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The formation of nanoscale self-assembled compositional patterns in monolayer bulk-immiscible alloy films
is studied from first principles within the framework of a previously proposed hybrid atomistic-continuum
model �V. Ozoliņš et al., Phys. Rev. Lett. 88, 096101 �2002��. The details surrounding the parametrization of
the model from first-principles calculations are described for both hexagonal �0001� and bcc �110� substrates,
and we demonstrate how the theoretical model can be employed in Monte Carlo simulations as a predictive
framework for modeling the structure and finite-temperature stability of compositional patterns. The method-
ology is applied in a comparative study of equiatomic FeAg pseudomorphic alloy films on Mo�110� and
Ru�0001� substrates. Stripe patterns with periodicities of a few nanometers are predicted to be stable in both
systems, which is in good agreement with available experimental data for FeAg/Mo�110�. The regularity of the
stripe patterns and their stability with respect to disordering are found to be substantially enhanced on the
anisotropic Mo�110� substrate relative to the nearly isotropic Ru�0001� surface, despite the slightly stronger
ordering energetics in the latter system. A comparison of the results of the present study to the predictions of
continuum theories commonly employed to describe pattern formation on crystalline surfaces serves to high-
light the limitations of such models in the application to patterns with periodicities with length scales of
approximately ten atomic spacings.
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I. INTRODUCTION

Nanoscale materials hold promise for many novel appli-
cations ranging from single electron transistors1 to molecular
electronics,2 quantum dot lasers,3 and quantum computing.4

Obtaining large ordered arrays of nearly identical nanostruc-
tures has been long recognized as one of the central chal-
lenges to the widespread adoption of these new technologies.
For instance, enormous effort has been devoted to studying
self-assembled quantum dots5 �SAQDs� obtained during the
Stranski–Krastanov epitaxial growth mode,6 but the disorder
in the sizes and spatial distribution of SAQDs have been
difficult to control due to the random nature of their nucle-
ation. There is a growing consensus that “directed self-
assembly,” where an externally imposed pattern serves as a
mask, nudging atoms and molecules toward predefined spa-
tial locations, might offer the solution to these difficulties if
one can devise efficient methods of obtaining patterned
masks or creating external fields with nanometer-scale peri-
odicities.

Ordered patterns with linear dimensions between a few
and a few hundred nanometers, such as those shown in Fig.
1, have been observed in several low-dimensional systems:7

Langmuir–Blodgett monolayers,8 diblock copolymers,9 mag-
netic films,10 fluids,11 and surfaces.12–21 In addition to being
fundamentally interesting, these patterns may also be trans-
ferred to semiconductor surfaces and used for directed
self-assembly.22 In this paper, we will be concerned with the
phenomenon of pattern formation in flat ultrathin films com-
posed of bulk-immiscible elements. Several such systems
have been studied in recent experiments,23–27 and the term
“self-assembled lateral multilayers” has been used to refer to
the resulting stripe phases.24 We will show how to construct

quantitative first-principles models of the thermodynamics of
nanoscale compositional ordering based on the accurate and
parameter-free density-functional theory �DFT� method of
total energy calculations. These models can be used to study
the structure, thermal stability, and phase transitions in
monolayer alloy films, as well as to search for new surface
alloy systems that form robust self-assembled patterns with
nanometer-scale periodicities.

This paper is organized as follows. Section II reviews the
current understanding in the field and describes the physical
and mathematical bases of our model. Section III describes
an application of this formalism to equiatomic Co-Ag and
Fe-Ag alloys on two substrates commonly employed in ex-
perimental studies of magnetic alloy thin films, namely, the
isotropic Ru�0001� and anisotropic Mo�110� surfaces; a com-
parison of results on these two substrates highlights the na-
ture of the effects of the substrate on the process of pattern
formation. The results of the study are presented in Sec. IV,
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FIG. 1. Ordered surface patterns forming due to competition
between short-range attractive and long-range repulsive forces. The
arrows denote elastic relaxations due to size mismatch between the
alloy constituents.
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and these results are discussed in light of experimental ob-
servations and previous theoretical studies in Sec. V, which
also outlines directions for future research. The main conclu-
sions are summarized in Sec. VI.

II. MODEL FOR ALLOY-FILM ENERGETICS

This section begins with a short review of the current
understanding of pattern formation in surface alloy films. We
then review the harmonic formalism proposed by Ozoliņš et
al.28 for modeling the competing elastic and chemical con-
tributions underlying the configurational energetics of
pseudomorphic monolayer alloy films. Subsequently, we
give the details of the model parametrization for Fe-Ag films
on Ru�0001� and Mo�110� by using elastic continuum
Green’s functions for the substrate response.

A. Theoretical background

It is well understood that regular patterns �see Fig. 1� can
form due to thermodynamic ordering tendencies arising from
competing interactions that favor like neighbors �phase sepa-
ration� on short distances and unlike neighbors �intermixing�
on long distances.7 In a simple Ising-like lattice model, or-
dering tendencies between the nearest neighbors �NNs� are
governed by an effective-pair interaction:

JNN =
1

4
�VAA + VBB − 2VAB� , �1�

where VAA, VBB, and VAB are the configurationally averaged
energies of A-A, B-B, and A-B bonds, respectively. Pattern-
forming systems favor like-atom NN bonds, JNN�0. For in-
stance, in the case of a surface alloy formed by immiscible
species, such as Fe and Ag �Ref. 24� or Co and Ag,25 Fe-Ag
and Co-Ag bonds are energetically costly in comparison with
like-neighbor �Fe-Fe, Co-Co, and Ag-Ag� bonds. Thus, the
nearest-neighbor energy is minimized in a phase-segregated
state with large patches of Co or Fe and Ag. However, the
size mismatch between the surface species and the substrate
imposes a high energetic penalty on the phase-segregated
state due to epitaxial strain. As a compromise, the system
forms patterns, which allow for a partial relief of the surface
stress �indicated by the arrows in Fig. 1� at the expense of
introducing line boundaries between the two phases. Quite
generally, bulk immiscibility and atomic size mismatch are
characteristic features of binary alloys that form surface
patterns.29

A quantitative continuum theory for pattern formation on
surfaces was developed by Marchenko.30 Within this isotro-
pic continuum theory of elastic relaxations, the formation of
surface patterns occurs due to the existence of surface stress
differences between two coexisting phases �gray and white in
Fig. 1�. The continuum elasticity theory predicts that the re-
duction in energy due to the relaxation of the surface stress is
sufficient to overcome the positive boundary energy associ-
ated with the line interface between the two phases, Eb
=�b�dl �where �b�0�. Indeed, in periodic striped phases,
the elastic relaxation energy exhibits a logarithmic depen-
dence on the period �:

�Eel = −
��A − �B�2�1 − �2�

�E
ln

�

b
, �2�

where �A and �B are the surface stresses of the two phases, �
and E are the Poisson ratio and Young’s modulus of the
substrate, and b is a system-specific length scale below
which the continuum elasticity theory does not hold and an
atomistic description is required; this parameter is typically a
few interatomic spacings in magnitude. Equation �2� shows
that for sufficiently large periods �, the elastic relaxation
energy will always overcome the energy cost of introducing
line interfaces between the surface phases. The ground-state
properties of this model were studied by Ng and
Vanderbilt,31 who found that the periodic patterns shown in
Fig. 1 are the stable ground states on an isotropic surface,
with stripes being stable near the 50-50 composition and
disks �inverted disks� being favored for A-rich �B-rich� com-
positions.

Microscopic effects and thermal fluctuations have been
extensively studied by Singer and co-workers,32–35 who con-
sidered a spin-1

2 lattice model with nearest-neighbor interac-
tions of ferromagnetic type �JNN�0� and weaker long-
ranged interactions of antiferromagnetic type, V�r�= g	�r�

r3 ,
where r is the separation between sites, g is the strength of
the interaction, and 	�r� is a smooth cutoff function that
obeys limr→
 	�r�=1 and cancels the 1 /r3 divergence as
r→0. Near the equiatomic composition, these authors found
that the ordered stripe phase disorders �melts� via a continu-
ous defect-mediated phase transition of the Kosterlitz–
Thouless �KT� type.36–39 The transition temperature is found
to increase with decreasing ratio, �= �g /JNN�, approaching
the two-dimensional �2D� Ising value with Ising-like disor-
dering within the stripes in the limit of small �, correspond-
ing to higher values of stripe width �. For applications to
pattern formation in alloy films, the discrete lattice model
considered by Singer and co-workers correctly captures the
dipolar nature of the strain-induced interactions at large dis-
tances, as predicted by the Marchenko30 theory �e.g., Ref.
31�, and the competing effects of chemistry �through JNN� at
short distances; however, the application of the model to spe-
cific alloys is complicated by the fact that the functional
form of 	�r� is, in general, unknown for realistic systems.

In Ref. 28, we developed a relatively simple, yet versatile
model of surface alloys, which gives an explicit functional
form for the interatomic interactions and a recipe to deter-
mine them from ab initio calculations, allowing for direct
contact with experimental results in specific systems. Ana-
lytical expressions for elastic relaxation energies and the as-
sociated displacement fields were derived in the limits of
“stiff” and “soft” substrates. In the stiff-substrate limit,
which is found to be appropriate for describing the systems
of interest here, it is assumed that the displacements in the
substrate, which are induced by the epitaxial film, are small
in magnitude relative to those within the alloy layer. In this
case, the elastic energy in the film can be described within a
harmonic limit of the well-known Frenkel–Kontorova
model,40 while the energy associated with substrate deforma-
tion is calculated by using continuum expressions30,41,42 for
the reduction in elastic energy associated with the relaxation
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of the surface force distributions imposed by the alloy-film
displacements.

We will show that in many cases of practical
interest,24,25,43,44 the Marchenko30 theory does not provide an
accurate description of the energetics of thin-film alloy sys-
tems because the periodicity of the stable stripes is well be-
low the limit where the substrate-mediated contribution to
the elastic displacement field dominates. Instead, the elastic
relaxation energy is determined almost entirely by displace-
ments within the surface layer. At intermediate length scales,
elastic interactions exponentially28 decay and display the
asymptotic 1 /r3 dipolar form, which is predicted by the
Marchenko30 theory, only after approximately 15–20 lattice
parameters. The model presented below fills the gap between
the cases of short-period ordering described by conventional
alloy theoretical methods based on short-range Ising models,
such as that for Pd-Au/Ru�0001�,45 and long-wavelength
modulated phases that are accurately described by the con-
tinuum theory of Ng and Vanderbilt31 and by the scaling
theory of Stoycheva and Singer.33,34 Importantly, our work
can be used to provide ab initio-based quantitatively accurate
and experimentally verifiable predictions of alloys and alloy-
substrate combinations, as well as the types, periodicities,
and thermal stability of the resulting patterns.

B. Formalism

The general expression for the energetics of a pseudomor-
phic alloy film on an elastically stiff substrate can be written
within the formalism of Ref. 28 as follows:

H =
1

2�
i

Ai
�
ui

�ui

 +

1

4�
i,j

kij��ui
� − uj

��eij
� − �ij�2

+
1

2�
i,j

Jij
chemSiSj + Hsub, �3�

where the indices i and j refer to binding sites on the sub-
strate, while the Greek indices �� and 
� denote Cartesian
components �x and y� parallel to the substrate surface.
Throughout the remainder of this section, summation over
repeated Cartesian indices is implied. The physical interpre-
tation of each of the terms in Eq. �3� is schematically illus-
trated in Fig. 2. The interaction of the film atoms with the
substrate is described by the first term as a harmonic poten-
tial, where Ai

�
 is the second derivative of the energy as a
function of the lateral displacement �ui� of a film atom at site

i, which is away from the ideal binding site �it can be shown
that the perpendicular component can be integrated out, see
footnote 16 in Ref. 28�. The second term in Eq. �3� repre-
sents the expression for the elastic energy of the atoms
within the film, which is written in terms of a harmonic
central-force potential, with kij denoting a force constant, eij

�

representing the components of the unit vector connecting
sites i and j, and �ij parametrizing the strain in the i-j bond.
The third term in Eq. �3� describes the “chemical” energy,
which is given in the form of an Ising-model Hamiltonian,
where Si takes values of +1 or −1 for Ag or Fe atoms occu-
pying site i, respectively, and Jij

chem are effective-pair interac-
tions �defined by Eq. �1��. The final term represents the re-
duction in the energy of the combined �film+substrate�
system associated with substrate deformations, which is in
response to the distribution of surface forces �Fi� arising
from the lateral displacements of the film atoms. This term
will be discussed in further detail below. In what follows, we
refer to the sum of the first three terms of Eq. �3�, represent-
ing the energy of the alloy film on a rigid, undeformed sub-
strate as Hfilm.

In the application of Eq. �3� to Fe-Ag alloys on Ru�0001�
and Mo�110� substrates, we introduce the following simpli-
fying assumptions, which are justified below by the ability of
the model to accurately describe first-principles calculated
formation energies in these systems:

�i� The chemical interactions are assumed to take nonzero
values, Jij

chem=Jchem, for nearest-neighbor pairs only.
�ii� The substrate potential is assumed to be diagonal,

Ai
xx=Ai

yy =A, with a magnitude �A� that is independent of the
species occupying site i.

�iii� The force constants are assumed to couple only
nearest-neighbor pairs and to have the same values, kij =k,
independent of the bond type.

�iv� Based on the relative values of the atomic radii, it is
expected that on both Mo�110� and Ru�0001� surfaces, Fe-Fe
and Ag-Ag bonds should be under tensile and compressive
strains, respectively, while Fe-Ag bonds are matched well to
the substrate lattice spacing. We thus assume a simple pa-
rametrization for the bond strains: �ij =��Si+Sj� /2. With this
parametrization, the equilibrium bond lengths for Fe-Fe, Fe-
Ag, and Ag-Ag bonds are r0−�, r0, and r0+�, respectively,
where r0 denotes the nearest-neighbor distance on the sub-
strate surface.

With these assumptions, the first three terms in Eq. �3� can
be rearranged to take the following form:28,46,47

Hfilm = H0 +
1

2�
i,j

JijSiSj +
1

2�
i,j

�ij
�
ui

�uj

 + �

i,j
�ij

�ui
�Sj .

�4�

In Eq. �4�, H0= kZN�2

8 , where Z is the coordination number
�number of nearest-neighbor sites within the alloy-film
layer� and N is the total number of atoms in the alloy
film. The second term contains contributions from both
the chemical interactions and the elastic strain energy, i.e.,
Jij =Jchem+Jstrain, where Jstrain= k�2

4 . The combination of terms

A A B

Substrate

Ai ui
2 / 2

ui

Fi

kij,∆ij

uj

Fj

A A B

Substrate

Ai ui
2 / 2

ui

Fi

kij,∆ij

uj

Fj

FIG. 2. Schematic model for the energetics of a pseudomorphic
alloy film.
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H0+ 1
2�i,jJ

strainSiSj represents the configuration-dependent
stored elastic strain energy in the unrelaxed monolayer film.
The third and fourth terms in Eq. �4�, which are associated
with the film-atom displacements ui, contribute to the elastic
relaxation energy. The symbol �ij

�
 denotes the force-
constant tensor for the film atoms, and �ij

� is the so-called
Kanzaki-force term;48 the product −�ij

�Sj represents the force
on atom i in the direction � due to the presence of atom type
Sj at site j. In Sec. II C, explicit expressions for �ij

�
 and �ij
�

are given for Fe-Ag/Ru�0001� and Fe-Ag/Mo�110� in terms
of the parameters A, k, and � introduced above.

In applications of Eqs. �3� and �4�, we eliminate the dis-
placement variables �ui� by invoking the condition of me-
chanical equilibrium. This task is simplified by making use
of 2D lattice Fourier transforms defined as follows:28

S�q� =
1

N
�

i

Si exp�− iq · Ri� ,

u��q� =
1

N
�

i

ui
� exp�− iq · Ri� ,

J�q� = �
j

Jij exp�− iq · Rj� ,

��
�q� = �
j

�ij
�
 exp�− iq · Rj� ,

���q� = �
j

�ij
� exp�− iq · Rj� . �5�

In Eq. �5�, Fourier transforms of real-space quantities are
denoted by their functional dependence on the wave vector
q= �qx ,qy�. From the definitions in Eq. �5�, the energy in Eq.
�4� can be cast in the following form:

Hfilm = H0 +
N

2 �
q

�u�
��q���
�q�u
�q� + 2S��q����q�u��q�

+ J�q��S�q��2� , �6�

where the sum is over all wave vectors within the �two-
dimensional� Brillouin zone of the surface lattice, and
the superscript � denotes complex conjugates, with S��q�
=S�−q� and u�

��q�=u��−q�.
In the stiff-substrate limit,28 the equilibrium values of the

dísplacements of the film atoms are derived by the minimi-
zation of Hfilm. The equation of

�Hfilm

�u�
��q� =0 yields the following

relation:

u��q� = − S�q���

−1 �q��
�− q� , �7�

where ��

−1 , which is the inverse of the 2�2 force-constant

matrix, represents a lattice Green’s function. When the above
expression for the displacements is inserted back into Eq.
�6�, the following expression is obtained for the total energy
of the film:

Hfilm = H0 +
N

2 �
q

J�q��S�q��2 −
N

2 �
q

����q���

−1 �q��


��q��

��S�q��2. �8�

In this equation, the sum of the first and second terms, which
include both chemical and elastic contributions, represents
the total energy of an epitaxially strained film that is com-
pletely coherent with the substrate, i.e., where all the atoms
directly sit on the lattice sites of the underlying substrate and
all displacements are zero �ui=0 for all i�; the third term is
negative and represents the elastic relaxation energy �i.e.,
reduction in elastic energy� arising when atoms are allowed
to displace away from the ideal lattice sites to minimize the
total energy. In the second term in Eq. �8�, J�q� gives rise to
a short-ranged �nearest neighbor in this case� contribution to
the effective-pair interactions in real space, while the brack-
eted expression in the third term yields a “medium-ranged”
contribution to the interactions, originating from the expo-
nentially decaying displacement fields in the Frenkel–
Kontorova model.28

To summarize, the energy of the alloy film on a rigid
substrate can be written in the form of a generalized Ising
model Hamiltonian, which is expressed in reciprocal space,
as follows:

Hfilm = H0 +
N

2 �
q

Jfilm�q��S�q��2, �9�

where the ordering potential, Jfilm�q�=Jchem�q�+Jelastic�q�,
contains contributions from both chemical �Jchem�q�, the
Fourier transform of Jchem� and elastic �Jelastic�q�� interac-
tions. The elastic interactions can be further divided into two
contributions: Jelastic�q�=Jstrain�q�+Jrelax�q�, where Jstrain�q�
is the Fourier transform of Jstrain, and Jrelax�q�
=−���q���


−1 �q��

��q�, which corresponds to the strain-

induced interactions associated with the elastic relaxation en-
ergy.

We now consider the final term in Eq. �3� associated with
elastic deformations of the substrate. To appreciate the sig-
nificance of this term, it should be noted that in the deriva-
tion of the elastic energy contributions to Eq. �9�, it was
assumed that the substrate was rigid, i.e., displacements of
the subsurface substrate atoms were neglected. In first-
principles calculations of the energetics of periodic surface
structures with modulation wavelengths on the order of a few
nanometers �e.g., Refs. 28 and 44�, this rigid-substrate as-
sumption has been found to be highly accurate. At increas-
ingly longer wavelengths, however, substrate displacements
cannot be neglected. Consider as a specific example an
Fe-Ag stripe superstructure with period � �cf. the right panel
of Fig. 1�. As � becomes very large on the scale of the
interatomic spacing, the alternating patches of Fe and Ag can
be viewed as representing stress domains, with the Fe/Ag
interfaces giving rise to discontinuities in surface stress. At
large composition-modulation wavelengths, the elastic relax-
ation energy arising from these surface forces should be de-
scribed well by the continuum theory of elastically strained
surfaces30,41 described in Sec. II A. In this long-wavelength
limit, elastic relaxations give rise to long-ranged subsurface
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displacements within the substrate, which are neglected in
the development of Eq. �9�. Within the stiff-substrate limit
defined in Ref. 28, the contribution of substrate deformations
to the elastic relaxation energy can be incorporated through
the substrate term Hsub in Eq. �3� defined as follows.

The contribution to the relaxation energy arising from
substrate displacements can be regarded as a consequence of
the response of the substrate to a surface force distribution
resulting from displacements of the atoms within the film.
Specifically, from Ref. 28, this force distribution is expressed
as F�=Au�. The Fourier transform of this force distribution
can thus be expressed using Eq. �7� as

F��q� = − A��

−1 �q��
�− q�S�q� . �10�

According to the continuum theory of elastically strained
surfaces,30,41,49 the relaxation of such a surface force distri-
bution leads to a net reduction in elastic energy:

Hsub = −
1

2
� � p��r�G�
�r − r��p
�r��d2rd2r�, �11�

where p is the force density �force per unit area�, the two-
dimensional integrals are over the surface, and G�
�r−r�� is
the elastic Green’s function for the semi-infinite substrate,
which is evaluated on the surface. We assume that the con-
tinuous force distribution in Eq. �11� can be discretized in
terms of the forces on each atom divided by the area per
atom. With this assumption and making use of 2D Fourier
transforms, Eq. �11� can be expressed as follows:

Hsub = −
N

2S0
�
q

F�
��q�G�
�q�F
�q� , �12�

where S0 is the surface area per atom. By making use of the
expression for F��q� given in Eq. �10�, we can rewrite Eq.
�12� as follows:

Hsub =
N

2 �
q

Vsub�q��S�q��2, �13�

where

Vsub�q� = −
A2

S0
	����

−1�− q� � ���− q�� � G�
�q�

� ��
�
−1�q� � ���q��
 . �14�

Thus, Eq. �14� shows that the substrate contribution to Eq.
�3� leads to an additional contribution to the reciprocal-space
interaction potential, which can be added to the terms
Jchem�q� and Jelastic�q� given above. In the limit of long wave-
lengths �q→0�, it can be shown28 that the magnitude of
Vsub�q� vanishes, although the slope approaches the origin
with a finite value that generally �for an elastically aniso-
tropic substrate� depends on the direction of q. This singular
behavior gives rise to a long-ranged dipolar contribution to
the interactions between film atoms, decaying with distance
as r−3.

To summarize the results of this section, we consider the
formation energy of an alloy-film superstructure:

�H = H − xFeH�Fe� − �1 − xFe�H�Ag� , �15�

where xFe is the mole fraction of Fe in the film, H�Fe� is the
energy of a pure-Fe film and, H�Ag� corresponds to a
pure-Ag film. From the results given above, this formation
energy can be cast in the form of an Ising model Hamil-
tonian,

�H =
N

2 �
q

V�q��S�q��2, �16�

where the interaction potential is given in terms of film and
substrate contributions as

V�q� = Vfilm�q� + Vsub�q� , �17�

with Vfilm�q�=Jfilm�q�−Jfilm�q=0�. In Sec. IV, the nature of
the competing interactions underlying the stability of
nanometer-scale modulated alloy superstructures will be dis-
cussed in terms of the elastic and chemical contributions to
the interaction potential, i.e.,

Vfilm�q� = Vchem�q� + Velastic�q� , �18�

where

Vchem�q� = Jchem�q� − Jchem�q = 0� �19�

and

Velastic�q� = Jelastic�q� − Jelastic�q = 0� �20�

in terms of the elastic and chemical interactions defined
above.

C. Parametrization for Fe-Ag on Ru(0001) and Mo(110)

In this section, we consider the geometry of Ru�0001� and
Mo�110� surfaces and provide detailed expressions for
��
�q�, ���q�, J�q�, and G�
�q� in terms of the four model
parameters: A, k, Jchem, and �, which were defined above.

x

y

[01]

[10]

R u (0001)

a)

r0

0

21

3 4

5 6

1 2

3 4

0

r0

x

y

[01]

[10]
M o(110)

b )

FIG. 3. Surface lattice structures for �a� Ru�0001� and �b�
Mo�110� substrates. The six NNs for Ru and four for Mo are indi-
cated. The coordinate systems used in this work for each substrate
are described: for Ru�0001�, x ��10�� and y ��01�� correspond to the

�011̄0� and �2̄1̄30� directions in the crystal, respectively; for

Mo�110�, x ��10�� and y ��01�� correspond to the �1̄10� and �001�
directions, respectively.
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1. Hamiltonian for Fe-Ag/Ru(0001)

The adsorption sites on the Ru�0001� surface form a hex-
agonal lattice with six nearest neighbors, as illustrated in Fig.
3�a�. The unit cell vectors are chosen as � 1

2r0 ,−
�3
2 r0� and

� 1
2r0 ,

�3
2 r0�, where r0 is the nearest-neighbor distance. By con-

sidering the geometry of the lattice, Hfilm in Eq. �3� can be
written as follows:

Hfilm = H0 +
1

2�
i,j
� k�2

4
+ Jchem
SiSj +

1

2�
i,j

	�A + 3k��ij�ui
��2

− kui
�Eij

�
uj


 +

1

2�
i,j

k�Si�eij
�uj

�� , �21�

where �ij is 1 if i= j and 0 if i� j, and

Eij = ��eij
x �2 eij

x eij
y

eij
x eij

y �eij
y �2� .

From Eq. �21�, the following expressions can be derived
for the terms making up the interaction potential Vfilm�q�:

�xx�q� = �A + 3k� − k�2 cos�qxr0�

+ cos�qxr0

2

cos��3

2
qyr0
� ,

�yy�q� = �A + 3k� − 3k cos�qxr0

2

cos��3

2
qyr0
 ,

�xy�q� = �yx�q� = �3k sin�qxr0

2

sin��3

2
qyr0
 ,

�x�q� = − ik��sin�qxr0� + sin�qxr0

2

cos��3

2
qyr0
� ,

�y�q� = − i�3k� cos�qxr0

2

sin��3

2
qyr0
 ,

J�q� = �k�2 + 4Jchem�cos�qxr0

2

�cos�qxr0

2



+ cos��3

2
qyr0
� . �22�

As in Ref. 28, we calculate Vsub�q� by using isotropic elas-
ticity theory.49 The Green’s function in Eq. �14� thus takes
the following form in reciprocal space:

Gxx�q� =
2�1 − �2�

E

1

�q�
+

2��1 + ��
E

qy
2

�q�3
,

Gyy�q� =
2�1 − �2�

E

1

�q�
+

2��1 + ��
E

qx
2

�q�3
,

Gxy�q� = Gyx�q� = −
2��1 + ��

E

qxqy

�q�3
, �23�

where �q�=�qx
2+qy

2, � is Poisson’s ratio, and E is Young’s
modulus of bulk Ru.

2. Hamiltonian for Fe-Ag/Mo(110)

Elemental Mo has a body-centered cubic �bcc� structure
and the Mo�110� surface is illustrated in Fig. 3�b�. In the
surface plane, a primitive unit cell is defined with unit cell
vectors �

�6
3 r0 ,

�3
3 r0� and �

�6
3 r0 ,−

�3
3 r0�, where r0 is the nearest-

neighbor distance. By considering the geometry of the sur-
face, Hfilm in Eq. �3� can be written as follows:

Hfilm = H0 +
1

2�
i,j
� k�2

4
+ Jchem
SiSj

+
1

2�
i,j
��A +

8

3
k��ij�ui

x�2

+ �A +
4

3
k��ij�ui

y�2 − kui
�Eij

�
uj

� +

1

2�
i,j

k�Si�eij
�uj

�� .

�24�

Accordingly, the following expressions can be derived for
the terms composing the interaction potential Vfilm�q�:

�xx�q� = �A +
8

3
k
 −

8

3
k cos��2

3
qxr0
cos��1

3
qyr0
 ,

�yy�q� = �A +
4

3
k
 −

4

3
k cos��2

3
qxr0
cos��1

3
qyr0
 ,

�xy�q� = �yx�q� = 4�2

9
k sin��2

3
qxr0
sin��1

3
qyr0
 ,

�x�q� = − i2�2

3
k� sin��2

3
qxr0
cos��1

3
qyr0
 ,

�y�q� = − i2�1

3
k� cos��2

3
qxr0
sin��1

3
qyr0
 ,

J�q� = �k�2 + 4Jchem�cos��2

3
qxr0
cos��1

3
qyr0
 .

�25�

For Vsub�q�, we require an expression for the elastic Green’s
function. Unlike the case for Ru�0001�, where isotropic elas-
ticity is assumed, for the twofold symmetrical Mo�110� sur-
face, we explicitly account for elastic anisotropy within the
Stroh formalism50 developed by Ting.51 In the application of
this formalism, we note that composition modulation along a
particular direction �q� gives rise to a one-dimensional force
distribution on the substrate surface. Hence, the elastic field
within the surface and substrate is two dimensional. Let y�
denote the direction normal to the surface and pointing into
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the substrate, while x� is the direction along the composition
modulation �q�. The expression for Gx�x��q�, required to cal-
culate Vsub�q� in Eq. �14�, is given as follows:

Gx�x��q� =
1

�q�
· �Lx�x�

−1 � , �26�

where L−1 is the inverse of the L matrix defined in Ref. 52 in
terms of the substrate single-crystal elastic constants in the
x�y�z� coordinate system, where z� is the direction parallel to
the surface and perpendicular to q.

III. COMPUTATIONAL DETAILS

In this section, we describe the details surrounding our
calculation of the model parameters describing the interac-
tion potential for equiatomic monolayer Fe-Ag alloys on
Ru�0001� and Mo�110� substrates. Specifically, we provide
details related to the first-principles calculations of substrate
single-crystal elastic constants �for the elastic Green’s func-
tions�, short-period formation energies for FenAgn stripe
structures, and differences in surface stress between systems
with pure-Fe or -Ag films on each substrate. Results for each
of these quantities are presented, and we describe how the
values of the model parameters A, Jchem, k, and � are derived
by fitting to the calculated formation energies and surface
stresses. This section ends with a brief discussion on how the
resulting model interaction potentials are used in Monte
Carlo �MC� simulations as a framework for investigating
stripe-ordering tendencies at finite temperatures.

A. First-principles calculations

All of the first-principles calculations reported in this
work were performed within the framework of DFT by em-
ploying ultrasoft pseudopotentials �USPPs�,53 as imple-
mented in the Vienna ab initio simulation package
�VASP�.54,55 Calculations were performed by employing the
1991 generalized gradient approximation of Perdew and
Wang56 and the pseudopotentials labeled “Mo,” “Ru,” “Fe,”
and “Ag” in the VASP library. All calculations involving Fe
were performed spin polarized. Calculations for Mo and Ru
elastic constants followed standard procedures,57 employing
plane-wave cutoffs of 297 eV for Mo and 237.5 eV for Ru,
and k-point meshes of 20�20�20 for Mo and 12�12
�12 for Ru. The calculations yield the following results for
the lattice constants �a and c /a� and single-crystal elastic
moduli �Cij�. For Mo: a=3.15 Å, r0=

�3
2 a=2.728 Å, C11

=2.86 eV /Å3, C12=0.95 eV /Å3, and C44=0.58 eV /Å3; for
Ru: a=2.728 Å, r0=a=2.728 Å, c /a=1.583, C11
=5.54 eV /Å3, C12=1.74 eV /Å3, C13=1.64 eV /Å3, C33
=6.16 eV /Å3, and C44=1.79 eV /Å3. For Mo, the results
agree to within 5% of experimental measurements for C11
and C12, and within 17% for C44,

58 while for Ru, all elastic
constants are within 7% of the experimentally determined
values.59

First-principles calculations for short-period FenAgn stripe
superstructures, which are modulated along the �10� and �01�
directions on Ru�0001� and Mo�110� substrates, were com-
puted by employing slab supercell geometries. The slabs

were composed of six substrate layers wherein the positions
of the atoms on the bottom two layers were held fixed at
their ideal crystal sites �all other atoms were allowed to re-
lax�. The top substrate layer was covered either by pure-Fe
or -Ag films, or by pseudomorphic FenAgn superstructures.
The two surfaces �top and bottom� were separated by
vacuum that is three layers thick ��6.7 Å�. In these calcu-
lations, a plane-wave cutoff of 236.5 eV was used for sys-
tems on Mo�110� and 237.5 eV for Ru�0001�. The k-point
sampling was performed by using a single point in the direc-
tion normal to the surface, and meshes equivalent to 6�8 for
the rectangular �two-atom� unit cell on Mo�110� and 12
�12 for the rectangular �two-atom� unit cell on Ru�0001�.
Convergence tests with respect to plane-wave cutoff, k-point
density, and slab and vacuum thicknesses were performed,
indicating that the formation energies for the FenAgn stripes
with periodicities up to n=8 are converged to within a few
meV/atom. Some additional calculations were also under-
taken to test the accuracy of the US pseudopotentials used in
this work. For FeAg on Mo�110�, independent calculations
were performed with VASP using the projector-augmented
wave method60,61 with the Fe, Ag, and Mo PW91 potentials;
the converged formation energy for this structure was found
to agree to within 2 meV/atom of the results obtained with
USPPs. The results for the calculated formation energy of
FenAgn stripes on Ru�0001� and Mo�110� are given in Table
I and are discussed further below.

As discussed in Ref. 28, the long-wavelength �small-q�
behavior of V�q� is determined by the difference ���� be-
tween the intrinsic surface stress for a substrate covered by a
pure-Fe pseudomorphic film ��Fe� versus a pure-Ag film
��Ag�. To accurately parametrize the small-q behavior of
V�q�, first-principles calculations of �� have been under-
taken as follows. For the Mo�110� system, we employed a
symmetric slab geometry containing 11 layers of Mo, with
pure-Fe or pure-Ag films on both the top and bottom; the two
films were separated by eight vacuum layers. Calculations of
the stress tensor were undertaken by employing a plane-wave
cutoff of 400 eV and a k-point density of 17�17�1, corre-
sponding to the primitive unit cell illustrated in Fig. 3�b�.
The structure was relaxed, fixing the in-plane lattice constant
to the value corresponding to unstrained bulk Mo. From the
resulting components of the calculated stress tensor �multi-
plied by the periodic length of the slab supercell normal to

TABLE I. Calculated stripe formation energies �H �in units of
eV/atom� in two principal modulation directions.

Fe-Ag/Ru�0001� Fe-Ag/Mo�110�
Stripe period �10� �01� �10� �01�

Fe1Ag1 −0.0148 −0.0148 0.101 0.101

Fe2Ag2 −0.039 −0.0954 0.002 0.0017

Fe3Ag3 −0.0762 −0.1114 −0.024 −0.0225

Fe4Ag4 −0.0973 −0.1127 −0.03 −0.0203

Fe5Ag5 −0.0354 −0.0219

Fe6Ag6 −0.1094 −0.0958 −0.034 −0.0212

Fe8Ag8 −0.032
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the surface and divided by 2 to account for the two surfaces�,
we computed the xx and yy components of the surface stress
tensor, yielding ��xx=0.38 eV /Å2 and ��yy =0.24 eV /Å2.
For the Ru�0001� system, where the surface stress tensor is
isotropic, a similar procedure was followed. By using a
plane-wave cutoff of 400 eV and a k-point density of 12
�12, we computed ��=0.52 eV /Å2 for the difference be-
tween the trace of surface stress for Fe and Ag films. From
tests involving the use of higher k-point densities, different
slab thicknesses, and direct calculations of the surface
stresses from the variations in energy as a function of applied
strain, these numbers are estimated to be converged to a
precision within 10%.

B. Fitting of model parameters

The values of the interaction-potential parameters,
namely, A, k, Jchem, and �, are derived by fitting to the first-
principles results described above, as follows. The difference
in surface stress for substrates covered by Fe versus Ag thin
films can be related to the model parameters by using Eq.
�3�. Considering first the Ru�0001� substrate, we note that the
surface stress tensor for this system is isotropic; let �Fe and
�Ag denote the trace of the surface stress �S0

��
�S , where � is

the surface energy and S0 denotes the surface area per atom�
for a Ru�0001� substrate with a pseudomorphic film of Fe or
Ag, respectively. From Eq. �3�, the difference of ��=�Fe

−�Ag can be related to the model parameters as ��= 2�3k�
r0

.

Similarly, for Mo�110�, where the surface stress is aniso-
tropic, let ���10� and ���01� denote the difference in the xx
and yy components of the surface stress, respectively, be-
tween systems with pure-Fe and -Ag films. From Eq. �3�, the
following relations can be derived: ���10�=

2�2k�
r0

, ���01�

=
�2k�

r0
.

To fit the four parameters A, k, Jchem, and �, we perform
a least-squares fit of �i� the model Hamiltonian to the relaxed
stripe-structure formation energies given in Table I and �ii�
the relationships involving surface stress described above,
leading to the additional relation of k�=0.41 eV /Å for
Ru�0001� and k�=0.42 eV /Å for Mo�110�. The fits are non-
linear and are performed by using a downhill simplex
method.62 The quality of the fits is indicated in Fig. 4, which
compares the calculated and model predictions for short-
period FenAgn stripe formation energies. It is seen that the
four-parameter model is able to reproduce the first-principles
calculated formation energies to within a few meV/atom. Ad-
ditionally, for FenAgn stripe structures on Mo�110�, the
model accurately reproduces the feature that the lowest for-
mation energy corresponds to stripes modulated along the
�10� direction, and the minimum in �H for values of n
around 5 is also reproduced. For Ru�0001�, the model repro-
duces the nearly degenerate values of the minimum forma-
tion energies for n�6 and n�4 along the �10� and �01�
directions, respectively.

The values of the model parameters resulting from the
fitting procedure described above are listed in Table II. For

TABLE II. Least-squares fitted model parameters for the FeAg/Ru�0001� and FeAg/Mo�110� systems.

A
�eV /Å2�

Jchem

�eV�
k

�eV /Å2�
�

�Å�

k�2

4
�eV�

Ru�0001� 0.319 −0.177 0.879 0.469 0.048

Mo�110� 0.561 −0.206 1.640 0.254 0.026
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FIG. 4. Comparison between
first-principles calculations and
model predictions for the forma-
tion energies of FenAgn stripe
structures on ��a� and �b��
Ru�0001� and ��c� and �d��
Mo�110�. The modulation direc-
tions in �a� and �c� are along the
�10� directions defined in Fig. 3,
while �b� and �d� are for �01�
modulation directions.
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both Ru�0001� and Mo�110�, we obtain a value of Jchem that
is negative and of the order of 0.2 eV; the large negative
value is indicative of a strong chemically driven tendency to
phase separate, which is consistent with the immiscibility
observed in both the solid and liquid phases for bulk Fe-Ag
alloys. The parameter A is found to be slightly larger for Mo
than that for Ru, suggesting a slightly stronger binding be-
tween the film and the substrate in the former system. Also,
the effective size mismatch, as reflected in the parameter �,
is slightly lower for Mo relative to Ru, while the bond stiff-
ness �k� shows the reverse trend. The stored elastic energy
� k�2

4 � is predicted to be roughly a factor of 2 larger on the Ru
substrate, and for both systems, this energy is smaller in
magnitude than the chemical interaction �Jchem�.

C. Monte Carlo simulations

Finite-temperature structures and phase equilibria for
FeAg films on Mo�110� and Ru�0001� substrates were inves-
tigated by employing Monte Carlo simulations in the semi-
grand-canonical ensemble �i.e., an ensemble corresponding
to a fixed number of surface atoms but with an overall com-
position that fluctuates consistent with a fixed value of the
chemical potential difference between Fe and Ag�. These
simulations were based on the interaction potential V�q� de-
fined above, and each simulation began by tabulating the
potential at each of the independent q vectors for the peri-
odic simulation supercell by using the formulas and param-
eters given in Sec. II. The configurational degrees of freedom
were sampled through single spin-flip “moves,” which were
accepted or rejected based on the Metropolis algorithm for a
semi-grand-canonical ensemble with zero external field �i.e.,
zero chemical potential difference between Fe and Ag atoms,
giving an average composition of xFe=1 /2 for the pairwise
Hamiltonian�. To speed up the calculations, when evaluating

changes in energy associated with each Monte Carlo move,
we employed a novel algorithm proposed by Lu et al.,63

exploiting the use of fast-Fourier transforms. The system
sizes employed for all the simulation results presented below
were 128�128 primitive unit cells. Calculations were per-
formed over a range of temperatures following a “simulated
annealing” procedure whereby the temperature was sequen-
tially decreased from a high temperature of 1700 to 10 K in
steps of 10 K. At the highest temperature, the simulation was
initiated from a random distribution of Fe and Ag atoms,
while for all the other temperatures, the input structure was
the final configuration from the previous temperature. For
each temperature, Monte Carlo simulations ran for 105 steps
per atom. A number of tests were conducted to examine the
effects of system size, simulation time, and hysteresis. These
tests involved running simulations with system sizes up to
256�256 and time scales up to 107 steps per atom. Over the
range of temperatures for which results are presented below
�1300–300 K�, the system size and simulation times were
found to be sufficiently large to give well-equilibrated results
for equilibrium structures and heat capacities. At lower tem-
peratures, however, long equilibration times and finite-size
effects, which are exacerbated in some cases by the forma-
tion of stripe periodicities incommensurate with the periodic
lengths of the simulation cell, complicated the investigation
of thermodynamic properties and phase equilibria; further
work is thus needed to characterize low-temperature phase
equilibria and phase transitions for the Hamiltonians investi-
gated here.

IV. RESULTS

In this section, we compare results for the energetics and
finite-temperature equilibrium structures of Fe-Ag pseudo-
morphic monolayer films on Mo�110� and Ru�0001� sub-
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strates. We begin by considering the interaction potential
V�q� defined in Sec. III. In Figs. 5 and 6, V�q� is plotted
along the high-symmetry �10� and �01� directions for Mo and
Ru, respectively. Also plotted are the individual contributions
Vfilm�q� and Vsub�q� defined in Eq. �17�. For both substrates,
along each direction, minima in V�q� are observed at wave
vectors q corresponding to nanometer-scale composition
modulations. Specifically, for Mo�110�, the global minimum
value of V�qmin�=−0.107 eV is obtained at qmin
= �0.208� /d10,0�, where d10 is the distance between atom
rows along the �10� direction, corresponding to an optimal
composition-modulation wavelength of �min=2.14 nm; as
described further below, this result is in good agreement with
experimental observations24 for this system. A comparison of
the results for Mo�110� along the �10� versus the �01� direc-
tions shows a clear anisotropy in the ordering potential, with
the �10� composition modulations favored at all finite wave-
lengths. For Ru�0001�, the interaction potential is much more
isotropic; a global minimum value of V�qmin�=−0.253 eV is
obtained at a wave vector of qmin= �0.172� /d10,0� �and the
five other wave vectors related by the symmetry of the sur-
face�, corresponding to a composition modulation along the
�10� directions with a wavelength of �min=1.59 nm, which
is similar in magnitude but slightly smaller than that for the
Mo�110� substrate.

For both Mo�110� and Ru�0001� substrates, the interaction
potential V�q� contains a dominant contribution from
Vfilm�q� for values of q with magnitudes comparable to and
larger than qmin. The substrate contribution Vsub�q� is seen to
significantly contribute to the potential only at relatively
small values of q, corresponding to modulation wavelengths
several times larger than �min. Since the ground-state struc-
tures are primarily determined by the magnitude of V�q� near
q=qmin, where it is dominated by Vfilm�q�, it is interesting to
examine this contribution in further detail. In Figs. 7 and 8,
we plot the chemical and elastic contributions to Vfilm�q� for

Mo and Ru, respectively, along one of the two high-
symmetry modulation directions. As expected from the bulk
phase diagram for Fe-Ag �which features pronounced immis-
cibility even in the liquid phase�,64 the chemical contribution
Vchem�q� is seen to have a minimum at q=0, corresponding
to macroscopic phase separation. By contrast, Velastic�q� has a
minimum at � /d=1 in Figs. 7 and 8. Consequently, the elas-
tic energy favors the formation of Fe-Ag bonds and is mini-
mized for composition modulations corresponding to alter-
nating atomic rows of Fe and Ag. Figures 7 and 8 serve to
illustrate the competition between chemical and elastic inter-
actions underlying the ordering energetics of Fe-Ag films on
Mo and Ru substrates. In both cases, these contributions are
found to be of comparable magnitudes, and their competing
contributions lead to a minimum in Vfilm�q�, representing a
compromise between chemistry �favoring macroscopic phase
separation� and elasticity �favoring ordering�; the result is a
thermodynamically stable wavelength representing stable
“phase separation” on the nanometer scale.

The nature of the effective-pair interactions in real space
�V�r�� is illustrated in Fig. 9, which plots chemical �Jchem�
and elastically mediated contributions to V�r� for the FeAg/
Ru�0001� system. The elastically mediated interactions are
further divided into the medium-ranged contributions associ-
ated with elastic displacements within the film layer �Vfilm

elastic�
and the long-ranged substrate-mediated contributions
�Vsub

elastic�, derived, respectively, from inverse Fourier trans-
forms of Velastic�q� and Vsub�q� defined in Sec. II B. The
dominant magnitudes of the nearest-neighbor chemical and
medium-ranged elastic interactions are clearly apparent for r
up to several nanometers. The inset in Fig. 9 plots the long-
ranged tail of the effective-pair interactions on a semiloga-
rithmic scale, showing that the substrate-mediated contribu-
tions �Vsub� make a dominant contribution only at distances
larger than about 4 nm, or approximately 15 times the
nearest-neighbor spacing �a=2.728 Å�. Beyond a distance
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of r�15–20a, the substrate-mediated contributions to the
interactions are observed to give rise to the expected
asymptotic dipolar scaling, V�r��1 /r3.

Next, we consider the finite-temperature stability of com-
positionally patterned phases for FeAg on Mo�110� and
Ru�0001�, which were investigated by MC simulations based
on the interaction potentials given above. As described in
Sec. III C, the MC simulations were performed by employ-
ing a simulated annealing procedure starting from a high
temperature of 1300 K. The heat capacities �CV� and snap-
shots obtained from these simulations are shown in Figs.

10–12. For both Mo and Ru substrates, the CV results display
clear signatures indicating the presence of phase transitions
upon cooling.

For Mo�110�, the broad character of the peak in the CV
plot is qualitatively consistent with a second-order transition.
At high temperatures, the snapshots in Fig. 11 display a
short-range ordered phase, which transforms to a lower-
temperature ordered stripe phase at approximately 970 K.
From examinations of the calculated structure factors for this
phase, the dominant modulation wavelength for the low-
temperature stripe structures is about 2.2 nm, corresponding
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most closely to a stripe phase with an Fe5Ag5 periodicity.
For the Ru substrate, the results in Figs. 10 and 12 display

significant differences from those derived on Mo�110�. Spe-
cifically, for Ru�0001�, the CV results show a relatively fea-
tureless behavior over the range of temperatures wherein the
same alloy films on Mo�110� display a clear transition to a
long-range-ordered stripe phase. In the temperature range be-
tween roughly 460 and 1300 K, interconnected, topologically
disordered stripe structures are observed for the Fe-Ag/
Ru�0001� films, as exemplified by the snapshot at 600 K in
Fig. 12. At approximately 460 K, a relatively sharp ordering
transition is obtained from the topogically disordered phase
to a long-range-ordered stripe phase oriented along one of
the symmetry-equivalent �10� directions. At much lower
temperatures, it was observed that the �10� stripe phase un-
dergoes a second transition in which the stripes change their
direction to �01� orientations; results for this low-temperature
transition are not presented here since we were unable to
achieve fully equilibrated simulation data, which are free of
hysteresis, in this temperature range.

V. DISCUSSION

For the FeAg/Mo�110� system, the predictions of the
present theoretical study can be directly compared to experi-
mental observations obtained for films grown by molecular
beam epitaxy24,26 �MBE� and pulsed-laser deposition
�PLD�.27 In the work by Tober et al.,24,26 MBE growth of

epitaxial Fe-Ag and Co-Ag films on Mo�110� by both se-
quential and codeposition processes was observed to lead to
the spontaneous formation of striped structures oriented
along the Mo �100� direction �i.e., with composition modu-
lation along the �10� direction in the notation of Secs. II and
III� with periodicities on the order of 2–2.5 nm. Both the
modulation direction and periodicity of the stripe structures
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FIG. 9. Chemical �Jchem� and elastically mediated contributions to the real-space effective-pair interactions for FeAg/Ru�0001�. The
elastically mediated interactions are divided into the medium-ranged contributions arising from displacements within the alloy film �Vfilm

elastic�
and the long-ranged contributions �Vsub

elastic� associated with substrate-mediated displacements. The inset plots the long-ranged tail of the
elastically mediated interactions on a semilogarithmic scale.

FIG. 10. Heat capacity �CV� versus temperature at equal concen-
tration for both the FeAg/Mo�110� and FeAg/Ru�0001� systems.
The heat-capacity peak indicates the order-disorder phase transition.
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observed by Tober et al.24,26 are in excellent agreement with
the predictions of the current study. In subsequent work by
Borca et al.,27 PLD growth of Fe-Ag films on Mo�110� was
also observed to lead to the formation of stripe structures
oriented along �100�, although compared to the MBE results,
the structures obtained by PLD are relatively more disor-
dered and were reported to show slightly larger periodicities
of approximately 3.5 nm. The better agreement of the present
theoretical predictions for stripe periodicities with the results
of Tober et al.24,26 suggests that the slower growth conditions
characteristic of MBE relative to PLD may lead to stripe
periodicities corresponding more closely to the stable ther-
modynamic equilibrium structures in this system. For FeAg/
Mo�110�, a significant result of the present calculations con-
cerns the relatively high thermal stability of the stripe
structures, which are observed in MC simulations to remain
ordered up to approximately 950 K. It is expected that the
predicted order-disorder transition temperature cannot be di-
rectly verified by experiment due to the fact that such thin-
film structures in ultrahigh vacuum will likely desorb at con-
siderably lower temperatures. We note that in the work of
Tober et al.,24,26 it was stated that the stripe phases are stable
up to T�250 °C, although the structure of the films at
higher temperatures was not described.

For FeAg/Ru�0001�, we are not aware of published ex-
perimental data that can be directly compared to the predic-

tions of the current study. However, the results obtained here
are very similar to those derived in previous theoretical
studies,28,65 employing the same methodology for CoAg/
Ru�0001� where comparisons can be made with previous ex-
perimental work. Both Co-Ag and Fe-Ag alloy systems fea-
ture similar size mismatch and both are bulk immiscible.
Previous MC simulations for equiatomic CoAg/Ru�0001�
�Ref. 65� yield results for the ordering transitions, stripe ori-
entations, and periodicities that are nearly identical to those
obtained in the present study for FeAg/Ru�0001�. In contrast
to FeAg/Ru�0001�, detailed experimental investigations have
been undertaken for CoAg/Ru�0001�.25,43 Unfortunately, di-
rect comparisons between theoretical predictions and experi-
mental measurements are complicated by the tendency of Ag
films on Ru to form dislocated structures. Specifically, equi-
atomic monolayer films are observed to phase separate to a
Co-rich alloy phase and a Ag-rich dislocated film upon
annealing.25 The composition modulation periodicities of a
few nanometers predicted for CoAg and FeAg on Ru�0001�
in this and previous28 studies are, however, comparable to
the characteristic length scales observed for disordered drop-
let patterns in pseudomorphic Co-rich alloys on Ru�0001�.43

It is interesting to compare the results of the present MC
calculations to previous investigations of stripe disordering
phase transitions in dipolar lattice models. In general, the
disordering behavior in such models is known to be influ-
enced by the symmetry of the substrate �e.g., Ref. 66�, which
exerts a p-fold “symmetry breaking field,” favoring stripe
ordering along specific discrete directions. In recent Monte
Carlo studies of two-dimensional dipolar systems on a

T = 1300 K

T = 900 K

T = 400 K

]10[

]01[

x

y

FIG. 11. Equilibrium snapshots for FeAg/Mo�110� system at
1300, 900, and 400 K.
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FIG. 12. Equilibrium snapshots for FeAg/Ru�0001� system at
1200, 600, and 300 K.
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square lattice,67 finite-size scaling analyses establish both
continuous and first-order disordering transitions of stripe
patterns; while we have not attempted detailed finite-size
scaling analyses, the heat-capacity peaks and nature of the
structural changes observed for the stripe-disordering transi-
tions in the present simulations for FeAg on the twofold
Mo�110� substrate are qualitatively similar with the second-
order behavior observed in the square-lattice simulations for
some values of the ratio of the strengths of the nearest-
neighbor-exchange and dipolar interactions.

For FeAg/Ru�0001�, our present results can be compared
to the MC simulations carried out by Singer and
co-workers33–35 for a dipolar model on a sixfold symmetric
triangular lattice. For systems with relatively small pattern
periodicities, characterized by relatively large ratios of the
strength of the nearest-neighbor to dipolar interactions �� as
defined in Sec. II A�, disordering of stripe and droplet pat-
terns appears to occur via a continuous defect-induced melt-
ing transition of the KT type.32,34,36–38 In the present work for
FeAg/Ru�0001� and previous simulations65 using the same
underlying theory for the interactions in CoAg/Ru�0001�, the
Kosterlitz–Thouless character of the disordering transition
has not been confirmed. Contrary to expectations of the KT
theory, we find a pronounced peak in the heat capacity near
the ordering transition. Although detailed finite-size scaling
analyses would be required to make definitive conclusions
about the exact nature of the disordering transitions in the
FeAg/Ru�0001� and CoAg/Ru�0001� systems, a possible ex-
planation for the discrepancy with the results obtained here
with those for dipolar models may be associated with the
exact nature of the interactions in epitaxial alloy films. We
have shown above �cf. Fig. 9� that the elastic interactions on
the length scale of the stripe patterns obey a decay law,
which is not strictly dipolar in nature: Over intermediate
ranges, they exponentially decay, eventually crossing over to
the inverse cubic law at longer distances. Physically, this
follows from the dominance of relaxations in the topmost
surface layer over the substrate relaxation. A comparison of
the present MC results and those obtained in previous simu-
lations for dipolar lattice models suggests that the form of
the interatomic pair interactions at intermediate ranges may
affect the character of the ordering transition when the equi-
librium stripe width has the same length scale as the expo-
nential decay length of the interactions. While further work
is clearly warranted to investigate this issue in detail, the
present results suggest that modifications to standard statis-
tical models of pattern formation may be required in appli-
cations to epitaxial alloys with periodicities on length scales
of approximately ten atomic spacings.

VI. SUMMARY AND CONCLUSIONS

This paper has described details surrounding the applica-
tion of the theoretical model of Ozoliņš et al.28 in the first-
principles modeling of nanoscale pattern-forming epitaxial
alloy films. In Sec. II, the physical picture underlying the
theoretical model was reviewed, and it was shown how the
theory gives rise to three separate contributions to the
effective-pair interactions underlying pattern formation in

these systems: a short-ranged chemical contribution, a
medium-ranged contribution originating from elastic dis-
placements within the film layer, and a long-ranged dipolar
contribution associated with substrate-mediated elastic dis-
placements. The application of this theoretical model to alloy
films on sixfold symmetric hexagonal �0001� and twofold
symmetric bcc �110� surfaces was described in detail. Results
for FeAg films on Ru�0001�and Mo�110� substrates were
presented, and it was demonstrated that with four physically
motivated parameters, the model is capable of accurately re-
producing the energetics of both short-period stripe struc-
tures and the long-wavelength limiting behavior stemming
from the differences in surface stress between Fe and Ag
films on each substrate. In addition, for FeAg/Mo�110�,
where direct comparisons with experimental observations is
possible, the model leads to a parameter-free prediction of
the stable composition-modulation wavelength that is in ex-
cellent agreement with measurements for MBE-grown thin
films in this system.

In applications of the theoretical formalism described in
Sec. II to FeAg/Ru�0001�, FeAg/Mo�110�, and CoAg/
Ru�0001� �Ref. 28� systems, the stable composition-
modulation wavelengths are found to be governed by com-
petition between the short-ranged chemical and medium-
ranged elastically mediated contributions to the effective-pair
interactions. The latter contributions are associated with dis-
placements within the film layer and give rise to a contribu-
tion that is exponentially decaying in real space. These con-
tributions are found to be dominant relative to the dipolar
substrate-mediated interactions at length scales of a few na-
nometers. These results theoretically obtained for FeAg and
CoAg films on Mo and Ru substrates are consistent with a
very recent analysis of scanning-tunneling microscopy re-
sults for the oxygen on Pt�110� system,44 where a �11�2�
stripe superstructure is found to be stabilized by short-ranged
elastic relaxations confined to the surface. Additionally, in
previous work,43 it was demonstrated that the Frenkel–
Kontorova model, which assumes that elastic displacements
are confined to within the alloy film, is capable of quantita-
tively reproducing displacement patterns measured by
scanning-tunneling microscopy for nanometer-scale droplet
structures in Co-rich CoAg epitaxial films on Ru�0001�. The
examples reviewed in this paragraph point to the inadequacy
of traditional continuum models �see Sec. II B� for describ-
ing the energetics of compositionally patterned epitaxial
structures at nanometer-scale wavelengths.

The results presented in this paper show how the theoret-
ical model of Ref. 28 can be coupled with Monte Carlo
simulations as a framework for investigating the finite-
temperature stability of compositional patterns formed in a
given alloy system. For FeAg films on Mo�110� and
Ru�0001�, stable stripe patterns are predicted at low tempera-
tures on both substrates. In the former case, these are stable
to very high temperatures, while in the latter case, the stripe
structures are observed to be topologically disordered for
temperatures above about 450 K. The much lower ordering
temperature predicted for the Ru�0001� versus Mo�110� sub-
strates is somewhat surprising considering that the depth of
the interaction potential is actually larger in magnitude for
the former system. This can be understood as a reflection of
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the nearly isotropic nature of the ordering potential on the
sixfold symmetric Ru�0001� substrate and the associated
lower energy penalty associated with orientational disorder
in the stripe patterns. The results of this study thus highlight
the utility of employing anisotropic substrates for the pur-
pose of stabilizing regular self-assembled compositional pat-
terns.
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