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We studied the step dynamics during sublimation and growth when the adatoms on the crystal surface have
a drift velocity DF/kT, where D is the surface diffusion coefficient and F is a force acting on the adatoms (F
is related to the electric current heating the crystal). In the limit of fast surface diffusion and slow kinetics of
atom attachment-detachment at the steps, we formulate a model that is free of the quasistatic approximation in
the calculation of the adatom concentration on the terraces. The linear stability analysis of a step train results
in an instability condition in the form —(f7;/3&)+(V/V,;)—1>0, where 7, is the dimensionless lifetime of an
adatom before desorption, f and e are the dimensionless electromigration force and the force of step repulsion,
respectively, and V and V,, are the velocity of steps in the train and the critical velocity, respectively. As seen,
instability is expected when either the velocity V is larger than V. (this instability is related to the “Kinetic
memory effect”) or —f7,/3e>1, i.e., when the electromigration force f is negative (but strong enough to
dominate over the term V/V,,), which means step-down direction of the drift. In the latter case, the initial stage
of the step bunching process dramatically depends on the value of the ratio —f/e. When —f/e =1 the instability
starts with a formation of small bunches (or pairs) of steps, whereas at —f/& <1, the instability starts with a
formation of relatively large bunches containing Niyiia =27/ gmax =27/ (=f/3&)"? steps. A numerical integra-
tion of the equations for the time evolution of the adatom concentrations and the equations of step motion
reveals two different step bunching instabilities: (1) step density waves (small bunches that do not manifest any
coarsening) induced by the kinetic memory effect and (2) step bunching with coarsening (eventually leading to
a formation of very large bunches) when the dynamics is dominated by the electromigration. For the latter case,
we obtained very instructive illustrations of the dynamical phase transition [V. Popkov and J. Krug, Phys. Rev.

B 73, 235430 (2006)] during sublimation and growth of a vicinal crystal surface.
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I. INTRODUCTION

In a recent paper,! we advanced a new model for the step
dynamics during sublimation and growth of a vicinal crystal
surface. This model contains the same physics as the classi-
cal Burton—Cabrera—Frank (BCF) theory?>™ but the math-
ematical treatment deviates from the BCF procedure. In con-
trast to their assumption that the adatom concentrations 7; on
the terraces instantly reach their steady state for a given step
configuration, we analyzed the non-steady-state problem.!
This is relatively easy in the limiting case of fast surface
diffusion and slow kinetics of atom attachment and detach-
ment at the steps, since the fast diffusion provides for a con-
stant value of the adatom concentration all over a given ter-
race. We derived equations for the time evolution of the
adatom concentration on the terraces and equations for the
step motion. In this way, we were able to accurately treat the
case when the time to reach steady-state concentration of
adatoms on the terraces is compatible with the time for non-
negligible change in the step configuration. In such a situa-
tion, a new effect becomes important—the adatom concen-
tration on a given terrace depends not only on the terrace size
but on the “past of the terrace” as well. We call this a “ki-
netic memory effect”. This effect provides a ground for a
new type of instability of the regular step distribution. Step
density compression waves appear at the vicinal surface with
fast moving steps, as shown by both linear stability analysis
and numerical integration of the equations for step motion.'
In this way, we proved that as far as the stability of a vicinal
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surface is concerned, the quasistatic approximation fails (it
does not predict any instability) when the velocity V of the
steps exceeds its critical value V.. Therefore, it is of interest
to reexamine the step bunching process, which is induced by
the electric current, by going beyond the quasistatic approxi-
mation. Here, our aim is to see how the kinetic memory
effect competes with another (well known) destabilizing
factor—the electromigration of the adatoms.>!!

It is essential to mention earlier attempts to go beyond the
quasistatic approximation in the BCF model and to clearly
point out the differences from our treatment. The earlier
attempts'>!3 were focused on finding the adatom concentra-
tion field n;(x) at the ith terrace on the basis of a modification
of the classical Stefan problem. It is clear on physical ground
that the concentration field is not symmetric (with respect to
the middle of the terrace) because of the motion of the steps.
This asymmetry could lead to step bunching instability when
the velocity of steps is high enough. In a very recent paper,
Dufay et al.'* discussed the role of step flow advection effect
and its competition with electromigration induced step
bunching. Let us clearly say that our treatment does not ac-
count for the advection effect since we focus our attention on
the limit of the fast surface diffusion and slow kinetics at the
steps (the advection effect is negligible in this limit). The
physics of the instability we reported’ is related to the delay
in establishing the adatom concentration that corresponds to
the step distribution in the given moment. This retardation
effect in achieving the steady-state concentration of adatoms
generates step density waves during growth and sublimation
of crystals.
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II. BASIC EQUATIONS

It is relatively easy to extend the treatment in Ref. 1 to
account for the electromigration of the adatoms. The model
is based on the following assumption: adatoms are subject of
electromigration force (see Fig. 1) so that they more fre-
quently jump in the direction of this force than in the oppo-
site direction.®!5 In addition, one assumes the surface diffu-
sion to be much faster than the atom attachment-detachment
kinetics at the steps. Since the electromigration force pushes
the adatoms toward one of the steps that separate the terrace
from its neighbors, the concentration close to this step is
higher than the average concentration over the whole terrace.
Therefore, more atoms attempt to attach to this step and be-
come “crystal atoms.” On the contrary, at the other step of
the same terrace, the concentration of adatoms is lower and
less atoms attempt to join the crystal. This simple physics
should be incorporated into the equations for the time evo-
lution of the terrace widths. In a linear approximation, the
adatom concentration on a given terrace is n,(&,1)=n,(1)[1
+(FE&/kT)], with £=0 being in the middle of the terrace. In
this approximation, n,(¢) is equal to the average value of the
adatom concentration on the terrace.

The space nonuniformity of the adatom concentration has
an impact on the rates of step motion. Really, now we have

Fli e/
v;= —Kﬂ{n,(l - ﬁ") —ns(z)}

—KQ|:nl-_l<1 +%>-n_f(o}, (1)

where K is the step kinetic coefficient (see Fig. 1) and () is
the area of one atomic site at the crystal surface. On the basis
of Eq. (1), one can write the expression for the time deriva-
tives of the width of the terraces as

dl; Fl;
dt 2kT
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i 2UT

Fl;_ 0.
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where n; are functions of time.

As known, the equilibrium concentration of adatoms in
the vicinity of the steps has the constant value n{ only when
l;=1;,_;=1, with [ as the average terrace width determined by
the miscut angle of the vicinal surface. In the general case,
one has'®!7

nﬁ(i)znﬁ{u/I(%-%)}, 3)
Ly

where A=2QA/kT and A is the strength of the entropic and
stress-mediated repulsion between the steps.
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FIG. 1. Schematic view of a vicinal surface with straight steps.
The adatoms have a drift velocity induced by an electric force F.
The width of the ith terrace is /;=x;,;—x; and the concentration of
adatoms on it is n;. The desorption flux from the terrace is n;/ 7, and
the exchange between the crystal phase and the dilute layer of ada-
toms is characterized by the step kinetic coefficient K.

By introducing the dimensionless variables 7=Kt/l, n;

=1;/1, ¢;=n;/nf, and e=A/I?, we obtain for the dimensionless
width 7,(7) of the ith terrace (details on the derivation of
these equations can be found in Ref. 1),

dn;
i =g i = €t = [(Mig1 Cit = 275¢i + MisiCimy)
1 2 1
oo -2 @
Tt W T

where f=FI/2kT. The time evolution of the dimensionless
concentrations of adatoms is given by

de; cg ¢ 2 2 1 1 1
=t -], (9)
dr 70 1w M M\ T

§ s

where 7,=7,K/l and 7, are the average time for desorption of
an atom in a state of mobile adsorption on the crystal surface
(see Fig. 1).

The term cy/ 7, accounts for the deposition of atoms on
the crystal surface since cy=R7,/n;. When the deposition
rate R has its equilibrium value R,, one obtains ¢y =R,7,/n¢
=1. This means that c¢;<<1 corresponds to undersaturation
and ¢, >1 corresponds to supersaturation at the crystal sur-
face.

The other terms in Eq. (5) also have a clear physical
meaning—the adatom concentration decreases because of
the desorption (the second term on the right hand side) and
attachment of adatoms to the steps (the third term). The con-
centration c¢; of adatoms increases because of the detachment
of atoms from the steps [the next terms on the right hand side
of Eq. (5)]. One should keep in mind, however, that now
c¢;i(7) is the average value of the dimensionless adatom con-
centration on the ith terrace.

It is essential to point out that our model completely ne-
glects the transparency of the steps and Eq. (5) does not
contain any terms describing the contribution of the ex-
change of adatoms between the neighboring terraces. This
circumstance determines the temperature intervals of validity
of our model. Really, the quasistatic treatment of the model
with nontransparent steps®’ successfully reproduces the ex-
perimental data>®! on step bunching in the temperature in-
tervals around 950 and 1250 °C (in both intervals bunching
takes place at the step-down direction of the drift of the
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adatoms). Therefore, the validity of our present results is
restricted to these two temperature intervals. The impact of
the step transparency will be considered elsewhere.

II1. LINEAR STABILITY ANALYSIS

The simplest solution of Egs. (4) and (5) is 7,=1 and c;
=co=1/1+1/27,, which is an equidistant step distribution
and the corresponding constant concentration of adatoms in
the absence of deposition rate (the impact of deposition will
be discussed later). To study the stability of this solution, we
follow the routine procedure and consider small deviations
from the equidistant step train and constant adatom concen-
trations, i.e., 7,=1+A%,(7) and ¢;=cy+Ac;(7). By substitut-
ing these expressions into Egs. (4) and (5), making use of
series expansion, and keeping only the linear terms, we get

dAn,
d_m =—nQ[Ac;yy = Aci_y = (feg + 68) (A, — 247,
r
+ A7) = f(Aciy = 2Ac¢; + Aciy)], (6)
dAc; Ac;
d_Cl == # —2Ac;i+2(co— DAn;+3e(A g —Amiy).
T 7

™)

Following the routine, we look for a solution of the type
Anj=€n,(7) and Ac;=¢"4*%c (1), where g is a wave num-
ber and we already use i to denote the imaginary unit and j to
denote the sequence number of the terrace. In addition, we
allow for a phase shift ¢ of the wave describing the adatom
concentrations Ac; with respect to the wave, describing the
terrace widths Anj. In this way, we arrive at a set of two
differential equations for the time evolution of the ampli-
tudes of the fluctuations in the terrace width distribution and
adatom concentrations,

dng

E_q =day 77q(T) + alch(T),

dc

E_q. =dy 7](1(7-) + Clzqu(T), (8)

where the coefficients are given by the following expres-
sions:

ay =-2n(6¢ + fco)(1 = cos q),
ay,=—2e"n°Qfi sin g + f(1 —cos q)],
Ay, =2¢7¥[— (1 = ¢,) + 3ie sin ¢,

a22=—(2+1/7';). (9)

This set of two linear differential equations has a solution of
the type ¢’” and the real part of s is
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$,=2n0| — (6e + fcp)(1 = cos q)

3e sin® g+ f(1 — co)(1 = cos q)
+2
(ay) —ay)
. 8(an)sin2 gl- (1 =co) +3ef(1 —cos g)]

(ay, - a22)3

(10)

(details on the derivation of a similar expression when f=0
are given in Ref. 1).

By restricting the treatment to small wave numbers and
the limit 7,>>1, we obtain

s,=Bq" - Byg*, (11)
where
3n¢Q) T nQ
B,= F gt nft | (12)
; 3 Ger,
3nQe| 7 T nQ
By=— —“—f—“+5—,. (13)
. 2 36s 187

As shown above, Egs. (11)-(13) can be reduced to the al-
ready known expressions (see Ref. 1) when the electromigra-
tion force F is zero and, therefore, f=FI/2kT=0. In Ref. 1,
we used the notation V=n{QI/ 7, for the velocity of steps in
a perfectly regular train and V_=6Ke for the critical velocity.

Now, we are in a position to discuss the impact of the
electromigration on the step dynamics. To have an instability
of the step train (at small wave numbers, at least), we need a
positive value of the constant B, [see Eq. (11)]. This could be
achieved in two ways—either ni{Q}/6e7.=V/V, is large
enough to ensure a positive sign of the expression in the
brackets of Eq. (12) or /<0 and the absolute value of f7./3¢
dominates the term n{{)/6e7, and is large enough to com-
pensate —1. In the former case, we expect step density com-
pression waves to propagate at the vicinal surface, as shown
in Ref. 1. In the latter case, the step dynamics is expected to
be dominated by the adatom electromigration effect. As for
the value of B, it is definitely positive at f<<0 [see Eq. (13)].

It is interesting to note that Eq. (12) defines a critical
value of the electromigration force. Really, instability in-
duced by electromigration takes place only when f7./3e
> 1, which is equivalent to F>F.=12QA/Kr/>. This ex-
pression for F,. was already published by Uwaha et al.'®

In the presence of deposition rate, the linear stability cri-
terion is slightly modified in the sense that the expression for
B, now contains the quantity c =R7,/n;. Simple consider-
ations result

3nQ) ! : Q)
Bzzy[— 1 —fi(l +C_5,t> +%(1—Cst)2:|.

T 3e p .

(14)

Since the modifying factors [1+(cy/7.)] and (1-cg)* are
always positive, the deposition rate does not qualitatively
change the instability criterion. Step bunching with coarsen-
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ing occurs at f<0, i.e., step-down direction of the electric
force when the step dynamics is dominated by the atom elec-
tromigration. A formation of small bunches that do not show
coarsening takes place in both growth (¢, >1) and sublima-
tion (cy<<1) when the dominating factor is the kinetic
memory effect. The deposition rate is expected to have an
impact only on the transition from one type of instability to
the other one. As seen, the increase in the deposition rate
(which means an increase in c) leads to large values of the
last term in square brackets in Eq. (14). In other words, the
increase in the deposition rate favors the formation of step
density waves that are generated by the kinetic memory ef-
fect.

Equations (12) and (14) predict a stabilization effect of an
electromigration force with step-up direction, i.e., f>0. In
other words, one can suppress the formation of step density
waves, when the step velocity is higher than its critical value
by manipulating the direction of the electric current heating
the Si wafer.

Finally, for the wave number of the most unstable mode
(the maximum value of s,) during electromigration domi-
nated sublimation, one obtains the following approximate
expression:

f 172
B, |12 - g
Gmax = [j] = f . (15)
4 —
18¢

This expression has a simple limit—at |f/18&| <1, the most
unstable mode has a wave number,

12
qmax=|:_3i8:| s (16)

which is also small; i.e., the instability starts with fluctua-
tions having a large wavelength. The last expression provides
a ground to conclude that the wavelength of the most un-
stable mode depends on the average terrace width / of the
vicinal surface. Really, having in mind the definitions of f
and &, we find g~ > and, therefore, the corresponding
wavelength of the most unstable mode

2 1
Nnax = Jimanl = — 1 ~ — (17)

max l
is inversely proportional to the average terrace width.
According to Eq. (15), the increase in |f/18¢] leads to an
increase in the wave number ¢, and the step bunching
instability starts with the formation of very small bunches or
pairs of steps, which later coalesce to form larger bunches.

IV. LONG TIME BEHAVIOR OF VICINAL SURFACES

We study the nonlinear dynamics of the steps by numeri-
cal integration of Egs. (4) and (5). Our aim is to look for a
confirmation of the results that are obtained by the linear
stability analysis. On the other hand, it is interesting to ex-
plore the capability of this model (free of the quasistatic
approximation) to manifest the dynamic phase transition that
was predicted by Popkov and Krug."”
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FIG. 2. Step trajectories (sublimation) in a frame moving with a
velocity averaged over all of the steps in the system (containing 60
steps). Compression waves propagate when the model parameters
are 7,=100, =105, n{Q=0.1, and f=-10"*.

The set of Egs. (4) and (5) involves 2N variables because
we use circling boundary conditions 7y,;=7, and cy,;=c;.
To obtain an instructive picture of the sublimation dynamics,
we calculate the step trajectories in a frame moving with the
average velocity of the step train (containing N steps). The
calculated trajectories clearly show (Fig. 2) the propagation
of step density waves (due to a kinetic memory effect) and
the formation of bunches of steps (Fig. 3) due to the elec-
tromigration of the adatoms. Some comments on these two
instabilities will be made on the basis of Eq. (12). By sub-
stituting the values of the model parameters 7,=100, &
=107, n°Q=0.1, and f=—10"* (which we used to obtain the
trajectories shown in Fig. 2) into Eq. (12), we see that
—f7./3e=333.3 and n{Q)/6e7.=16.6.

As seen above, the term containing the electromigration
force has a much stronger contribution to the amplitude of
fluctuations [see Egs. (11) and (12)]. On this basis, one intu-
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FIG. 3. Step trajectories (sublimation) manifest coarsening—
step bunches grow in size with the sublimation time. The model
parameters are T;Z 100, e=1072, njﬂzO.l, and f=—10‘3.
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FIG. 4. The step trajectories (during sublimation) obtained at
néQ=0.1, f=-2.0x 1073, =103, and 7/=2000 manifest three in-
teresting features of the step dynamics: (1) long wavelength insta-
bility, (2) existence of a dynamic regime with all steps involved in
bunches (Ref. 19), and (3) existence of critical size above which the
bunch starts to emit single steps (Ref. 19).

itively expects the step bunching instability induced by elec-
tromigration to dominate the step dynamics. Contrary to
these expectations, the nonlinear dynamics manifests step
density waves, which are characteristic for the kinetic
memory effect (no coarsening is seen in Fig. 2). It is essen-
tial to point out that Fig. 2 manifests the failure of the qua-
sistatic approximation when the step velocity is high enough
(n{Q/6e7.=V/V,=16.6). Really, the theory of electromigra-
tion affected step dynamics’ makes use of this approximation
and predicts bunching of steps at the value f=—107*, which
is used in Fig. 2. This prediction is in clear contradiction
with the trajectories (shown in Fig. 2) manifesting the exis-
tence of step density waves but not of bunches and coarsen-
ing.

To study the transition from step density wave instability
to step bunching (with coarsening) instability, we gradually
increased the absolute value of the parameter f and inte-
grated Eqs. (4) and (5) at f=—=2 X 10~ and f=-3 X 10™*. The
results manifest the formation of step density waves, which
display very slow coarsening (at f=-3.0X 107*, coarsening
is a bit faster). A further increase in the absolute value of the
parameter f (see Fig. 3) leads to coarsening with a substan-
tial rate.

It is interesting to check the results of the linear stability
analysis for the most unstable mode in the electromigration
dominated bunching of steps. Equations (15)—(17) and the
discussion after them predict the bunching process to start
either with a formation of small bunches (or even pairs) or
with a formation of much larger bunches depending on the
value of the parameter |f/18¢|. A good illustration of long
wavelength instability is provided by Fig. 4, which shows
the step trajectories when 7/=2000, e=1073, ny)=0.1, and
f=-2X1073. By substituting these values into the ratio
|f/18¢|, one obtains 1/9, which is much smaller than unity
so that the wave number of the most unstable mode is given
by Eq. (16). Thus, one obtains g,..=[-f/3&]">=+2/3
=0.816. The corresponding wavelength measured in number
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of terraces 1S J.x=27/Gmax =~ 7.7, Which is in good agree-
ment with the results shown in Fig. 4.

Figure 4 shows the trajectories when the average step ve-
locity is much smaller than its critical value (V/V.<<0.01).
Under this condition, the kinetic memory effect is negligible
and the quasistatic assumption is a good approximation. That
is why Fig. 4 successfully reproduces the results for the most
unstable mode already obtained [see the Egs. (33) and (60) in
Ref. 20 and Eq. (4) in Ref. 21] in the treatment based on the
quasistatic approximation.

Finally, it is interesting to explore the capability of this
model to manifest dynamic phase transition that was pre-
dicted by Popkov and Krug!® on the basis of the quasistatic
approximation. The dynamic phase transition is, in fact, a
transition between two regimes of step dynamics, which are
qualitatively different. In the most clear situation, one of the
regimes is characterized by the absence of single steps at the
crystal surface, i.e., all steps are in bunches (such a situation
is shown in Fig. 4 for a relatively short time of evaporation).
The second regime can be described as a coexistence of
bunches and single steps crossing the terraces [an essential
requirement is to have several steps simultaneously crossing
each terrace (see Fig. 4)]. Popkov and Krug!® found the tran-
sition to take place at the critical value b=1 of the asymme-
try parameter b, which is defined by the following
expression:'?

dx, 1-b 1+b
) +

e~ 2

(x;=xi.) + U, (18)

where x; is the position of the ith step, U accounts for the
step-step repulsion, and the time scale is normalized to the
sublimation rate. To express b through the parameters of our
model, we rewrite Eq. (1) to introduce dimensionless param-
eters and make use of the steady-state solution ¢;=1/1
+7,/27. of Eq. (5) at ¢=0. Thus, for the limit 7,>>1, one
obtains the following expression for the step rate during sub-
limation (the deposition rate is zero):

dx:
== Knie 1= fn) = 1)+ Lo (1S - 1)

=K9n5{l",(1 +2f7) + 2Ly - 2f7;)}. (19)
27, 27,
After appropriate normalization of the time scale, Eq. (19)
can be transformed into Eq. (18) with b=-2f7.

Our numerical integration of Egs. (4) and (5) reproduces
the results of Popkov and Krug.'” Figure 4 manifests the
existence of a regime of step dynamics, where all of the steps
are in bunches (there are no steps crossing the terraces) at
b=-2f1,=8. Figure 4, which is obtained at values n¢Q)
=0.1, f=-2.0X 107, =107, and 7/=2000, manifests an-
other interesting feature of the step dynamics, which was
predicted by Popkov and Krug'®—when the bunch exceeds
some critical size it starts to emit single steps. It is essential
to say that a somewhat softer definition of the “bunched
phase” was used in Ref. 19—steps crossing the terraces are
not completely excluded. In the original paper!® the require-
ment is to have no more than one step crossing the terrace at
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FIG. 5. Step trajectories during crystal growth (the model pa-
rameters are 7.=100, e=1073, n°Q=0.01, ¢4=50, and f=-0.04)
clearly manifest a dynamic phase transition (Ref. 19). This transi-
tion is accompanied by a remarkable compression of the bunches.

a time. This softer definition requires smaller asymmetry pa-
rameter (b=1) to obtain bunched phase (our Fig. 4 is ob-
tained at b=g8).

V. INSTABILITIES DURING GROWTH

During growth, one could reach higher rates of step mo-
tion in comparison to the crystal sublimation. Therefore, one
could expect the quasistatic approximation to more fre-
quently fail. It is of interest to study the nonlinear dynamics
of steps in the presence of deposition rate. Figure 5 shows
the trajectories of the steps, which are obtained by integrat-
ing Eqs. (4) and (5) for 7/=100, =107, nQ=0.01, c
=50, and f=-0.04. Let us immediately point out that this
value of the electromigration parameter f is unrealistically
high (about 2 orders of magnitude higher than the estima-
tions given in Refs. 8 and 10). That is why one cannot expect
the results shown in Fig. 5 to reproduce real experimental
observations. We include this figure in the paper just to show
the behavior of our model in the limit of very strong elec-
tromigration of the adatoms. In this sense, Fig. 5 contains
interesting results. Step trajectories show the initial forma-
tion of pairs (short wavelength instability), which later coa-
lesce to form larger bunches (hierarchical bunching). Single
steps detach from the bunches and quickly cross the terraces
to join the bunch ahead. This familiar picture of coexisting
bunches and single steps is suddenly transformed into a
single bunch containing all 60 steps in the system studied by
numerical integration of the equations of step dynamics. The
sharp transformation is a very instructive manifestation of
the Popkov-Krug dynamical phase transition. The more fa-
miliar (and frequently observed) scenario is based on a long
wavelength instability with bunches that do not exchange
single steps until they reach their critical size (see, for in-
stance, Figs. 4 and 6).

When the electromigration of the adatoms is not so strong
the time evolution of the train of steps during the crystal
growth (see Fig. 6) is different from that shown in Fig. 5.
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FIG. 6. Step trajectories during crystal growth (model param-
eters are 7/=10000, e=1073, n°Q=0.1, cy=35, and f=-0.002).

Here, (in Fig. 6), we have more realistic values of the elec-
tromigration force. The further decrease in the electromigra-
tion force leads to a step dynamics dominated by the kinetic
memory effect and the formation of step density waves, as
shown in Fig. 7.

VI. CONCLUSIONS

Going beyond the quasistatic approximation in the treat-
ment of step dynamics, we see the vicinal surface to manifest
two different step bunching instabilities. The formation of
small bunches of constant size (absence of any coarsening)
occurs when the electromigration is relatively weak and the
step dynamics is dominated by the kinetic memory effect
(see Figs. 2 and 7). This is, in fact, the instability (the for-
mation of step density waves) reported in our previous
paper.! Another type of instability (step bunches manifest
coarsening so that the average bunch size increases with the

step positions

time

FIG. 7. Step trajectories during crystal growth. The model pa-
rameters have the values 7/ =10, c4=500, £=1073, niQ)=0.1, and
f=-107.
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sublimation time) occurs when the electromigration of ada-
toms is the dominating factor and the kinetic memory effect
has a secondary role in the step dynamics. It is interesting to
note that these two factors play identical roles in the linear
stability theory where the instability condition reads
—(F/F).+(V/V,)-1>0, with F.=12QA/K7/? [see Egs.
(11) and (12)]. As far as the nonlinear dynamics of steps is
concerned, these two factors have a rather different impact.
The electromigration of adatoms (F>>F,) leads to the for-
mation of large bunches which manifest clear coarsening,
whereas the deviation from the equilibrium (V>>V,,) pro-
duces a regular array of small bunches of constant size (there
is no coarsening at all).

The step bunching due to the factor F/F, is similar to the
already studied®” instability induced by electromigration in
the limit of slow step kinetics and fast surface diffusion (the
model in Ref. 22 makes use of the quasistatic approxima-
tion). Analyzing this instability, we reproduce already pub-
lished (by other authors) results for this limit. For example,
our Eq. (16) coincides with Egs. (33) and (60) in Ref. 20 and
Eq. (4) in Ref. 21 These results of the linear stability analysis
for the most unstable mode are supported by Figs. 4 and 5,
which show the step trajectories that are obtained by numeri-
cal integration of Egs. (4) and (5). Finally, our non-steady-
state treatment of the step dynamics at the crystal surface
manifests the dynamic phase transition that was predicted by
Popkov and Krug for the model based on the quasistatic
approximation.'”

In conclusion, one should say that the quasistatic approxi-
mation is quite relevant when the velocity of the steps does
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not exceed its critical value. As far as the experiments®1%-1!

aimed at revealing the fundamentals of the step bunching
instability are concerned a clear coarsening, which leads to a
gradual increase in the number of steps in the bunch has been
reported; i.e., the step kinetics is dominated by the electromi-
gration. The experimental results for the shape of the
bunches and the scaling relation between the width of the
bunch and the number of steps in it are in good agreement
with the theoretical results’ that are obtained in the frame-
work of the quasistatic approximation. To reach the experi-
mental conditions where the step dynamics is not dominated
by the electromigration of the adatoms, one should decrease
the electric current through the crystal and keep the tempera-
ture high enough by some additional heating (for instance,
irradiative heating of the wafer). It is clear, however, that in
the molecular beam epitaxy growth of Si, for instance, the
rate of crystal growth (and therefore the rate of step motion)
is a key technological parameter. To obtain the required
thickness of a layer in an acceptable deposition time, one
could need a step velocity much higher than the critical one.
Then, the step density waves will appear at the growing crys-
tal surface.
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