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We study the effects of quenched height fluctuations �ripples� in graphene on the density of states �DOS�. We
show that at strong ripple disorder, a divergence in the DOS can lead to an ordered ground state. We also
discuss the formation of dislocations in corrugated systems, buckling effects in suspended samples, and the
changes in the Landau levels due to the interplay between a real magnetic field and the gauge potential induced
by ripples.
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I. INTRODUCTION

The recent characterization of graphene sheets made up of
a single layer of carbon atoms1,2 has caused great interest.
Their unusual electronic band structure and the possibility of
tuning the number of electrons lead to a number of interest-
ing features, both from a fundamental perspective and be-
cause of its potential applications.3,4

The low energy electronic states of graphene are well de-
scribed, in the continuum limit, by two decoupled two di-
mensional Dirac equations. The kinetic energy depends lin-
early on the lattice momentum. The perturbations due to
some types of disorder, such as topological lattice defects,5,6

strains,7,8 and curvature,9 enter as an effective gauge field.
Curvature, strains, and topological lattice defects are ex-
pected to exist in graphene,10 as experiments show a signifi-
cant corrugation both in suspended samples,11 in samples
deposited on a substrate,12,13 and also in samples grown on
metallic surfaces.14

The statistical properties of the two dimensional Dirac
equation in a random gauge field have been extensively
studied,15–19 in relation with the integer quantum Hall effect.
It has been shown that the density of states develops a peak
at zero energy when the disorder strength exceeds a certain
threshold. Furthermore, beyond a second threshold, there is a
transition to a glassy phase20 where the local density of states
is dominated by rare regions.18

In the following, we will apply the analysis in Ref. 18 to
the specific case of graphene, where there are two Dirac
equations coupled to the same random gauge field. The
model will be detailed in the next section. We analyze in the
following section the statistical properties of the gauge field.
The main results for the density of states are presented in
Sec. IV. Given a divergent density of states at the energy of
the Dirac point, we consider the instabilities which may be
induced by interactions. Alternative approaches to the inter-
play between gauge fields and interactions are given in Refs.
21–29, although they did not consider diverging densities of
states. Sections VI analyze the related problem of the struc-
tural changes which can be induced by the same random
strains which give rise to the gauge field, following the
analysis in Ref. 24. Section VII discusses a buckling transi-
tion in suspended graphene. Section VIII estimates the ef-

fects of ripples on density fluctuations in the quantum Hall
regime and compares with recent data.25 The main results of
the paper are summarized in Sec. VI.

II. MODEL

We analyze the gauge field induced by the height fluctua-
tions of a graphene layer on a rough substrate. In such case,
one expects that the shape of the graphene layer is deter-
mined by a competition between the interaction of the layer
with the rough substrate, which tends to impose a preferred
height, and the elastic properties of the layer. A simple
Hamiltonian which models these effects is

H = Hsubs + Helastic + Helec,

Hsubs =
g

2
� d2r��h�r�� − h0�r���2,

Helastic =
�

2
� d2r���2h�r���2

+� d2r���

2��i

uii�r��	2
+ ��

ij

�uij�r���2
 ,

Helec = vF� d2r��̄1�r����x�− i�x − Ax�r��� + �y�− i�y

− Ay�r�����1�r�� − vF� d2r��̄2�r����x�− i�x + Ax�r���

+ �y�− i�y + Ay�r�����2�r�� , �1�

where h�r�� is the height of the graphene layer, h0�r�� is the
preferred height which can be assumed to follow closely the
substrate height, and �1�r�� and �2�r�� are the two inequiva-
lent Dirac �iso�spinors which describe the two inequivalent
valleys at the corners of the hexagonal Brillouin lattice. Note
that the gauge field couples with opposite signs to the two
species of Dirac fermions. The tensor uij�r�� is the strain ten-
sor associated to the deformation of the graphene layer,
given by
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The gauge vector acting on the electrons in Eq. �1� is related
to the strain tensor by26,27

Ax�r�� =
�

a
�uxx�r�� − uyy�r��� ,

Ay�r�� = − 2
�

a
uxy�r�� , �3�

where a�1.4 Å is the length of the bond between neighbor-

ing carbon atoms, and �=C�̃ where C is a constant of order

unity and �̃=−� log�t� /� log�a��2–3 is a dimensionless pa-
rameter which characterizes the coupling between the Dirac
electrons and lattice deformations. Besides the symmetry ar-
guments in Refs. 27, we also assume that the coupling be-
tween the electrons and lattice deformations is through the
modulation of the hopping between nearest neighbor � or-
bitals, t�3 eV.28,29 The rest of the parameters which deter-
mine the Hamiltonian in Eq. �1� are the electron Fermi ve-
locity, vF=3ta /2, the bending rigidity, ��1 eV, the in-plane
elastic constants, � ,��1 eV Å−2.

In order to model the interaction between the graphene
layer and the substrate, we use a simple quadratic expansion
around the height h0�r�� which minimizes the energy in the
absence of elastic and electronic energy, parametrized by a
coupling g. The value of this parameter is less understood.
Estimates based on the analysis of the electrostatic potential
between graphene and SiO2 �Ref. 12� suggest that g
�10−2–10−1 meV Å−4. By comparing g and �, one finds that
the pinning by the substrate dominates for length scales
greater than lp��� /g�1/4�10 Å. The coupling g being
strongly relevant, for l	 lp, it can be considered as effec-
tively infinite and the graphene layer rigidly pinned to the
substrate, h�r���h0�r�� for l	 lp. Note that we assume here
that effect of direct pinning of the in-plane modes by the
substrate are small and can be neglected.

III. EFFECTIVE GAUGE FIELD

Experiments13,30 suggest that the height of the graphene
layer shows fluctuations of order h�10 Å over scales l
�100 Å. Similar fluctuations have been observed in sus-
pended graphene sheets.11 We will assume that the effects of
the height fluctuations can be described statistically over dis-
tances larger than l0�100 Å. We will then relate the corre-
lations of the effective random gauge field to the �four point�
correlations of the �random� height profile h�r��. The calcula-
tion is valid whether this profile arises from interaction with
a static rough substrate �in which case for l	 lp it directly

relates to substrate correlations� or from any other mecha-
nism such as in suspended graphene.

An estimate of the magnitude of the effective random
gauge field can be obtained by noting that the height change
between neighboring lattice points is �a�h; hence, the dis-
tance change is �a��h�2 and the modulation in t is 
t
��t��h�2. Hence, the modulation in A is �
t /vF
����h�2 /a which yields an estimate for the variance of the
random effective magnetic field B= ���A�z:

�B�q�B�q��� = CB�q��2��2
2�q + q�� , �4�

�� = lim
q→0

q−2CB�q� � 
�

a
�2�

�r���l0

d2r�
 h

l0
�4

�
�2h4

a2l0
2 , �5�

where h�10 Å is the typical scale of the height fluctuations,
as discussed earlier. Typical parameters allow for �=O�1�,
within range of the transitions that we consider below.

In order to perform a more detailed calculation of the
effective gauge field acting on the electrons, we first compute
the in-plane displacement field u��r�� obtained by minimizing
the elastic energy for a given realization of h�r��, and then we
estimate the strain tensor uij�r��. We define

f ij�r�� =
�

a

�h

�xi

�h

�xj
. �6�

In terms of these quantities, the procedure described above
gives for the effective magnetic field acting on the electrons:

B�k�� = iky

�3kx
2 − ky

2��� + ��
�� + 2��k4 �ky

2fxx�k�� + kx
2fyy�k�� − 2kxkyfxy�k��� .

�7�

We assume that the average properties of the height modu-
lations are described by translationally invariant correlation
functions, in Fourier:

�f ij�q��fkl�q��� = Fijkl�q� �8�

and are of short range character, i.e., with a finite limit for
ql0
1:

�Fijkl�q��q→0 = f
ij
kl + f��
ik
 jl + 
il
 jl� , �9�

a tensor compatible with the hexagonal symmetry of the lat-
tice parametrized by two dimensionless constants f and f�.
Using Eqs. �7�–�9�, we find for the correlations �4� of the
effective magnetic field at small q:

CB�q� = q2
 � + �

� + 2�
�2

sin2�3���f + 2f�� , �10�

where qx+ iqy =qei�, where the angle � is measured from a
given lattice axis. The angular dependence of the correlation
is consistent with the lattice symmetry; as we show below,
only its angular average is relevant for the transitions.

In Eq. �8�, we have assumed that the two point function of
��h�2 field has a finite q=0 limit. The exact bound
�
a ���ih�r��� jh�r������ �Fiij j�r�−r���1/2 implies that the roughness
h�r� of the graphene sheet �hence of the substrate if ad-
sorbed� can be at most ��1 /2 in the general case for Eq. �8�

GUINEA, HOROVITZ, AND LE DOUSSAL PHYSICAL REVIEW B 77, 205421 �2008�

205421-2



to hold. In a model with Gaussian distributed h, the condition
is ��1 /4 and higher roughness would result in long range
�LR� correlations in the disorder. Such LR correlations
would presumably arise when quenching thermal fluctua-
tions of a freely fluctuating membrane �which has �=0.59,
see Ref. 31�, although a precise estimate then requires taking
into account non Gaussian fluctuations, a nontrivial calcula-
tion. Here, we restrict to short range disorder and substrates
such that Eq. �7� holds.

IV. ELECTRONIC DENSITY OF STATES

The analysis of the height correlations in the previous
section leads us to a model of electrons described by the
Dirac equation, in the presence of a gauge field with random
correlations. This model is valid at length scales longer that
the typical size of the ripples, l0�102 Å, and energies
smaller than W0�vFl0

−1�10−2–10−1 eV.
We analyze the electronic density of states near the Dirac

point, E=0, using the techniques discussed in Ref. 18. The
main difference with the cases considered there is the exis-
tence of two Dirac equations coupled to the same gauge
field, with couplings of equal absolute value but opposite
sign, see Helec in Eq. �1�. The �2+1� dimensional Dirac prob-
lem, when projected onto a given energy, becomes a two
dimensional problem with excitations with a linear spectrum.
Its statistical properties, analyzed within a path integral for-
malism, are identical to those of quantum bosonic systems in
�1+1� dimensions. A derivative of the resulting path integral
yields the density of states. The bosonized version of the
problem also contains two fields, which become two sets of
coupled fields when the replica trick is used to integrate over
the disorder. Finally, we make the same variational ansatz as
in Ref. 18. The simplest observable is the total density of
states �DOS� �see Fig. 1�, which is self-averaging and is just
twice the DOS of a single Dirac equation �single layer prob-
lem as defined in Ref. 18� and behaves as

��E� � E2/z−1, �11�

with

z = �2 − K + �K2, � � 2/K2

K��8� − 1� , � � 2/K2,

 �12�

where K is a parameter which describes the kinetic energy of
the field in the bosonized version of the model and, for the
noninteracting case which corresponds to the Hamiltonian in
Eq. �1�, takes the value K=1. The parameter � determining
the exponent in Eq. �12� is found to be given by the angle
average of Eq. �10�:

� =
1

2�

 � + �

� + 2�
�2

�f + 2f�� , �13�

i.e., the strength of the random Gauge field, consistent with
the order of magnitude estimate �5�.

The change in the dependence of the exponent z on the
strength of the gauge field, �, in Eq. �12� is associated with a
phase transition in the disordered bosonic model. For �
��c=2 /K2, the local DOS �averaged over regions of size up
to L��E�−1/z� exhibits strong fluctuations and non-Gaussian
tails �i.e., its disorder average being different from its typical
value� due to the dominance of rare regions. Note that the
divergence of the DOS at E=0 occurs at �=1 /K2��c, i.e.,
before the freezing transition in the one layer problem as
disorder is increased.

The effect on the DOS of an additional smooth random
scalar potential with variance 
, corresponding to local fluc-
tuations of the chemical potential, induced by, e.g., the sub-
strate, has been discussed in Ref. 18. It leads to

��E� = E2/z−1R�E/
z/z�� , �14�

where the exponent z� is given by

z� = �2 − 2K + 4�K2, � �
1

2K2

2K��8� − 1� , � �
1

2K2
� �15�

and exhibits a transition at �c�=1 / �2K2�=�c /4. This leads to
a finite and nonzero DOS at zero energy:

��E� � 
�2−z�/z�, �16�

a behavior which thus exhibits two distinct freezing transi-
tions. The divergence of the DOS at �=1 �for K=1� is in
between these transitions.

Although we will not study this aspect in detail here, it is
also interesting to note that since the two Dirac equations
describing the two valleys �the two Fermi points� feel oppo-
site random gauge fields, mutual correlations of the local
DOS in the two valleys as measured by ��1�E ,r��2�E ,r��c

are strong. They are found to exhibit a transition at a differ-
ent value of disorder �=1 / �2K2� as can be seen by a study
analogous to the two layer model of Sec. IV B of Ref. 18.

V. INTERACTION EFFECTS AND ELECTRONIC
INSTABILITIES

For sufficiently large disorder, ��1, the density of states,
and, as a consequence, the electronic compressibility, di-

E

n(E)

L
z−2

L−z

E
−1+2/z

FIG. 1. Sketch of the DOS in a finite size L region for z�2. The
thick line is a typical value, while the thin line represents the size of
fluctuations that are enhanced below the energy L−z. For z�2, the
DOS increases at small E and its typical value saturates at L−2+z.
For z�3 �frozen regime�, the fluctuations become so strong that the
average DOS grows as L−2+z̄, where z̄=1+��z. Such finite size
fluctuations should be observable in tunneling experiments.

GAUGE FIELD INDUCED BY RIPPLES IN GRAPHENE PHYSICAL REVIEW B 77, 205421 �2008�

205421-3



verges at E=0. The electron-electron interaction, or the in-
teraction of the electrons with other degrees of freedom, will
lead to instabilities, which suppress the compressibility.

Within mean field theory, the effects of interactions on the
electronic band structure can be described as an external po-
tential which must be calculated self-consistently. A simple
such potential which opens a gap at E=0 is the shift of the
energy on one sublattice of the honeycomb structure with
respect to the other. This shift can be associated with a spin
or with a charge density wave, or it can be induced
by phonons32 or by short range electron-electron
interactions.33–36 In the continuum model described here, it
enters as a mass term:

Helec
tot = Helec + H�,

H� = ��
i
� d2r���̄i�r���z�i�r��� , �17�

where Helec is defined in Eq. �1�. The total electronic hamil-
tonian satisfies

�Helec + H��2 = �Helec�2 + �2I , �18�

where I is the two dimensional unit matrix, independent of
spatial position, which acts on the space spanned by the four
component electronic �iso�spinors �note that we consider the
two valleys separately�. The eigenvalues of the electronic

Hamiltonian satisfy �n
tot2 =�n

2+�2, where �n is an eigenvalue
of Helec. As a result, the density of states associated with
Helec

tot , ���E� satisfies

���E� =
E

�E2 − �2
���E2 − �2� , �19�

and, using the expression in Eq. �11�, we find

���E� = �0, �E� � �

1

l0
2

E��E2 − �2�2/z−2

W0
2/z , W0 � �E� � � , � �20�

where the energy scale W0=vF / l0 is inserted so that for E
	W0	� the value of ���E� crosses over into the density of
states of the clean system, ��E���E� /vF

2 .
The self-consistent value of � is determined by the com-

petition between the cost in energy associated with the for-
mation of the gap and the decrease in electronic energy due
to the reduction in the density of states at the Fermi level.
Near the transition, � is small compared to the other energy
scales of the model, and the energy required to create the
charge or spin density wave can be expanded as function of
�. For simplicity, we assume that the ordered phase is a spin
density wave induced by the on-site Hubbard repulsion U
which breaks the sublattice symmetry and produces a gap
�=US /2, where S is the resulting polarization per site. The
total free energy is the sum of the kinetic energy and the gain
in interaction energy obtained by inducing the polarization:

Ftot = Felec + FSDW,

FSDW =
�2

U
,

Felec = − 4Ta2�
�

W0

�ln�1 + e�−E−EF�/T�

+ ln�1 + e�E−EF�/T�����E�dE , �21�

where 4 allows for spin and valley degeneracy and we allow
for a possibly nonzero Fermi energy EF. The induced gap is
given by minimizing the total free energy and with a change
of integration variable:

1 = 2a2U�
0

W0 sinh��E2 + �2/T�

cosh�EF/T� + cosh��E2 + �2/T�
��E�dE
�E2 + �2

.

�22�

We consider first the case EF=T=0, where Felec→Eelec=
−4a2��

W0E���E�dE. The integrand can be expanded for E
	�, where it goes as �2E�2/z�−2. As a result, we obtain a
contribution to the electronic energy 
1Eelec����
−�a / l0�2�2 /W0. There is also a contribution from the region
E��. This term in Eelec��� can be written as 
2Eelec����
−�a / l0�2��2/z�+1W0

−2/z.
The relative strength of FSDW and Felec discussed above

leads to the existence of three regimes: �i� 2 /z−1�0. The
electronic energy is determined by 
1Eelec���. Both the mag-
netic and electronic energies go as ��2, and, for U
vF /a,
the minimum energy is at �=0. �ii� For 2 /z−1=0, we find

1Eelec�−2�a / l0�2�2 /W0 log�W0 /��. The magnetic energy
is greater by a logarithmic factor, and there is an ordered

phase, with ��W0e−�W0l0
2�/�2Ua2�. The problem becomes

equivalent to the Peierls analysis of the instability of a one
dimensional metal. �iii� For 2 /z−1�0, the leading contribu-
tion is 
2Eelec. There is a magnetic phase with a gap

�c � W0
 a2U

l0
2W0

�z/�z−2�

. �23�

We now analyze the way in which the magnetic phase
which always exists for 2 /z−1�0 is modified when EF ,T
�0. In particular, the order of the transition is determined by
the sign of the a4 coefficient in the free energy expansion
F=a2�2+a4�4. Taking a ���2�0 on the right hand side of Eq.
�22� yields a4; hence, the simultaneous conditions a2=0 and
a4=0 determine a critical EF, with EF

c =��z�Tc whenever Tc

W0, such that the transition changes from second order for
EF�EF

c to first order in the region EF�EF
c , where we have

a4�0. We find numerically that cosh ��z� varies between 3.4
at z=2 and 2 at z→�.

A typical phase diagram with z�2 is shown in Fig. 2,
where the value of the gap �c at the critical temperature, in
the region where the transition is first order, is also shown.
When the line of first order transitions is crossed, the elec-
tron density jumps discontinuously. For sufficiently large
values of EF, we find that �c�EF��EF. When the transition
line is crossed in this region, the electron density in the or-
dered phase is zero. The phase diagram as function of tem-
perature and electron density is shown in Fig. 3.
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VI. FORMATION OF LATTICE DEFECTS

A. Unbinding of dislocations

As discussed earlier, ripples, e.g., due pinning to a rough
substrate, induce in-plane strains. If these strains are suffi-
ciently large, it will become favorable to relax them by cre-
ating lattice dislocations. It is convenient to view the out-of-
plane deformations as inducing quenched random stresses
coupling linearly to the in-plane strain tensor ũij via an en-
ergy density �ij�ijũij. One can then apply the result of Ref.
24 for the threshold beyond which random stresses generate
dislocations.

Using Eq. �1�, the random stress tensor field which renor-
malizes the fugacity of dislocations is

�xx =
�

2
�
 �h

�x
�2

+ 
 �h

�y
�2	 + �
 �h

�x
�2

,

�yy =
�

2
�
 �h

�x
�2

+ 
 �h

�y
�2	 + �
 �h

�y
�2

,

�xy = �
�h

�x

�h

�y
. �24�

We assume that the correlations of this field are given by

���ij�q���kl�− q����q→0 = ���
ij
kl + ���
ik
lj + 
il
 jk�� ,

�25�

where the parameters �� and ��+2�� measure the strength
of random shear stresses and compressional stresses, respec-
tively.

In presence of random stresses, an isolated dislocation in
a region of size L feels a random potential whose minima
grow typically �−ln L. The logarithmic elastic energy cost
of creating a dislocation can then be overcome, and thus
dislocations will proliferate at T=0 when

�̃ =
��� + 2���� + �2��� + 2���

�2�� + ��2 � �̃c =
a2

16�
, �26�

where we have neglected the effect of screening of the elastic
coefficients by disorder, which have been shown to be
small37�. To the same accuracy, this formula holds for all
T�Tm /2 where Tm=K0a2 / �16�� is the melting temperature
of a pure 2d crystal associated to the unbinding of
dislocations,38 with K0=4���+�� / ��+2��, while the
threshold decreases as �̃c�T�=4�̃c

T
Tm

�1− T
Tm

� at higher T. For
�̃��̃c and at T=0, the scale L above which dislocation first
appear can be estimated as in Ref. 39 and corresponds to the

total energy cost
K0a2

8� �1−��̃ / �̃c�ln�L / l0�+Ec becoming nega-
tive. We have taken into account the dislocation core energy

Ec=Ec
0+

K0a2

8� ln�l0 /a� at scale l0 �Ec
0 denotes the bare core

energy�. Because of logarithms, this scale can be large;
hence, it can alternatively be viewed as defining an effective
size dependent threshold �̃c�L�. The dislocation density
above this scale can be estimated by arguments similar to
Ref. 40.

The quantities �� and �� can be written in terms of the
correlations of the function f ij, given in Eqs. �8� and �3�:

�� =
a2

�2 ��2�f + 2f�� + ��� + 2���f + f��� ,

�� =
a2

�2�2f�. �27�

Inserting this result in Eq. �26�, and assuming that � ,� /�
�O�1�, we find that dislocations will proliferate when the
height correlations are such that h2 / �l0a��1, which is the
same combination of scales which determines the existence
of a divergence in the electronic density of states.

B. Buckling into the third dimension

An effect not taken into account above is that dislocations
may buckle in the third dimension to lower their energy. For
a free membrane �in the absence of a substrate�, this occurs
for scales larger than the buckling radius Rb, and below that
scale the membrane remains flat and Coulomb gas logarith-
mic scaling holds. In principle, for a free membrane in the
presence of internal in-plane random stresses, if Rb is large
enough �values such as Rb�102� / �K0a� are quoted in Ref.
41�, i.e., if Rb� l0	a, the above energy estimate setting L
=Rb can be used to determine the disorder threshold at which

0.2 0.4 0.6 0.8 1
EF�meV�

4

8

12

T�K�

��Tc�

FIG. 2. �Color online� Critical temperature as function of chemi-
cal potential. The parameters used are W0=200 meV, l0=10a, �
=1.4 �z=2.4�, and U=1 eV. The value of � implies an average
height fluctuation h�3.4 Å. The blue diamonds give the critical
temperature when the transition is discontinuous. The green tri-
angles are the values of the gap �, in Kelvin, at the transition
temperature, in the region where � jumps discontinuously from
zero to a finite value.

FIG. 3. �Color online� Approximate phase diagram as function
of electron density and temperature, obtained with the same param-
eters used in Fig. 2 The existence of a first order transition leads to
a region where electronic phase separation is induced.

GAUGE FIELD INDUCED BY RIPPLES IN GRAPHENE PHYSICAL REVIEW B 77, 205421 �2008�

205421-5



buckled dislocations would occur. However, if one takes into
account the pinning of the height field to the substrate, the
energy calculation of Ref. 41 remains valid for scales smaller
than lp but must be reexamined for scales larger than lp, a
problem left for future study.

C. Gauge fields associated with dislocations

Note, finally, that dislocation cores act on the electrons
outside the core as vortices34 of flux �=��0 /3, where �0 is
the quantum unit of flux �=2� in our units� and �= �1.
Hence, the existence of dislocations will increase the random
field due to elastic strains considered so far. Given a set of

dislocations at position r�n and Burgers charges b�n, the result-
ing effective magnetic field can be written B�r��
= ��0 /3�n�r��, where n�r��=�n�n
�r�−r�n� and the signs are

given by �=2b� ·a1 mod 2�. If positions and signs were cho-
sen uncorrelated �such as in a quench from infinite tempera-
ture�, it would result in a LR correlated random gauge field,
i.e., CB�q���0

2d−2 at small q in Eq. �4�, where d is the mean
distance between defects.42

This procedure, however, leads to Burgers charge fluctua-
tions growing as ��L in an area L2, hence a very large
elastic energy, L ln L. If the system can relax, this energy is
screened and the result is a finite parameter � as defined in
Eq. �5�. In cases where the dislocation density is not very
small, it can be estimated from a Debye-Hückel theory. One
nonequilibrium example is a quench of a pure crystal from
a �moderate� temperature TQ�Tm to low temperature in
which case �n�q��n�−q���=TQq2 / �Ec

0q2+K0a2�; hence, �
=TQ�0

2 / �9�K0a2�. Further relaxation of �ln L energy would
then occur. Another example is the distribution of disloca-
tions induced by the ripples as in Eq. �26�, with �̃��̃c. Then
one estimates43 �n�q��n�−q���= 1

4q2�̃K0
2a2 / �Ec

0q2+K0a2�2;
hence, �= �̃�0

2 / �36�a2�. Very near the transition, Debye-
Hückel does not apply as � vanishes at �c proportionally to
the density of dislocations.

VII. RIPPLES IN SUSPENDED GRAPHENE

Finally, we discuss a possible source for ripples in sus-
pended graphene.11,44,45 Upon etching a preexisting rough
substrate, the rippled graphene sheet would tend to relax to a
flat configuration with higher projected area. This, however,
may be precluded if the sheet is pinned at its boundaries.
Indeed, it is known that fixed connectivity membranes ex-
hibit a buckled state when constrained at their boundaries by
a fixed frame of projected area Af smaller than the equilib-
rium area of the unconstrained membrane A. As discussed in
Ref. 46 it results in an additional compressional energy term
of the form ��d2r��iuii and hence implies that the energy of
flexural modes becomes, to lowest order, 1

2�d2r�����2h�2

+���h�2�. In the buckled phase, Af �A, ��0, an instability
thus develops at scales larger than �h��� / ����1/2. This phase
can be described as a nonhomogeneous mixture of pure flat
phases with different orientations. For arbitrary boundary
conditions, it is expected to be nontrivial since, contrary to
a one dimensional rod; in a polymerized membrane, the
in-plane modes cannot fully relax the flexural constraints,

i.e., the transverse part of the flexural strain tensor,
Pij

T�����ih� jh�, cannot be relaxed by the in-plane strain field.
While demonstrating the instability is simple, the full calcu-
lation of the resulting shape requires consideration of nonlin-
ear terms and is difficult. The problem of relaxation from a
randomly rippled configuration with a fixed frame constraint
deserves further study, in particular, the question of whether
there is some memory of the initial ripple pattern.47

Note that one may consider, alternatively, unconstrained
boundary and apply a tension −f�d2r��iui. The buckling
transition46 has been mostly studied on the side where the
sheet is stretched �the effective �R→0+�. It was found that
�Af −A� /A��R��f �1/
 sgn�f� and the correlation lengths �h
��u��f �−�/
 for flexural and phonon modes at small f . While
entropic effects produce nontrivial values for these expo-
nents, these may be observable only at large scales, and at
intermediate scales mean field values 
=1, �=1 /2 �dis-
cussed above� are appropriate. It would thus be interesting to
study the other side of this transition.

VIII. BROADENING OF LANDAU LEVELS IN THE
PRESENCE OF A REAL MAGNETIC FIELD

In the presence of a real magnetic field B, we expect that
the Landau levels will be broadened by the effective field
Brip due to the ripples. Alternatively, the local electronic den-
sity corresponding to N full Landau levels is fluctuating ac-
cording to n�r�= �B+Brip�r��N /�0, where �0 is the flux
quantum. Such density fluctuations were recently measured25

showing 
n= �2.3�1011 cm−2 at a field of 11T for N
=2,6 ,10. In this section, we estimate the contribution of the
random gauge field due to ripples to these density fluctua-
tions.

Consider the density n measured on a length scale L, and
its probability distribution, near an average density BN /�0.
We express the energies of these levels as �N=�F

�2e�BN�
with N=4N�+2, and N�=0, �1, �2, . . .. We assume first
l0� lB

�N, where lB=��0 / �2�B� is the cyclotron radius and
lB

�N� estimates the size of an orbit in the Nth Landau level.
Each Landau orbit has then a random shift �Brip�r�, where
the � corresponds to the K and K� valleys that feel opposite
gauge fields. The density distribution is

P�n� = �
r�L

�
�


„n − BN/�0 � Brip�r�N/�0…d
2r/2L2.

�28�

The average is �n�=BN /�0 while the variance is

�
n2� =
N2

�0
2L4���

r�L

Brip�r�d2r	2�
=

N2

4�2L4��� A�u�du	2� , �29�

where Brip= ���A�z�0 /2� and A is the random gauge field
considered in the previous Sections �with the appropriate
change in units� and the contour enclose the area of measure-
ment. To estimate the variance in Eq. �29�, we use Eq. �5�
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with a cutoff exp�−q2l0
2 /2�. In real space, it corresponds to

�Ai�r�Aj�r����� /2l0
2�exp�−�r−r��2 /2l0

2�, where we neglect48

the transversality constraint on A. It yields

�
n2�L �
N2�

4�l0L3 . �30�

The experimentally more relevant case is l0� lB
�N. In

this case, we argue that A�r� can be replaced by its average
within a Landau state, so that an average ripple field is

Bav�r� =
1

2�NlB
2 � d2r0Brip�r0�e−�r − r0�2/2NlB

2
�31�

and its Fourier transform is Bav�q�=Brip�q�exp�−q2NlB
2 /2�.

This replaces l0→ lB
�N in Eq. �30�, and identifying L with

the tip size ltip in the experiment,25 we obtain

�
n2�L � N3/2 �

4�lBltip
3 . �32�

Using25 l0�100 nm and lB�10 nm, Eq. �32� yields numbers
consistent with the experiment, except for the N dependence.
Note that an even weaker dependence in N �
n�N1/4� is
obtained if one assumes that L= lB

�N is the only averaging
scale.

It is also interesting to estimate the energy broadening 
�N
of the Landau levels, which in the absence of ripples have
energies �N=vF

�2e�BN�, with N=4N�+2. The field associ-
ated with the ripples changes locally the energy of the Lan-
dau levels, which become �N=vF

�2e��B�
Brip�N�, where

Brip is the average value of Brip in the region occupied by
the Landau level. A calculation based on Eq. �30� with L
= lB

�N then yields the estimate for N�2,


�N� � vF
 �

8l0lB
�1/2

N−1/4, �33�

in the regime lB
�N� l0.

Finally, we note that the N�=0 level has no broadening at
all. This remarkable result is obtained by factorizing the N�
=0 eigenstates of the free Dirac system in a magnetic field
with the well known zero energy solutions of the random
gauge problem.15,18 This set has the proper Landau degen-
eracy and is therefore an exact solution for the zero energy
Landau level with random gauge.

IX. CONCLUSIONS

We have analyzed the effect of random gauge fields on the
electronic structure of corrugated graphene. We find that the
local density of states diverges at the Dirac energy E=0 as
��E� E2/z−1, with z�2, for sufficiently strong disorder. The
scale of height fluctuations, h, should satisfy �h2 / �la��1,
where ��1−2 gives the coupling between the electrons and
the lattice strains, l is the typical spatial scale of the disorder,
and a is the lattice constant.

A divergence in the density of noninteracting density of
states implies the existence of instabilities in the presence of
electron-electron interactions. We have analyzed the possibil-
ity that a gap will open at low temperatures, depleting the
low energy density of states. We have found a first order
transition to an ordered state at large EF. This discontinuous
transition, in turn, implies electronic phase separation.

When the strains which induce the gauge potential are
sufficiently strong, they can lead to an instability and the
formation of lattice dislocations. This change takes place for
C�� ,��h2 / �la��1, where C�� ,���1 is a dimensionless pa-
rameter which depends on the elastic constants of the mate-
rial.

We have described the main features of the buckling in-
stability which may arise in suspended systems under com-
pression. Finally, we analyze the changes induced in the Lan-
dau levels induced by a magnetic field by the gauge potential
associated to ripples and show correspondence with experi-
mental data.25

Our analysis is consistent with previous work on the
changes in the electronic density of states in graphene in the
presence of ripples49 �see also Ref. 50�. A transition to a state
magnetically ordered in highly disordered systems agrees
with the observation of magnetism in irradiated graphite
samples.51 The existence of charge inhomogeneities, due to
electronic phase separation, can help explain the observation
of charge puddles when the Fermi energy is close to the
Dirac energy.25
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