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We present a theoretical analysis of the proximity effect at a graphene-superconductor interface. We use a
tight-binding model for the electronic states in this system, which allows us to describe the interface at the
microscopic level. Two different interface models are proposed: one in which the superconductor induces a
finite pairing in the graphene regions underneath, thus maintaining the honeycomb structure at the interface and
one that assumes that the graphene layer is directly coupled to a bulk superconducting electrode. We show that
properties such as the Andreev reflection probability and its channel decomposition critically depend on the
model used to describe the interface. We also study the proximity effect on the local density of states on the
graphene. For finite layers, we analyze the induced minigap and how it is reduced when the length of the layer
increases. The results for the local density of states profiles for finite and semi-infinite layers are presented.
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I. INTRODUCTION

The possibility to isolate and perform direct transport
measurements on few or even single graphite layers1 has
triggered a large activity in the condensed matter community.
The case of a single layer of carbon atoms, known as
graphene, is of particular interest because of its unique elec-
tronic structure, which, under certain conditions, corresponds
to massless Dirac fermions confined in two dimensions.2

On the other hand, the coupling to a superconductor pro-
vides an interesting way to test the electronic properties of
graphene. In a recent work of Beenakker,3 it was shown that
for an ideal interface between a superconductor and
graphene, an unusual type of Andreev reflection, in which
the hole is specularly reflected, appears. Several other effects
involving graphene and superconductors such as Josephson
transport,4,5 re-entrance effect,6 and quasiparticle transport
mediated by multiple Andreev processes7 have been theoreti-
cally analyzed.

In addition to its effect on the transport properties, the
coupling to a superconductor should also produce a change
in the electronic spectral properties and the induction of pair-
ing correlations due to the proximity effect. The recent ex-
perimental achievement of good contact between supercon-
ducting electrodes and graphene layers8 open the possibility
to explore the proximity effect on these systems with great
detail. Furthermore, experiments where the proximity effect
on graphene could be explored even with atomic scale
resolution by using scanning tunneling microscopy are
underway.9 At present, only the results for the total density of
states �DOS� in superconductor-graphene-superconductor
structures have been presented.10

The present work is aimed to study in detail the interface
between the superconductor and the graphene sheet. To this
end, we shall describe the electronic structure of graphene at
the level of the tight-binding approximation. This description
allows us to more microscopically analyze the
superconductor-graphene interface as compared to a descrip-
tion where the continuous limit leading to an effective
Dirac–Bogoliubov–de Gennes equation is taken from the
start.11 In the continuous description, it is usually assumed

that the presence of the interface do not couple different
valleys of the graphene band structure, which could not be
the case in an actual experimental situation. Moreover, when
the study is focused on finite size graphene sheets, a strong
dependence on the geometry of the edges appears.12 Thus,
different symmetry directions will have distinct behavior.13

For zigzag edges, zero-energy surface states appear,13 which
could hide the effects of the coupling to a superconductor.

In this work, we will concentrate on interfaces defined
along an armchair edge. We propose two different models
for this interface: The first one assumes that graphene is di-
rectly coupled to a bulk superconducting electrode, which
does not maintain the honeycomb structure of the graphene
sheet; the second model studies the possibility that one su-
perconducting electrode on top of the graphene sheet induces
a finite pairing amplitude and shifts the Fermi level of the
graphene sheet far away from the Dirac point. As we discuss
below, the two models lead to different behavior of the An-
dreev reflection probability as a function of energy, wave
vector, and doping level. We further analyze several aspects
of the spectral properties of the graphene layer within the
two models both for the finite and the semi-infinite case.

The rest of the paper is organized as follows: In Sec. II,
we introduce the tight-binding model for a graphene layer
and we show the analytic expressions for the Green’s func-
tions for a semi-infinite and a finite layer. In Sec. III, the two
different models for the interface with a superconductor are
defined and a general expression for the self-energy, which
provides the basis for the calculations of the following sec-
tions, is obtained. In Sec. IV, we study the model dependence
of the Andreev reflection processes. In Sec. V, we also study
the influence of the different interface models on the local
density of states �LDOS� of a finite graphene layer coupled
to a superconductor, analyzing in particular the minigap,
which is induced in the case of metallic layers. Results for
the spatially resolved DOS for a semi-infinite graphene layer
are presented in Sec. VI. The paper is closed with some
concluding remarks.

II. DESCRIPTION OF ISOLATED GRAPHENE LAYERS

For the description of the electronic states in a defect free
graphene layer, we shall adopt the tight-binding approxima-
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tion, i.e., we use a model Hamiltonian of the type Ĥ
= tg��ij�,�ĉi�

† ĉj�+��i�ĉi�
† ĉi�, where tg denotes the hopping

element between nearest-neighbor carbon atoms on the hon-
eycomb lattice and � is a uniform site energy level, which
allows to vary the level of doping ��=0 corresponds to
the undoped case�. The dispersion relation for the transla-
tional invariant case is given by E�k ,q�=�� tg�1
+2eiqa cos�ka /�3��, where k and q denote the wave vector in
the x and y directions, respectively, and a is the defined
lattice parameter, as shown in Fig. 1 �as can be seen, a
=3a0 /2, where a0 is the interatomic distance�. For the un-
doped case, the Fermi surface collapses into two nonequiva-
lent points at the Brillouin zone corresponding to �k ,q�
= ��2� /�3a ,0�. The dispersion relation close to these points
can be linearized with a slope tga, which fixes the Fermi
velocity vF.

A. Green’s functions for a semi-infinite armchair
graphene layer

We concentrate here in the derivation of the edge Green’s
function for a semi-infinite graphene layer with armchair ori-
entation. We assume that there is a translational symmetry in

the direction parallel to the edge �y�. The semi-infinite sys-
tem can be decomposed into lines of sites in the y direction,
which are coupled by hopping elements with the neighboring
lines on the x direction. The unit cell on each line includes
two sites, corresponding to each triangular sublattice, that are
denoted by A and B �see Fig. 1�. These sites are coupled by
a hopping element tg within the unit cell. Thus, the cell
Hamiltonian is given by

ĥ = � � tg

tg �
	 .

The hopping elements between neighboring lines also
couple sites of type A with sites of type B but should include
a phase factor e�iqa due to the displacement of the cells in
the y direction. The hopping matrix in the A-B space �both in
the forward and in the backward directions� can be written as

t̂�q�= tgÛ�q�, where

Û�q� = � 0 eiqa

e−iqa 0
	 .

The self-similarity of the semi-infinite system with one
additional line of sites leads to the following implicit equa-
tion for the edge Green’s function:

ĝ�q,�� = 
�Î − ĥ − tg
2Û�q�ĝ�q,��Û�q��−1.

Hereafter, we implicitly assume that � stands for �� i�
and that the limit �→0 is taken to obtain the retarded or the
advanced component, respectively. We can now define ĝ̃

= Ûĝ, which satisfies the simpler equation,

ĝ̃ = 
X̂�q,�� − tg
2ĝ̃�−1,

where X̂�q ,��= ��Î− ĥ�Û�q�.
To obtain an explicit expression for ĝ̃, it is useful to per-

form a basis rotation in order to diagonalize the matrix X̂.

The general form of this rotation is R̂= R̂1R̂2, where R̂1
=eiqa/2�̂z, �̂z is the z Pauli matrix acting on the sublattice
space, and

R̂2 =
1

�− 2 sin 	
� ei	/2 e−i	/2

ie−i	/2 iei	/2 	 ,

where cos 	= tg sin qa / ��−��. The eigenvalues of X̂ are
x1,2=−tg cos qa����−��2− tg

2 sin2 qa. We thus get

ĝ�q,�� = � g f

f� g
	 =

1

tg
ÛR̂1R̂2�ei
1 0

0 e−i
2
	R̂2

−1R̂1
† =

1

2tg sin 	
� ei
1 − e−i
2 ieiqa
e−i�	−
1� − ei�	−
2��

− ie−iqa
ei�	+
1� − e−i�	+
2�� ei
1 − e−i
2
	 , �1�

where cos 
1,2=x1,2 / �2tg�. The eigenvalues ei
1 and e−i
2

have been chosen so that the resulting Green functions have
the proper behavior when the frequency goes to infinity.

B. Finite graphene layer

Starting from the results of Sec. II A, one can obtain the
Green’s functions of a finite graphene layer by introducing a

a0

A

B

a

x

y

FIG. 1. The honeycomb structure of a graphene sheet is formed
by combining two triangular sublattices, which are denoted by A
�dots� and B �open dots�. The unit cell on each horizontal line
includes one atom from each sublattice. The axis selection used in
this work is indicated.
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perturbation consisting in breaking the bond between the Nth
line and its neighbors on the N+1 line. From Dyson’s equa-
tion, we obtain the following set of coupled equations:

ĝn,n
F = ĝn,n − ĝn,N+1t̂ĝN,n

F ,

ĝN,n
F = ĝN,n − ĝN,N+1t̂ĝN,n

F , �2�

where the superindex F stands for the finite system and the
subindices i , j indicate the lines within the layer. On the other
hand, the elements ĝN,N+1 can be expressed as ĝN,N+1

= ĝN,N
F t̂ĝN+1,N+1. We now use ĝ1,1= ĝ and ĝn,N= ĝN,n

= �ĝt̂�N−nĝn,n, where ĝ corresponds to the surface Green’s

function for the semi-infinite system derived in the previous

section. Also, we have ĝN+1,N+1= 
ĝ− t̂ĝN,N
F t̂�−1 and ĝn,n= 
Î

− �ĝt̂�2n�
Î− �ĝt̂�2�−1ĝ, which allows to obtain

ĝn,n
F = 
Î − �ĝt̂�2�−1
Î − �ĝt̂�2�N+1��−1
Î − �ĝt̂�2n�

�
Î − �ĝt̂�2�N−n+1��ĝ ,

ĝn,N
F = 
Î − �ĝt̂�2�N+1��−1
Î − �ĝt̂�2n��ĝt̂�N−nĝ . �3�

By making use of the rotation matrix defined in Sec. II A,
these quantities can be written in the following rather simple
form:

ĝn,n
F =

1

tg
R̂�

sin n
1

sin 
1

sin�N − n + 1�
1

sin�N + 1�
1
0

0
sin n
2

sin 
2

sin�N − n + 1�
2

sin�N + 1�
2


R̂−1Û ,

ĝn,N
F =

1

tg
R̂�

sin n
1

sin�N + 1�
1
0

0
sin n
2

sin�N + 1�
2


R̂−1Û . �4�

One can have the expression for the borders of the layer
setting n=1 or n=N. Then, the eigenvalues of the Green’s
functions become sin N
i /sin�N+1�
i and sin 
i /sin�N
+1�
i, with i=1,2, for the ĝ1,1

F = ĝN,N
F and ĝ1,N

F = ĝN,1
F cases,

respectively. These expressions are equivalent to those for a
finite tight-binding chain.16

The poles of these Green’s functions determine the spec-
tral properties of the layer. These poles are fixed by the con-
dition sin�N+1�
1,2=0, which is satisfied by 
1,2=m� / �N
+1�, where m is an integer. One can associate this condition
with the quantization of the transverse momentum, which is
used in the continuous model for describing armchair
nanoribbons.13 At the charge neutrality condition, the exis-
tence of zero energy states requires 
1,2= �2� /3, which can
only be satisfied for N=3p+2 �in a more compact notation
for N mod 3=2�. Therefore, the layers can be classified into
metallic, for the N mod 3=2 case, and insulating, for the
other cases �N mod 3=0,1�. In the insulating cases, the gap
in the spectrum is 2Eg, where Eg���vF /3L, with L
=Na /�3 as the length of the layer. It should be noted that
electron states in the metallic case are doubly degenerate,
while the degeneracy is removed in the insulating cases.13

III. MODELING THE GRAPHENE-
SUPERCONDUCTOR

INTERFACE

One of the aims of the present work is to analyze different
ways to describe the interface between a graphene layer and

a superconductor. In the recent literature, it has been as-
sumed that a superconducting electrode deposited on top of
graphene induces a finite pairing amplitude and introduces a
finite level of doping, which shifts the Fermi level of the
graphene layer far away from the Dirac point.3,4 This heavily
doped superconducting graphene �HDSC� model provides a
simple boundary condition for the effective Dirac–
Bogoliubov–de Gennes equations describing the interface.

One can alternatively imagine that the graphene layer is
directly coupled to a bulk superconducting electrode by
means of a sharp interface, which breaks the coherence be-
tween the two graphene sublattices. We shall refer to this
case as the bulk-BCS model. We wish to analyze the differ-
ences between the two models, which are schematically rep-
resented in Fig. 2.

The presence of superconducting correlations requires in-
troducing the Nambu space, describing electron and hole
propagation within the graphene layer. All Green’s functions
acquire a 2�2 structure in Nambu space. For the uncoupled
graphene, we have

ǧ̂ = �ĝe 0

0 ĝh
	 , �5�

where ĝe corresponds to the propagators obtained in Sec. II
and ĝh is obtained from ĝe by changing �→−� and tg→−tg
�notice that we use the hat symbol to denote the sublattice
space while the check symbol indicates the Nambu space�.
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The effect of the coupling with the superconducting elec-

trode can be introduced by means of a self-energy 
̌̂, which
renormalizes the uncoupled Green’s functions. Thus, the lo-
cal Green’s function on the graphene edge at the interface is

determined by 
ǧ̂−1− 
̌̂�−1.
In the case of the bulk-BCS model, the self-energy is

momentum independent and does not have a structure in the
sublattice space; i.e.,


̌̂ = ��stc
2�̌zǧBCS�̌z � Î , �6�

where �̌z is the z Pauli matrix in Nambu space and tc
2 is the

mean square hopping element between the graphene layer
and the superconducting electrode. This quantity controls the
value of the parameter �= tc

2��s / tg, which characterizes the
quality of the interface, where �s is the DOS. On the other

hand, ǧBCS=gsǏ+ fs�̌x stands for the dimensionless BCS
Green’s function, i.e., gs=−� /��2−�2 and fs=� /��2−�2.

We would like now to derive the expression of the self-
energy within the HDSC model. We first notice that in the
heavily doped limit, one has ���� ��� , tg sin qa for the rel-

evant range of frequencies and q values. Thus, in R̂2, one has
	→� /2. In the new basis, the system is equivalent to a
tight-binding chain with site energies �� tg and local pairing
fixed by �. Although the exact Green’s functions for this
system is rather complicated, for low energies, it can be ap-
proximated by

R̂2
−1ǧ̂R̂2 � ���+ 0

0 ��−
	 � ǧBCS +

1

2tg
2�� + tg 0

0 � − tg
	 � �̌z,

�7�

where ���=�1− �
��tg

2tg
�2 / tg. By further taking the approxi-

mation ���� tg and transforming back into the site represen-
tation, we obtain the following self-energy:


̌̂/tg �
�3

2
�̌zǧBCS�̌z � Î −

1

2
�̌z � �̂x. �8�

Notice that, in contrast to the first model, the self-energy
in the HDSC model does exhibit a structure in the sublattice

space. However, it satisfies the condition det 
̌̂ / tg=1. This
structure turns out to be of importance in connection to An-
dreev reflection as discussed in the next section. In the fol-
lowing, we will use a general form of the model self-

energies, which can be expressed as 
̌̂=��̌zǧBCS�̌z � Î−��̌z
� �̂x. Thus, appropriate values for � and � will correspond to
the different models �i.e., �=0 with arbitrary � for the bulk-
BCS model, while �=�3 /2 and �=1 /2 in units of tg for the
HDSC model�.

IV. ANDREEV REFLECTION AT A GRAPHENE-
SUPERCONDUCTOR INTERFACE

The Andreev reflection is the basic mechanism for the
conversion of a quasiparticle current into a supercurrent at
the interface between a normal metal and a superconductor.
In the case of a graphene-superconductor interface like the
one we have described in SecIII, there are two channels for
the incident electrons with a given wave vector q corre-

sponding to the states, which diagonalize the X̂ matrix. The
reflected hole can be in either of these two channels. Our
microscopic theory can thus describe a more general situa-
tion than the idealized model for the interface used in Ref. 3,
which assumes only one channel for the reflected hole for a
given wave vector.

The Andreev reflection amplitudes can be expressed in
terms of Green’s functions. Generalizing previous works,17,18

we can derive the expression

r̂A�q,�� = 2iÂe
1/2�
̌̂
Ǐ̂ − ǧ̂
̌̂�−1�ehÂh

1/2, �9�

where Âe,h�q ,��= 
ĝe,h�q ,��− ĝe,h
† �q ,��� /2i. Using the gen-

eral form of the model self-energies discussed in Sec. III
allows us to reduce the expression of r̂A to

r̂A = 2iÂe
1/2�fs
Î − �gs�ĝe + ĝh� − ��ĝh�̂x − �̂xĝe�

− ��2 + �2�ĝhĝe�−1Âh
1/2. �10�

This expression becomes particularly simple when �=0
because ge=gh, fe=−fh, and f�e=−f�h. So, r̂A is a scalar
quantity given by

FIG. 2. �Color online� Schematic picture of an Andreev reflec-
tion in the bulk-BCS and in the HDSC models. In the first case, the
sites on each sublattice of the graphene edge are coupled to the
superconductor through independent channels, thus breaking the co-
herence of the honeycomb structure. In the other case, the coupling
with the superconducting region maintains this structure. The hop-
ping element tc in the bulk-BCS model controls the normal trans-
parency of the interface. The vertical arrows represent the coupling
between electrons and holes in Nambu space given by the gap pa-
rameter �.
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r̂A =
4�fs�Im g2 − �f − f���2�

1 − Tr
��gsÎ � ��̂x�ĝe,h� − ��2 + �2�det ĝe,h

Î , �11�

where Tr
��gsÎ���̂x�ĝe,h�= 
2�gsg−��f + f��� and det ĝe,h
= �g2− f f��.

In general, doping conditions �i.e., when ��0� r̂A is not a
scalar within the bulk-BCS model. The eigenvalues of r̂Ar̂A

†

give the Andreev reflection probability decomposed into two
eigenchannels for each wave vector q. The evolution of these
eigenvalues for fixed � and increasing � as a function of q is
shown in the left panel of Fig. 3. Their maximum value is
reached for �=1 and it never exceeds �0.76 at normal inci-
dence. Within the HDSC model, however, r̂A remains scalar
for arbitrary doping and it always reaches the unitary limit at
q=0 �see right panel of Fig. 3�.

It is also interesting to analyze the physical character of
the Andreev reflection in the two models. The information on
how the eigenchannels of the uncoupled structure are con-
nected by an Andreev process is contained in the matrix

R̂er̂AR̂h
−1. As r̂A is a scalar within the HDSC model, the chan-

nel mixing is determined by R̂eR̂h
−1. This is also the case for

the bulk-BCS model at zero doping. In this case, we have
	h=�−	e and thus electrons injected in one channel emerge
as holes in the opposite one. The momentum in the y direc-
tion is conserved in this process, and therefore, this type of
reflection corresponds to what has been described in Ref. 3
as specular Andreev reflection. On the other hand, for ��0
and �→0, we have 	h=	e, which corresponds to the usual
�retro�reflection where holes are reflected on the same chan-
nel as the incident electron. For intermediate doping situa-
tions, both types of reflection would be present although with
a dominance of specular �retro�reflection for ��� �����.

To complete the analysis in this section, we have com-
puted the differential conductance per unit length due to An-
dreev processes, which is given by19

GAR =
2e2

h

1

2�
�

−�/a

�/a

dq Tr
r̂�q,eV�r̂†�q,eV�� . �12�

The results for GAR within the two models are shown in
Fig. 4. As suggested in Ref. 3, we normalize the result by the
conductance per unit length of a ballistic graphene sheet,
which in the low energy limit is given by g0�V�= 4e2

h �eV
+�� / ���vF�. As can be observed, at the charge neutrality
point, the HCSD model yields a maximum of ratio GAR /g0
=2 at zero voltage, dropping to �1.33 for ��0, which is in
agreement with the results of Ref. 3. This ratio is of the order
of �1.63 in the bulk-BCS model with �=1 regardless of the
doping level. The qualitative behavior of the differential con-
ductance with � is similar in both models and agrees with the
results of Ref. 3.

V. PROXIMITY EFFECT ON A FINITE
GRAPHENE LAYER

By using the previous results, one can analyze the effect
of the coupling with the superconductor on the spectral prop-
erties of a graphene layer of finite size. Again, we will focus
on the differences between the bulk-BCS and the HDSC
models for the interface. From Dyson’s equation, it is
straightforward to obtain the Green’s functions at the edge of
the layer �labeled as 1� when the coupling to the supercon-
ductor is introduced on the opposite edge �labeled as N�.
Then, for an arbitrary line n inside the layer, we have

Ǧ̂n,n = ǧ̂n,n
F + ǧ̂n,N

F 
̌̂
Ǐ̂ − ǧ̂N,N
F 
̌̂�−1ǧ̂N,n

F , �13�

where 
̌̂ stands for the general form of the self-energy intro-
duced in Sec. III. We can further reduce this expression to
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FIG. 3. �Color online� Andreev reflection probability on the two
eigenchannels as a function of the parallel momentum q for fixed
energy �=0.2�. The left panel corresponds to the bulk-BCS model
�with �=1� and the right one to the HDSC model. The different
curves correspond to different values of the doping level �: 0 �full
lines�, 0.1 �dashed lines�, 0.3 �dotted lines�, and 0.4� �dashed-
dotted lines�.
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FIG. 4. �Color online� Total differential conductance per unit
length due to Andreev reflection GAR normalized to the conductance
per unit length of a ballistic graphene layer g0�V�= 4e2

h �eV
+�� / ���vF�. The results for the HDCS model �full lines� and for
the bulk-BCS model �dashed lines� are compared with increasing
doping level �=0, 0.2, 0.4, and 0.6�.
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Ǧ̂n,n = ǧ̂n,n
F + ǧ̂n,N

F �
�gs − ��̂x + ��2 + �2�ĝN,N
Fh �D̂e

−1 − �fsD̂h
−1

− �fsD̂e
−1 
�gs + ��̂x + ��2 + �2�ĝN,N

Fe �D̂h
−1
	 ǧ̂N,n

F . �14�

The quantities D̂e and D̂h have the following general form, which is expressed in the graphene subspace:

D̂e = Î − �gs�ĝe
F + ĝh

F� − ��ĝe
F�̂x − �̂xĝh

F� − ��2 + �2�ĝe
Fĝh

F, D̂h = Î − �gs�ĝe
F + ĝh

F� − ��ĝh
F�̂x − �̂xĝe

F� − ��2 + �2�ĝh
Fĝe

F.

As in SecIV, in the limit where �=0, these two denominators become equal and simplify to a scalar D because

�gs�ĝe
F+ ĝh

F�+��ĝe
F�̂x− �̂xĝh

F�=Tr
��gsÎ���̂x�ĝe,h
F � and ĝe

Fĝh
F=det ĝF. Then,

D = 1 − Tr
��gsÎ � ��̂x�ĝe,h
F � − ��2 + �2�det ĝe,h

F �15�

By using the expression of the finite layer Green’s functions given in Sec. II and the rotation given in Sec. I, one can easily
show that

det
ĝe,h
F � = −

1

tg
2

sin�N
1�sin�N
2�
sin
�N + 1�
1�sin
�N + 1�
2�

,

Tr
��gsÎ � ��̂x�ĝe,h
F � =

1

tg sin 	
� sin�N
1�sin
�N + 1�
2�
�gs − � sin�	 + q��

sin
�N + 1�
1�sin
�N + 1�
2�
−

sin�N
2�sin
�N + 1�
1�
�gs + � sin�	 − q��
sin
�N + 1�
1�sin
�N + 1�
2� � .

The zeroes of D determine the poles of the coupled system Green’s functions. From them, one can thus analyze the
distortion of the spectrum due to the superconducting proximity effect. For the charge neutrality case, these zeroes can be
obtained from

− ��2

��2 − tg
2 sin2 qa��2 − �2

=
sin
�N + 1�
1�sin
�N + 1�
2� + ��2 + �2�sin�N
1�sin�N
2�

sin�N
1�sin
�N + 1�
2� − sin�N
2�sin
�N + 1�
1�

+
�

sin 	

sin�	 + q�sin�N
1�sin
�N + 1�
2� + sin�	 − q�sin�N
2�sin
�N + 1�
1�
sin�N
1�sin
�N + 1�
2� − sin�N
2�sin
�N + 1�
1�

. �16�

The spectrum corresponds to a series of subbands, which
quadratically disperse as a function of q in the small q limit.
As in the uncoupled case, the precise form of the dispersion
relation depends on the value of N mod 3. In the case where
the uncoupled layer is metallic �N mod 3=2�, the coupling to
the superconductor induces a minigap in the lowest band.
The existence of this minigap in the spectrum is similar to
what is found for diffusive conductors and can be associated
with the pseudodiffusive behavior of graphene at the charge
neutrality point.14,15 For the cases N mod 3=0,1, the un-
coupled layer is insulating and the coupling of the supercon-
ductor just leads to a renormalization of the gap in the spec-
trum. We shall denote by Eg

� the lowest energy level for all
three cases.

The dependence Eg
� as a function of N and the interface

parameters � and � can be obtained from Eq. �16� with q
=0. For large N, this level decreases as 1 /N with a prefactor,
which depends on N mod 3 and the interface parameters.
Figure 5 describes the behavior of Eg

� both in the bulk-BCS
and in the HDSC models. The left panel shows the lowest
energy state within the bulk-BCS model as a function of the
interface transparency parameter ��� for fixed N. The three
cases N mod 3=0,1 ,2 are shown. As can be observed, in the
metallic case, the minigap evolves from zero at �=0 to a
maximum value at �=1. On the other hand, the two insulat-
ing cases exhibit different behavior. While the starting value

at �=0 is fixed by Eg in both cases, in the case N mod 3
=0, it decreases until it reaches the same value as the one of
the N mod 3=2 case for �=1. hand, Eg

� remains approxi-
mately constant for N mod 3=1. This behavior indicates that
the proximity effect is almost negligible in this case. The
right panel shows the behavior of the lowest energy state as
a function of N both in the bulk-BCS model with �=1 and in
the HDSC. The results are universal �i.e., independent of the
ratio � / tg� when plotted as a function of L /�, where �
=�vF /�� is the superconducting coherence length. It is in-
teresting to note that while in the bulk-BCS model, two lim-
iting 1 /L curves, corresponding to N mod 3=0,2 and
N mod 3=1, appear; in the HDSC model, Eg

� lay on the same
1 /L curve regardless of N �dashed line in Fig. 5�.

A. Local density of states

We define the electronic LDOS on a line n within the
graphene layer as

�n��� =
a

�2��2�
− �

a

�
a dq Tr Im
Ĝn,n�q,��� , �17�

which has been normalized to one electron per site and spin.
The LDOS thus defined is measured in units of a /�vF. How-
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ever, to study the proximity effect, it is more convenient to
normalize the LDOS with the density of a bulk graphene
layer with zero doping at �=�, �0, which for ���vF /a is
given by � /2��a /�vF�2. The results thus obtained do not
depend on the choice of the ratio � / tg used in our tight-
binding calculations.

The LDOS on a metallic layer �N mod 3=2� is shown in
Fig. 6. The results for the coupled case within the HDCS

model are compared to the results for the uncoupled case. It
is typically found that the number of singularities in the
LDOS �associated with the number of subbands� in a given
energy interval is doubled as compared to the uncoupled
case. This effect is due to the breaking of the double degen-
eracy of the bands due to the coupling with the supercon-
ductor. The LDOS also exhibits an oscillatory behavior with
the position on the layer. This behavior reflects the properties
of the electronic wave functions and, as in the case of iso-
lated nanoribbons,13 is distinct for lines with n mod 3=1,2
and lines with n mod 3=0. We thus illustrate these cases
separately on the top and on the lower panels of Fig. 6.

The right panels of Fig. 6 show the evolution along the
layer of the LDOS close to the singularities. We illustrate this
evolution at three different energies corresponding to the
lowest first singularities, indicated by m=0,1 and 2 in Fig. 6.
For reference, we also show the spatial variation of the
LDOS close to the first singularity for the uncoupled case. In
this case, the LDOS reaches a maximum value at the edges
of the layer and a minimum in the middle for lines
n mod 3=1,2, while the opposite behavior is found for
n mod 3=0. In the coupled case, one can still identify the
singularities with the oscillation pattern in the LDOS but it
no longer reaches an extreme value at the edge of the layer in
contact with the superconductor.

As a final remark, we note that in the case of insulating
nanoribbons, the coupling to the superconductor just induces
a shift singularities in the spectrum but do not change their
number. This is due to the nondegenerate character of the
bands of the uncoupled layer.
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FIG. 5. �Color online� Evolution of the lowest energy level Eg
� of

a finite graphene layer coupled to a superconductor as a function of
� within the bulk-BCS model for L=40� �left panel� and with the
length of the layer L within both the bulk-BCS �at �=1� and the
HDSC models �right panel�. In the case of the bulk-BCS model for
arbitrary �, three different behaviors are found depending on the
N mod 3 value. On the contrary, a universal behavior of Eg

� is found
within the HDSC model regardless of the N value �see text�.
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FIG. 6. �Color online� Spatial variation of the LDOS on a finite layer �L=9�� in the HDSC model. The plots on the top panels correspond
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pictures� and with the breaking of the uncoupled bands into a pair of sub-bands �m1 and m2 in the pictures�. The evolution of the LDOS along
the layer is shown in the right panels. The results are normalized to the LDOS of a bulk graphene layer with zero doping at �=�, denoted
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VI. PROXIMITY EFFECT ON A SEMI-INFINITE
GRAPHENE LAYER

The results of Sec. V can be extended to analyze the spec-
tral properties of a semi-infinite graphene layer coupled to a
superconductor. The local Green’s function on a line n is
given by

ǧ̂n,n = 
Ǧ̂n,n
−1 − tg

2ǧ̂�−1,

where Ǧ̂n,n is the Green’s function for a finite graphene layer
coupled to a semi-infinite superconducting layer obtained in
the previous section and ǧ̂ is the Green’s function for the
edge of the semi-infinite layer.

Figure 7 illustrates the spatial variation of the LDOS on a
semi-infinite graphene layer and the effect of varying the
doping level within the bulk-BCS model. For reference, we
show the LDOS for the uncoupled case on the upper panels.
As can be observed, the uncoupled LDOS exhibits long
wavelength oscillations on the ��vF / ��� scale on top of the
characteristic V shape behavior. These oscillations are a sur-
face effect, which decreases in amplitude inside the layer, as
shown in Fig. 8, where the LDOS profile at �=2� is plotted
on a larger scale. A similar effect has been shown to occur in
the case of nanoribbons with zigzag edges.20

The superconducting proximity effect is manifested by the
appearance of sharp peaks in the LDOS for energies ���
�� �lower panels in Fig. 7�. These peaks distort the V shape
density of states �DOS�, an effect which decays within a few
times the coherence length inside the layer. The small oscil-
lations on the �vF / ��� scale are reduced compared to the
uncoupled case but are still observable within the bulk-BCS
model �indicated by the full line in Fig. 8�.

The overall behavior of the LDOS within the HDSC
model is very similar although in this last case, the �vF / ���
oscillations are further suppressed �dashed line in Fig. 8�.

The right panels in Fig. 7 illustrate the effect on the
LDOS of a displacement from the charge neutrality condition

by applying a gate potential �finite ��. It is observed that the
V shape is essentially rigidly displaced while the peaks in-
duced by the proximity effect remain fixed at �� ��. hand,
the wavelength of the oscillation pattern is, in this case, set
by �vF / ��−��.

VII. CONCLUSIONS

We have presented a theoretical analysis of the proximity
effect at a graphene-superconductor interface. For this study,
we have first derived analytical expressions for the Green’s
functions on an armchair edge of a semi-infinite graphene
layer and for a finite layer.

Two models for microscopically describing the coupling
to a superconductor have been presented. In the first model,
a bulk superconducting electrode is directly connected to the
armchair edge of a graphene sheet �bulk-BCS model�. The
honeycomb structure of graphene is broken and this is re-
flected in the different behavior of the Andreev reflection
probability on the two eigenchannels of the graphene sheet
as a function of the parallel momentum q. Only for the case
of zero doping both eigenchannels are equivalent. Within this
model, one can study the effect of varying the normal trans-
parency of the interface �through parameter ��. The Andreev
reflection probability at normal incidence never reaches unity
within this model but has a maximum value of �0.76. In the
second model, it is assumed that the superconducting elec-
trode induces a finite order parameter on the graphene re-
gions underneath. This model thus maintains the graphene
sublattice structure and, as we have shown, the Andreev re-
flection amplitude r̂A�q ,�� is a scalar quantity for arbitrary
doping and always reaches the unitary limit for normal inci-
dence.

We have also studied the effect of the coupling to the
superconductor on the spectral properties of finite and semi-
infinite graphene layers. For finite layers, we have obtained a
simple expression for the energy spectrum of the coupled
system, which can be numerically evaluated easily. We have
shown that a metallic ribbon develops a minigap whose size
inversely decreases with the length of the layer. This effect
can be associated with the pseudodiffusive behavior of
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graphene. The induced minigap is slightly smaller in the
bulk-BCS model with �=1 than in the HDSC model.

For the semi-infinite case, the proximity effect manifests
in the appearance of peaks in the DOS for frequencies ���
��. These peaks rapidly decay inside the graphene sheet for
distances a few times the superconducting coherence length
�. hand, the LDOS keeps its characteristic V shape for zero
doping for frequencies �����. We expect that these findings
can be useful to analyze future scanning tunneling micros-

copy experiments on graphene sheets with superconducting
electrodes.
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