulk relaxation time.

Using Eqs. �7� and �11�–�17� in Eqs. �9� and �10� yields
the following results for the effective medium response for
the slab design of Fig. 2. Note that since Ls�, then Ex and
Dz are practically unchanged over a given period, Ls;
Ex�z ,��=Ex��� and Dx�z ,��=Dx���.

�xx��� = �̃x +
i4�

�
�̃xx��� , �18�

�̃x =
1

Ls


i

4

�Lidi, �19�

�̃xx��� =
1

Ls
��xx

�3D����d1 + �xx
�2D����d3� , �20�

and

�zz
−1��� = �̃z

−1 −
i4�

�
�̃zz��� , �21�

�̃z
−1 =

1

Ls


i

4

�Li
−1di, �22�

�̃zz��� =
1

Ls
��zz

�3D����d1

�L4�L1
+

�zz
�2D����d3

�L2�L3
� , �23�

here we have used the continuity of Dz across the boundary
of layers 2 and 3 and layers 1–4 in the derivation of Eq. �23�.

C. Effective medium description of the doped multiple
quantum well (MQW) slab design

Now we consider a simpler design, where the central slab
of the structure in Fig. 1 is composed of a doped QW of
thickness Lqw, surrounded by barrier material making up a
period in the multilayer of thickness Ls=LMQW. Our ap-
proach is the same as that previously adopted by Zaluzny
and Nalewajko12 and we quote their result:

�xx
mqw��� = �̃x

mqw +
i4�

�Lmqw
�xx

�2D����Lqw, �24�

�̃x
mqw =

�b�Lmqw − Lqw�
Lmqw

+
�wLqw

Lmqw
, �25�

and

1

�zz
mqw���

=
1

�̃z
mqw −

i4�

�Lmqw�b�w
�zz

�2D����Lqw, �26�

1

�̃z
mqw =

Lmqw − Lqw

�bLmqw
+

Lqw

�wLmqw
. �27�

Note the similarities between this result and that obtained in
Sec. II B.
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III. RESULTS AND DISCUSSION

A. Propagation, absorption, and negative refraction of the
plasmonically coupled QW waveguide design

Here we numerically solve Eq. �2� For a structure with a
central slab comprising two periods of the plasmonically
coupled design in Fig. 2, symmetrically clad with thick clad-
ding layers �Fig. 1�. The results allow us to determine the
propagation constant, the absorption coefficient, the group
velocity, and the effective refractive index. We also compute
a figure of merit, F�kx

�r� /kx
�i�, the ratio of the real to the

imaginary parts of the in-plane propagation constant, as a
standard measure of how useful the negative refraction effect
will be in a real device structure, when absorption losses
have to be accommodated.

We consider two cases; in both the electron concentration
in the doped metallic layers is high enough to sustain a long-
range plasmon mode,8 but in case �i� the QWs are heavily
doped and in �ii� they are undoped.

The materials parameters �alloy concentrations in brack-
ets� used in the model are as follows: �cladding
=8.2067 �Al0.9Ga0.1As�, �L1=�L3=10.364 �GaAs�, �L2=�L4
=9.6449 �Al0.3Ga0.7As�, m=0.0665me. We assume a QW de-
signed to have E21=124 meV, which, from separate quantum
mechanical modeling, corresponds to a dipole matrix ele-
ment z12=2.117 nm. We use an electron scattering time, �,
deduced from typical measured intersubband transition
�ISBT� linewidths of h�=5 meV, and we set �b=�� =�.

In the specific examples considered, the metallic layers
are doped to nb=1019 cm−3, the layer thicknesses are d1
=72 nm, d2=d4=10 nm, and d3=8 nm. In case �i� the QWs
are doped to ns=5�1012 cm−2 while in case �ii� ns=0.

Figure 3 shows the modeled dispersion relation for this
quantum metamaterial, with and without doping in the QWs.
The undoped case �ii� yields the well known dispersion curve
of a long-range plasmon mode8 �LRP�, and the doped case �i�
shows the effects of our anisotropic metamaterial, where the
ISBT resonance produces a pronounced kink in the disper-
sion curve, in the spectral region of the intersubband energy,
E12=124 meV, of the quantum well.

It is clear, from the dispersion curves in Fig. 3, that the
group velocity, vg��� /�kx takes positive and negative val-
ues. For the undoped QW case, the onset of negative group
velocity occurs around the structures’ bulk plasma frequency
and corresponds to the long-range plasmon mode—negative
refraction from such a layered structure has recently been
experimentally verified,6 and is similar to that seen in a par-
allel plate metallic waveguide7 devices.

However, the purpose of this paper is to draw attention to
the extra functionality in the negative group velocity induced
by the QWs intersubband resonance. This is seen in Fig. 3
where the two curves, corresponding to doped and undoped
QWs, respectively, cross at �l=1.84�1014 s−1 /121.3 meV,
i.e. just below the ISBT energy, E12. Switching the QW elec-
tron density, between the values corresponding to the two
curves, flips the slope of the dispersion curves and hence the
sign of the group velocity at this energy.

At this energy the 1 /e absorption strength of the mode is
2.59�105 m−1 in the doped QW case and 6.44�104 m−1 in
the undoped QW case �Fig. 4�. These correspond to figure of
merit values F�14.8 and 59.8, i.e., considerably larger than
the of order unity values commonly seen in negatively re-
fracting devices made from metal-dielectric composites.6

B. Propagation, absorption, and negative refraction in a
MQW-based quantum metamaterial waveguide

The same concept, i.e., using the tunable anomalous dis-
persion associated with an ISBT to produce negative refrac-
tion, can be extended to a the more familiar case of the TM0
mode of a symmetrically clad dielectric slab. Previously we
considered how such a symmetrical TM0 MQW slab mode
can be strongly coupled to the ISBTs of that MQW.17 Here
we extend the analysis to show that the same coupling
mechanism can be used to create a region of negative group
velocity with technologically attractive characteristics.

We use the effective medium expressions of Ref. 17 and
derive an anisotropic dielectric tensor, �̄2, for the central slab
of Fig. 1, comprising an MQW stack, symmetrically sur-
rounded by Al0.9Ga0.1As dielectric cladding, with isotropic
dielectric constant �1=8.2067.

The central slab now consists of N=70 repeats of QW,
each with Lqw=8 nm, Lmqw=20 nm, E21=124 meV, h�

FIG. 3. Dispersion curves for modes propagating in the plane of
the plasmonically coupled quantum metamaterial waveguide. Dot-
ted line, case �i� with the QWs doped to a sheet electron density,
ns=5�1012 cm−2. Dashed line, case �ii�, with the QWs undoped,
ns=0. The intersubband transition in the QW induces a region of
negative group velocity at energies around 121 meV /1.84
�1014 s−1. Solid line, light line in vacuum.

FIG. 4. Absorption coefficient, �, for radiation traveling in the
plane of the plasmonically coupled MQW quantum metamaterial
waveguide ��=2kx

�i��. Sheet electron density in quantum wells, ns

=5�1012 cm−2 �dashed line� and ns=0 �solid line�.
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=5 meV, and z21=2.117 nm. To highlight the role of the
ISBT we again model two cases, corresponding to the QWs
being either undoped or doped at ns=4�1011 cm−2. The re-
sulting dispersion curves �Fig. 5� show a pronounced region
of negative group velocity in the doped samples which,
again, flips sign when the electron density is reduced to zero.
In the spectral region of interest, �l=1.85�1014 s−1 /El

=121.9 meV, the model yields a 1 /e absorption length of
2.45�105 m−1 in the doped sample �Fig. 6�, corresponding
to a figure of merit F�14.7.

It is important to note that, in the spectral region near
�125 meV, the dispersion curve in Fig. 5, for ns=4
�1011 cm−2, actually crosses over to the left-hand side of the
light line for plane waves in the cladding layers. At these
frequencies the slab modes’ in-plane wave vectors are actu-
ally lower than those of incident plane-wave beams, so that
free space radiation can be efficiently coupled into and out of
the slab mode simply by shining in a plane-wave beam at the
appropriate angle. This has major practical and technological
advantages over other schemes which require contacted
prisms or diffraction-grating couplers to couple into the
modes of interest.7

C. Negative refraction and effective negative refractive index

The ideas of group and phase velocity can be used to
define an effective refractive index for light propagating in
the mode,7

nmode = sgn�v̄p · v̄g�c/�v̄p� , �28�

In the case of the plasmonically coupled waveguide design
�Fig. 3�, at the peak ���121 meV� of the negative refraction
effect, “removing” doped-in electrons from the QWs in the
model makes this quantity flip sign, from nmode=3.146 to
−3.121. A similar effect, flipping from nmode 2.918 to −2.904
happens when the electrons are removed from the doped
MQW waveguide design �Fig. 5�.

In devices analogous to the prism-shaped pieces of metal-
metal waveguides of Ref. 7, this sign change could be used
to produce rapid and dramatic changes in the angle of refrac-
tion in quantum metamaterial waveguide. In principle this
effect could be optically switched, either by interband optical
pumping,9 electrical gating,10 or by designing a three level
quantum well with levels 2 and 3 providing the region of
negative refractive index �level 2 being optically pumped
from level 1�.

D. Field enhancement and compression

As can be seen by comparing Figs. 3 and 5, in the case of
undoped QWs, the mode dispersion curve moves much fur-
ther to the right of the cladding light line in the plasmoni-
cally coupled sample than it does in the undoped MQW di-
electric slab sample, reflecting the increased potential for
subwavelength field compression in the former. Figure 7
shows this directly, where the modeled fields of the bare LRP
and TM0 modes show a plasmonic field enhancement effect
of �2.6 at �=121 meV for comparison �ns=0 in both
cases�.

FIG. 5. Dispersion curves for modes propagating in the plane of
the MQW waveguide. Dashed line, QWs doped at a sheet electron
density, ns=4�1011 cm−2. Solid line, undoped QWs, ns=0. The
ISBT induces a region of negative group velocity around �=1.84
�1014 s−1 /121 meV. Note that, because the “kink” �at �
�125 meV� in the dispersion curve of the doped sample lies to the
left of the �dotted� light line of the cladding material, these modes
can be coupled into directly with incident plane-wave beams.

FIG. 6. Absorption coefficient of the MQW waveguide ��
=2kx

�i��. Sheet electron density, ns=4�1011 cm−2.

FIG. 7. Mode profiles of the H2 field for the LRP-like mode of
the plasmonially coupled quantum metamaterial waveguide �dashed
line� and TM0–like mode of the MQW dielectric slab waveguide
�solid line�. The QWs are undoped in �ns=0� in both cases, and �
=121 meV. In the plasmonically coupled sample the fields in the
LRP mode are laterally compressed by a factor of �2.6 over the
TM0 type modes supported by the undoped MQW slab waveguide.
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IV. CONCLUDING REMARKS

In conclusion, we have proposed two quantum metamate-
rial waveguides that use the ISBT of incorporated quantum
wells to induce a region of negative group velocity, which, in
turn, can be used to induce negative refraction effects in a
range of device geometries. The effect is strongly dependent
upon the 2D electron density in the quantum well, and as
such one should be able to pump electrons into the wells
�optically or electrically� and thereby make the waveguide
into an active component.

The predicted losses in the negative index waveguides, as
evidenced by the high figure of merit values, are consider-
ably smaller than typical metal-dielectric schemes, and they
all use well established and high quality growth technolo-
gies. Also, more complicated quantum well structures could
be used to induce gain �or even gain without population
inversion18� into the medium, thereby overcoming the losses.
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