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We compare the experimental observations of the effect of changing the length scale of an artificially
imposed pattern on self-organization during annealing of stepped Si�111� surfaces with the predictions of the
simple quasi-one-dimensional near-equilibrium model proposed by Weeks et al. �Dynamics of Crystal Surfaces
and Interfaces, edited by P. Duxbury and T. Spence �Plenum, New York, 1997�, pp. 199–216� in which step
stiffness competes with the effect of repulsive step-step interactions. We find that this model reproduces the
observed convergence of in-plane and out-of-plane relaxation at large length scales, but faster relaxation in
plane at small periods. Simulations based on this model require step energetic parameters which dramatically
depart from their equilibrium values to obtain agreement with the observed pattern period at which relaxation
becomes isotropic. We find that this model does not reproduce the observed asymptotic quartic dependence of
the relation time on spatial period.
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Self-organization in nature often leads to pattern forma-
tion at characteristic length scales, a phenomenon which has
long fascinated scientists. It also presents a clue as to how
bottom-up fabrication of densely packed arrays of nanometer
scale structures might be practically achieved. A potential
approach would use an initial artificially defined pattern to
set conditions for the physical driving forces which control
evolution during a subsequent sample processing step. A first
step toward directing self-organization would be a quantita-
tive understanding of the competing physical mechanisms
involved, and, in particular, how these interactions vary with
lateral length scale. Systems for which such a quantitative
understanding exists, however, are rare.

In this report, we examine a system in which self-
organization shows an intriguing dependence on length scale
which can be explored through the introduction of an artifi-
cially imposed pattern: stepped Si�111� surfaces.1–4 While
there have been a number of reports of how lithographically
patterned surfaces evolve during growth or annealing,1–3

only recently have there been systematic investigations of
the effect of the characteristic pattern length scale in directed
self-organization of semiconductor surfaces.4–7 Elsewhere
we reported experimental observations of the structures that
result from patterning stepped Si�111� surfaces during an-
nealing, in which we found that introducing topographical
features at a chosen length scale can steer the interplay be-
tween these driving forces, leading to distinct paths of evo-
lution with qualitatively different intermediate surface
morphologies.5 Here, we compare these observations with
the predictions of a simple model8 in which steps move
across the surface under the influence of step stiffness, the
interactions between steps, and sublimation; we find that
agreement between this model and experiment requires the
interaction parameters to dramatically depart from their equi-
librium values.

We begin with a brief description of the experiments and
experimental results, discussed in more detail elsewhere.5

We patterned vicinal Si�111� wafers, oriented by 0.5�0.25°,
toward �2�11�, using photolithography and reactive ion etch-
ing to create arrays of cylindrically shaped pits on the surface
whose diameter we systematically varied from
0.7 to 8.0 �m, and whose center-to-center spacing was twice
the pit diameter; the depth of the pits after etching was ap-
proximately 32 nm. The patterned samples were introduced
into ultrahigh vacuum, and heated from behind using a com-
bination of radiation and electron bombardment; this proce-
dure eliminates the electromigration effects which result
from resistive heating.11–13,15 Following extensive outgassing
at a temperature of �600 °C, the samples were heated to a
temperature of 1273�5 °C for varying periods of time,
varying between 30 s and several minutes. We used a
disappearing-filament pyrometer in measuring this tempera-
ture; this placed a lower limit of �30 s on reliably deter-
mined annealing times. We then quench cooled the samples,
and transferred them through atmosphere into a commercial
atomic force microscope for imaging.

Our atomic force microscopy �AFM� images showed that
the shortest annealing studied produce a disappearance of the
pits on the smaller period structures; in agreement with re-
ports by Ogino,1 they are replaced by arrays of nearly
straight step bunches whose spatial period matches that of
the initial pattern. Not surprisingly, the annealing time re-
quired for the disappearance of the pits monotonically in-
creases with the initial pit diameter. More interesting is the
behavior during continued annealing, subsequent to the dis-
appearance of the pits which reveals a richness in the mode
of self-organization of the step bunches as the spatial period
is varied. While both the “waviness” of the step bunches
�i.e., the amplitude of the topographical corrugation within
the average surface plane� and their height exponentially de-
cay with time subsequent to the disappearance of the last
circular “loop” steps, there is a pronounced difference in the
length-scale dependence of the two types of relaxation times.
The in-plane relaxation time shows an approximate fourth-
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order power law dependence on lateral period, in agreement
with Mullins’ famous prediction.10 The dependence of the
out-of-plane decay time on spatial period is more compli-
cated: for short period structures, the relaxation time out of
plane is considerably longer than in plane; however, with
increasing spatial period, the out-of plane and in-plane decay
times converge. In other words, the step bunch waviness and
height anisotropically decay for small patterns, but isotropi-
cally in the large period limit.

In this report, we examine whether it is possible to under-
stand this length scale dependence of the pattern evolution in
terms of a simple model of step motion and interactions; we
carry out numerical simulations based on the specific model
proposed by Weeks et al.,8 which we briefly review here. The
model is based on the supposition that the step motion can be
written in terms of the surface free energy. Following Gruber
and Mullins,9 in equilibrium the surface free energy per pro-
jected area for a vicinal surface can be written in terms of the
slope s as

f�s� = f0 +
�

h
s + gs3, �1�

where f0 is the free energy per area for the flat surface, � is
the step creation free energy per length, h is the step height,
and g measures the strength of the step-step interactions,
which include both entropic and elastic effects. For stepped
Si�111� surfaces, the nature of these driving forces has been
extensively studied over a range of temperature.11–15 Near
equilibrium, the step dynamics are expected to be controlled
by variations in the effective two dimensional step Hamil-
tonian, which can be written as8

H��xn�� =� dy	
n

Ns 
 �̃

2
� �xn�y�

�y
�2

+ V�wn�y��
 , �2�

where the summation is over all steps and the integration is
along a given step. The first term corresponds to the free
energy associated with distorting an individual step, and is

proportional to the step stiffness �̃, while the second term
takes into account the step-step interactions. In the model
proposed by Weeks et al., only the interactions between near-
neighbor steps are considered, and the interaction is written
in terms of the terrace width, wn�xn+1�y�−xn�y�. Both inter-
actions with more distant steps and the interaction between
segments of adjacent steps with different values of y are
omitted in this simple model. For a small change in the lat-
eral position of the nth step �xn�y�, the change in the Hamil-
tonian is approximately given by the integral over the length
of the step of the product of this displacement and the func-
tional derivative �H /�xn�y�. Using this, the step chemical
potential is written as

�n�y� = �
 �V�wn�
�wn

−
�V�wn−1�

�wn−1
+ �̃

�2xn

�y2 
 , �3�

where � is the area occupied by an atom. The first two terms
in brackets in this expression correspond to the pressure ex-
erted by the step by the adjacent terraces, and the last term is
proportional to the linearized curvature of the step. The ve-

locity of the step can now be written using a linear kinetics
approximation, taking the effective mass flow to be nonlocal,
so that atoms are exchanged between the step edge and a
reservoir, whose chemical potential is zero in the absence of
step motion. Finally, an additional, driving term in the step
velocity corresponds to sublimation, which is significant at
the temperature at which we anneal the patterned surfaces.
This should be proportional to the widths of the adjacent
terraces, at least as long as the diffusion length exceeds
these; allowing for a possible asymmetry in the probability
of an atom moving from a step onto the terraces above and
below gives the following expression for the velocity of a
step in this model:

dS�

dt
=

n̂ · �

kBT
� �̃

R
+ gh3� 1

w1
3 −

1

w2
3�� − n̂ · �k− · w1 + k+ · w2� ,

�4�

where S� is the trace of an individual step projected in the
�111� plane, n̂ is the local normal of the step edge within the
�111� plane, � is the step mobility, kB is Boltzmann’s con-

stant, T is the surface temperature, �̃ is the step stiffness, R is
the local radius of curvature of the step edge, g is the step-
step interaction coefficient, h is the step height, w1�w2� is the
distance to nearest neighboring uphill-�downhill�-side step,
measured along n̂, and k+�k−� is the Si adatom attachment/
detachment rate at the step edge from the step down �up�
terrace.

An important question is whether a near-equilibrium
model like that described above can be used in understanding
step motion when sublimation is significant. To address this,
in the results presented below, we integrate Eq. �4� using the
finite difference method, with periodic boundary conditions,
and compare its prediction with our experimental observa-
tions. At the downhill-side pit edge, the outermost loop step
and the neighboring vicinal step have opposite signs. This
results in the possibility of both a nonrepulsive step interac-
tion and step annihilation when they touch. For simplicity,
we flip the sign of g to calculate the step-step interaction for
this case, and allow crossing and annihilation between these
two steps; effectively, this “transfers” a neighboring vicinal
step across the pit. We see no evidence for the Ehrlich-
Schwoebel effect16 in the experiment;5 we thus set k+=k−.
We discuss the parameters used in the simulations below.

NUMERICAL RESULTS

Figures 1�a�–1�c� show the initial step configurations
within the three unit cells, centered about circular pits of
successively larger diameter. As in the experiment, we set the
center-to-center spacing between the pits at twice the initial
diameter, and the depth of the pits at �35 nm, measured
along the vicinal surface normal. The reactive ion etching
process we experimentally use produces pits with nearly ver-
tical sidewalls; however, for ease of simulation, we reduce
the inclination angle of the sidewalls in the starting geometry
to 15°. The vertical lines colored in red represent steps which
result from the sample miscut, which we refer to as “vicinal
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steps”; based on a vicinal angle of 0.5° the average spacing
of these is 36.5 nm. Vicinal steps interfering with the pit
structure bend around the uphill edge of the pit and become
part of the sidewall. The curves colored in blue represent
steps created by the patterning, which we refer to as “loop
steps.” For the smaller patterns, the pit structure consists al-
most entirely of contiguous loop steps, with only a few vici-
nal steps within the uphill sidewall. For the largest initial
diameter of 8 �m, because of the shallowness of the pit and
the finite angle that the surface makes with respect to the
�111� terraces, both vicinal steps and loop steps make a sig-
nificant contribution to the starting pit structure.

Figures 1�d�–1�f� show the simulated step morphology af-
ter 30 s of simulated annealing, based on integration of Eq.
�4� with a time step of 10 �s. For the smallest pattern shown
here, the initial pit diameters are 1.4 �m; all loop steps have
by this time disappeared, and a straight step bunch has
formed at the uphill side of the original pit. During the first
10 s of evolution, almost all of the loop steps evolve into
nearly circular, concentric rings, shrink inward, and self-

annihilate one by one into the center. Only a few of the outer
loop steps annihilate with approaching vicinal steps. Instead,
for the smaller period structures, the effect of step stiffness
dominates the evolution, driving the Si adatoms to fill in the
circular “void islands” despite the competing influence of the
sublimation of adatoms. After all loop steps disappear, the
stiffness results in further relaxation, and a rapid formation
of nearly straight step bunches. For the intermediate-size pat-
tern shown in Fig. 1�b�, with 4 �m initial pit diameters, the
loop steps are by 30 s nearly circular and concentric. The
innermost loop steps initially shrink and disappear here as
well, but this ceases at the point at which the innermost
surviving loop step is large enough that sublimation balances
the effect of step stiffness. The outer loop steps in this case
expand outward and locally annihilate with vicinal steps
which approach from the downhill side. As shown in Fig.
1�e�, a few circular loop steps remain after 30 s of annealing,
with those vicinal steps which annihilated at the downhill
edge bending around the uphill edge and adding to curved
step bunches. For the largest pattern, 8 �m initial pit diam-
eters, half of the initial sidewall consists of vicinal steps.
Their presence causes the innermost loop steps to be nearly
flat on the uphill side. In addition, relaxation of steps at the
original uphill wall produces an extended curved bunch
across the original wall position. For these largest pits, the
simulation shows that an even larger portion of the loop steps
annihilate with approaching vicinal steps, rather than shrink-
ing and disappearing. Figure 1�h� shows that with further
simulated annealing, a sinusoidal-shaped step bunch forms
for the larger pit structures, which evolve along a qualita-
tively different path compared to that shown in Figs. 1�a� and
1�d�. The insets in Figs. 1�d�–1�h� show high-pass filtered
AFM images measured from regions of the surface across
pits of the corresponding initial diameters, after the same
annealing times. Given the simplicity of the model, the
agreement between the length scale dependence of the sur-
face evolution in the simulations and in these experiments is
striking.

We extract from the simulated surface morphology both
the “in-plane corrugation,” which we define as the maximum
amplitude of the variation of the steps from straightness
within the �111� plane, and the “out-of-plane corrugation,”
which we define as the amplitude of calculated height pro-
files across the centers of pits along the staircase direction.
These are shown in Figs. 1�g� and 1�j�; both nearly exponen-
tially decay with time after the disappearance of the last loop
step.

Figure 2 summarizes the relaxation times for both the
in-plane and the out-of-plane corrugation as functions of the
initial pit diameter, from both the simulations and the
experiment.5 The major features of the size dependence are
remarkably well reproduced by this simple model, which ne-
glects the two dimensional nature of the steps. The simula-
tion indicates three regimes of evolution. In the small pattern
limit, i.e., for pits of initial diameter smaller than �2 �m,
the in-plane corrugation decays at a rate an order of magni-
tude faster than that for the out-of-plane corrugation, leading
to a rapid relaxation to periodic straight step bunches.1,5 We
note that in this regime the decay times are relatively short,
making it difficult to directly experimentally probe. At the
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FIG. 1. �Color� Simulated evolution of step structure on vicinal
Si�111� surfaces. ��a�–�c�� Initial step configurations for pit diam-
eters equal to 1.4, 4, and 8 �m, respectively. ��d�–�f�� Step structure
for panels �a�–�c�, respectively, after 30 s simulation time. �h� Step
structure for 4 �m initial pit diameter after 60 s simulation time.
Field of view for panels �a� and �d� is 2.8 �m, 8 �m for panels �b�,
�e�, and �h�, and 16 �m for panels �f� and �j�. For visibility, only a
fraction of the steps are shown here. Step-up direction horizontally
points to the left. Insets in panels �d�–�f� and �h� are high-pass
filtered AFM images scanned from real sample after corresponding
annealing time �Ref. 5�. Panels �g� and �j� show the in-plane and
out-of-plane corrugations, respectively, measured from the simula-
tion as a function of simulation time for each pit size, with the color
vs pit size indicated in �j�.
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other extreme, for patterns with initial pit diameters larger
than �5.6 �m, the relaxation time for the out-of-plane cor-
rugation converges to that for the in-plane-corrugation. A
transition regime occurs for patterns with initial pit diameter
between �2.0 and �5.6 �m. Here, the out-of-plane corru-
gation relaxation time does not significantly change, while
the in-plane-corrugation relaxation time continues to in-
crease with pit diameter. It is clear from this comparison that
the simple step continuum model represented by Eq. �4� suc-
cessfully captures most of the basic physics governing the
self-organized evolution of step bunches on our patterned
surfaces.

The evolving step configurations predicted by these simu-
lations provide insights into the origin of the variation in
step-bunch self-assembly with pattern size; in particular, an
important clue comes from examining the details of the
evolving step morphology in the region between pits. Figure
3 shows two cases, corresponding to the two extreme types
of behavior seen in Fig. 2. Initially, steps are densely packed
in the pit sidewall region. This results in a large frozen-in
step-step repulsion energy prior to annealing. After the an-
nealing begins, the strong step-step repulsion drives an ex-
pansion of the pit walls, with steps rapidly moving apart in a
sort of shock wave. For the small period patterns, the overlap
of the individual shock waves from adjacent pits results in
significant bending of the vicinal steps. The step stiffness
effect associated with the step-bending kicks in to reduce the
step length, pulling them straight one by one in the step-up
direction and forming a step bunch adjacent to the pit at the
uphill side. The overlap of disturbances in step spacing for
small period patterns allows relaxation to quickly straighten
step bunches after the disappearance of the last loop steps.
For the larger period structures, the overlap of the shock
waves is not significant, and there is little disturbance to the

step spacing at midplanes between pits. Regions of high cur-
vature occur, but the step-step repulsion between closely
spaced steps prevents rapid straightening. The steps relax
into curved step bunches, maintaining nearly uniform spac-
ing in regions between pits. Figure 3�h� shows that the same
trend persists through the disappearance of the loop steps,
explaining the formation of sinusoidal shape step bunches
experimentally seen.

DISCUSSION

Based on these observations, we can formulate hypoth-
eses for the conditions within this model that set the bound-
ing periods between the different regimes of evolution seen
in Fig. 2. For simplicity, we model the shape of the steps of
interest to be sinusoidal, e.g., x=A sin�2�y /L�, with the pe-
riod L equal to the center-to-center spacing between the pits,
and A the amplitude of step bending. For small pit spacing,
the step stiffness dominates the evolution of the step shape
and Fig. 3�d� suggests that it is able to keep the steps in the
bunch nearly straight between the pits in spite of the in-
creased step-step repulsion �with the loop steps pinning the
step bunch before their disappearance�. We express this con-
dition below based on Eq. �1�:

�̃/R 	 gh3/wav
3 , �5�

where wav is the average step spacing in bunches between
pits. Based on the step configurations seen in Fig. 3�d�, as a
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FIG. 2. �Color� Relaxation time constants determined from
simulated step structures for in-plane corrugation �filled circles in
blue� and out-of-plane corrugation �filled circles in red�. For com-
parison, the open circles show the corresponding experimental mea-
surements �Ref. 5�. The dashed curve in black shows the out-of-
plane corrugation relaxation time constant for the case of no step-
step interaction in the simulation. The two vertical dashed lines
show predicted transition points in the size dependence of the pat-
tern, see text for details.
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FIG. 3. �Color� Simulated step evolution between pits. The ini-
tial pit diameters are 0.7 �m for panels �a�–�d�, and 5.6 �m for
panels �e�–�h�. The field of view panel for �a�–�d� is 1.4 �m, and
11.2 �m for panels �e�–�h�. The annealing times for �a�–�d� are 0,
0.5, 2, and 6 s, respectively. For �e�–�h�, it is 0, 10, 40, and 60 s,
respectively. The step-up direction horizontally points to the left.
Again, only a fraction of steps are shown here.
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rough estimate, we have both wav and A approximately equal
to the initial step spacing, i.e., wav�A�h /
. Evaluating the
maximum curvature of the sinusoidal steps, we determine the

lower bounding limit as L1= �2� /
2���h · �̃� /g�2.2 �m for
our values of the energetic parameters and vicinal angle. On
the other hand, in the large period limit, the inequality sign in
Eq. �5� reverses direction, since the step-step repulsion over-
rides the step stiffness, maintaining nearly uniform step spac-
ing between pits. The maximum curvature in this case is
limited by the maximum amplitude of the step bending be-
tween the pit, which in turn is limited by the maximum ini-
tial bending of the step possible due to the patterning. This is
approximately d / �2 sin 
�, where d is the initial depth of the
pit. This leads to an upper bounding limit of L2

= �� /
2���2d · �̃� /g�15.6 �m for our initial pit depth and
vicinal angle. As indicated by the dashed lines in Fig. 2,
one-half of L1 and L2 approximate the initial diameters
which bound the different regimes in the simulation reason-
ably well. Based on these hypotheses, we predict that the
transitions between regimes should be tunable, by varying
the vicinal angle and initial pit depth.

In our simulations, we optimized the values of the step

parameters in Eq. �4�, � · �̃ and � ·g, for agreement with ex-
periment; we note that these occur as products, rather than
separately. For � ·g, we first mapped out the simulated out-
of-plane corrugation decay time constant as a function of
� ·g for the pit array with a 1.4 �m diameter and a 2.8 �m
spacing. We then found that � ·g=3.2�106 �m meV /s
matches the decay times to those observed in our experimen-

tal measurements. To determine � · �̃, we matched the simu-
lated and experimentally measured pit disappearance times,
i.e., the time that it takes for all loop steps to annihilate. In
this case, we compared results for two pit arrays, one with
1.4 �m diameter and 2.8 �m pitch and the other for pit di-
ameter of 2.0 �m and 4.0 �m pitch. We found that a small

window in � · �̃ exists within which the simulation repro-
duces the observed time sequence of the disappearance of
loop steps for these two pit arrays. We choose the middle

value of this window, with a value of � · �̃
=7.5 �m2 meV /s for simulation for the rest of the pit array.

Both parameter products, i.e., � · �̃ and � ·g, as determined,
are 2 orders of magnitude smaller than those extrapolated
from equilibrium measurements,11–14,17 which would be �

�9�106 nm3 /s, �̃�90 meV /nm, and g�1.4
�104 meV /nm2 at 1273 °C. In spite of these very small
values, our numerical simulations show that both of the en-
ergetic effects in Eq. �4� are important in comparison to ex-
periment: the dashed curve in Fig. 2 shows that setting the
step-step interaction to zero results in a relaxation of the
out-of-plane corrugation which is slowed down by more than
an order of magnitude. Based on the smoothness of the step
edges observed in the experiment and indeed an abnormally

large step stiffness reported for Si�111� surface at similar
conditions,15 we deduce that the physical origin of the small
magnitudes of � · �̃ and � ·g within this model must result
from a large reduction in the far from equilibrium step mo-
bility �. Under quasiequilibrium conditions, � is equivalent
to the amplitude of thermal fluctuations that drives the step
fluctuations;12 this is due to the attachment and detachment
of single adatoms from a step, leading to a step mobility
which is proportional to the density of diffusing adatoms,
both in the diffusion limited and attachment limited cases.12

A plausible explanation for the very low mobility deduced
here would be a depletion of adatom density due to sublima-
tion into vacuum.

An important point at which there is a discrepancy be-
tween the simulation and experiment is the power law expo-
nent of the in-plane corrugation relaxation times. The simu-
lated in-plane corrugation and the out-of-plane relaxation
times converge to an approximate power law dependence on
the length scale for large periods with an exponent of �2,
approximately a factor of 2 smaller than that in the
experiment.5 A more realistic model than that defined in Eq.
�4�, including the step orientation dependence of the step
stiffness,18,19 an integration of the step interactions over their
lengths, and interactions beyond near-neighbor steps might
resolve this difference. However, we find that setting the in-
teraction strength equal to zero does not alter the predicted
power law dependence for in-plane corrugation, as seen in
Fig. 2; this indicates that instead the form of the height equa-
tion suggested by Weeks et al.,8 must be modified to include
a term in the chemical potential which is proportional to the
curvature.10

In summary, we find that the simple quasi-1D model of
step motion proposed by Weeks et al.,8 based on near-
equilibrium thermodynamics allows a semiquantitative de-
scription of how an artificially introduced pattern directs the
self-organization of step bunches during annealing of
Si�111�. Within this model, in the small period limit, the step
stiffness dominates the evolution, while in large period limit,
the step-step interaction takes over. The transition length
scales are seemingly controlled by the vicinal angle and pat-
tern depth. A detailed quantitative comparison between the
model and experiments show that the interaction parameters
used to describe steps on Si�111� at high temperatures must
vary considerably from their equilibrium values. Finally, our
comparison indicates that a detailed, quantitative description
of the self-organization of step bunches will require a modi-
fication in the functional form of the simple model exam-
ined.
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