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The effects of the Coulomb interaction on the energy spectrum and the magnetization of two electrons in a
strained InxGa1−xAs /GaAs ringlike nanostructure are analyzed with realistic parameters inferred from the
cross-sectional scanning-tunneling microscopy data. With an increasing magnetic field, the lowest spin-singlet
and spin-triplet states sequentially replace each other as the ground state. This is reminiscent of the Aharonov–
Bohm effect for the ringlike structures. The exchange interaction leads to a more complicated oscillatory
structure of the magnetic moment of the two electrons as a function of the magnetic field as compared to the
magnetization pattern for a single-electron ringlike nanostructure. We discuss the relevance of the two-electron
systems for the interpretation of the Aharonov–Bohm oscillations in the persistent current observed in low
temperature magnetization measurements on self-assembled InxGa1−xAs /GaAs ringlike nanostructures.
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I. INTRODUCTION

Electrons confined to a small ring manifest their quantum
nature by an oscillatory behavior of their energy levels as a
function of an applied magnetic field. This effect originates
from the periodic dependence of the phase of the electron
wave function on the magnetic flux through the ring, which
is the Aharonov–Bohm effect,1 and is usually associated with
the occurrence of persistent currents in the ring.2–5

In recent years, the fabrication and the investigation of
InxGa1−xAs self-assembled quantum rings �SAQRs� have
been rapidly progressing, see, e.g., Refs. 6–10. The analysis
of the shape, size, and composition of SAQRs at the atomic
scale performed by cross-sectional scanning-tunneling mi-
croscopy �X-STM�11,12 revealed that AFM only shows the
material coming out of the quantum dots �QDs� during the
quantum ring �QR� formation. The remaining parts of the
QDs, as observed by X-STM, possess indium-rich craterlike
shapes that are actually responsible for the ringlike properties
of SAQRs. Recently, the magnetic moment has been mea-
sured at low temperature on a sample consisting of 29 layers
of SAQRs, which are designed such that each quantum ring
confines one or two electrons. By using an ultrasensitive tor-
sion magnetometer in magnetic fields up to 15 T, the oscil-
latory persistent current in SAQRs has been observed.13 It
was explained using the theory of the electron energy spectra
and the magnetization of a single-electron SAQR.14

The electron-electron interaction in the presence of disor-
der is known to be of key importance in the physics of per-
sistent currents in quantum rings.15–17 Because SAQRs are
strongly anisotropic, the potential acting on electrons is
analogous to that in an axially symmetric ring with imper-
fections �see e.g., Ref. 5�. The purpose of the present paper is
to study the contribution from SAQRs with two electrons to
the magnetization.

To start with, we briefly recall the existing approaches to
the analysis of persistent currents and related phenomena in
quantum rings. On the one hand, the strong-correlation meth-
ods were actively developed within the framework of simple
confinement models. The approach, which was developed for
the ballistic regime,18 was applied to a few-electron system,
which is confined to a narrow-width quantum ring. The elec-
trons form a strongly correlated system, which is a rotating
nonrigid Wigner crystal. Within this approach, the energy
band structure, the optical absorption, and the differential
cross section of resonant Raman scattering of two interacting
electrons were analyzed.19 Evidence for a Wigner crystalli-
zation transition in the quantum rings, as the electron density
is lowered, is found in a wide range of ring diameters and
strengths of the harmonic confinement potential by using the
Monte Carlo calculations.20 The numerical solution for the
electronic structure and the linear-response dynamics for the
two-electron rings21 is shown to correspond to a rotating
Wigner molecule in narrow rings. A quantitative determina-
tion of the Wigner crystallization onset for the two electrons
in a parabolic two-dimensional confinement has been
provided.22 The far-infrared transmission spectrum of InAs
self-assembled nanoscopic rings obtained using the time-
dependent local-spin-density theory23 is in agreement with
the experiment.7

On the other hand, numerical methods were extensively
used, which allow for the investigation of advanced confine-
ment models. In the early work,24 the effect of the electron-
electron interaction on the magnetic moment of electrons in a
QR was studied by using a numerical solution for 4 to 12
electrons within the framework of a model with a parabolic
confinement. The subsequent work implied that a parabolic
confinement model is too restrictive for the realistic SAQRs.

Results of the exact diagonalization method25 suggest a
rich spectroscopic structure in the few-electron quantum
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rings. The generalized Kohn theorem is not applicable for a
ringlike confinement potential. The effects of electron-
electron interaction of a two-electron nanoscopic ring on
the energy levels and far-infrared spectroscopy have been
investigated using an exact numerical diagonalization.26 The
solution of the Schrödinger equation for two electrons in a
quantum ring with a circularly symmetric nonparabolic con-
finement potential was obtained in Ref. 27 by discretizing
the coordinate space in a uniform grid of points. The height
of the repulsive central barrier in the confining potential is
shown to significantly influence the ring properties. The
experiments7 are explained invoking an additional assump-
tion that both high- and low-barrier quantum rings are
present in the sample.

Furthermore, the energy levels and far-infrared absorption
spectra of a self-assembled InAs ring with one and two elec-
trons in an external magnetic field are numerically
calculated28 using a three-dimensional effective mass model
which considers finite potential barriers and mass depen-
dence on the energy and position and includes strain effects.
The obtained results suggest that the parabolic confinement
potential used for mesoscopic rings is unsuitable for the self-
assembled rings. However, the quantum-ring profile model28

is azimuthally symmetric.
In the present paper, based on the structural information

from the X-STM measurements, we calculate the electron
energy spectra and the magnetization of a two-electron
SAQR with a realistic anisotropic singly connected shape
using a numerical diagonalization of the two-electron Hamil-
tonian within a finite basis of wave functions.

The paper is organized as follows. In Sec. II, a model of
the SAQR is briefly presented, the physical problem is for-
mulated, and a solution to the Schrödinger equation for a
two-electron SAQR is presented. The effects of the Coulomb
interaction on the electron energy spectra and the magnetiza-
tion in a two-electron SAQR are discussed in Sec. III. Sec-
tion IV contains the conclusions.

II. PROBLEM

A. Self-assembled quantum ring structure

An anisotropic craterlike SAQR structure is modeled with
a varying-thickness InxGa1−xAs layer embedded in an infinite
GaAs medium. The bottom of the InxGa1−xAs layer is con-
sidered to be perfectly flat and parallel to the xy plane. The
height of the InxGa1−xAs layer as a function of the radial
coordinate � and of the angular coordinate � is modeled by
the expression �1� of Ref. 14. The thickness at the center of
the crater h0 is nonzero, which means that the SAQR is a
singly connected structure. The other relevant parameters of
the model are hM, the rim height, h�, the thickness of the
InxGa1−xAs layer far away from the ringlike structure, �0 and
��, the inner and outer slopes of the rim, respectively. The
anisotropy of the rim height, the inner and outer slopes of the
rim, and the characteristic radius is, correspondingly, de-
scribed by Eqs. �2�–�5� of Ref. 14. The parameters �h ,�� ,�R
determine the relative amplitudes of the azimuthal variations
for the rim height, the slopes of the rim, and the character-
istic radius of the structure.

The geometric parameters of the SAQR are h0=1.6 nm,
h�=0.4 nm, hM =3.6 nm, �0=��=3 nm, and R=10.75 nm.
The parameters, which describe the ring-shape anisotropy,
are �h=0.2, ��=−0.25, and �R=0.07. An indium concentra-
tion of 55% results in a calculated surface relaxation that
matches the experimentally determined relaxation of the
cleaved surface.12 This set of geometric and material param-
eters of the SAQR, which was selected for the analysis of the
electron energy spectra in a single-electron SAQR,14 is used
here for the calculations of the electron energy spectra in the
two-electron SAQR.

The Hamiltonian of the two electrons in the SAQR is
represented as

Hee�r1,r2� = H1�r1� + H2�r2� + VCoul�r1,r2� , �1�

where H1�r1� and H2�r2� correspond to the single-electron
Hamiltonian �see Sec. II B� and VCoul�r1 ,r2� describes the
Coulomb interaction between the electrons with radius vec-
tors r1 and r2.

B. Single-electron states in a self-assembled quantum ring

The solution of the single-electron problem in a SAQR
has been provided in Ref. 14. Here, we recall the main con-
ceptual ingredients of the solution of the single-electron
problem in the SAQR, which are needed below for the treat-
ment of the two-electron SAQR. Using the results of Refs.
29 and 30, we take the Hamiltonian of an electron in a
strained ring in the form given by the expression �6� of Ref.
14. The components of the strain tensor, as well as the spatial
distribution of indium x for the above described geometry of
a SAQR, were obtained using a three-dimensional finite-
element numerical calculation package ABAQUS,31 which is
based on elasticity theory. Using the calculated components
of the strain tensor and x, we numerically calculate and tabu-
late the distributions of the strain-induced shifts of the con-
duction band edge and of the piezoelectric potential, which
are given by the expressions �7� and �8� of Ref. 14, respec-
tively. The electron band mass for InxGa1−xAs is taken from
a linear interpolation between the corresponding values for
InAs and GaAs.

The single-electron Schrödinger Eq. �9� of Ref. 14 is
solved within the adiabatic approximation, using the Ansatz:

�kj
�e��r� = �k

�e��z;�,��	kj
�e���,�� , �2�

where the index k numbers subbands due to the size quanti-
zation along the z axis and the index j labels the eigenstates
of the in-plane motion. The Schrödinger equation for the
“fast” degree of freedom �along the z axis� is numerically
solved for each node of a two-dimensional grid in the �� ,��
plane. The resulting adiabatic potential, which corresponds
to the lowest �with k=1� subband of the strong size quanti-
zation along the z axis, is plotted in Fig. 3 of Ref. 14. Due to
strain, the depth of the adiabatic potential for an electron
significantly decreases and its anisotropy diminishes.

For each value of the applied magnetic field, the eigen-
functions 	1j

�e��� ,�� of the in-plane motion are found by nu-
merical diagonalization of the adiabatic Hamiltonian for the
“slow” degrees of freedom in the finite basis of the Fock–
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Darwin wave functions. The wave functions of the lowest
single-electron states in the SAQR result in the form

�1j
�e��r� = �1

�e��z;�,�� �
L=−Lmax

Lmax


1jL
�e� ���eiL�. �3�

Due to the anisotropic shape of the SAQR, angular momen-
tum L is not a good quantum number and the basis set �3�
represents a mixture of states with different values of L. The
radial wave functions 
1jL

�e� ��� are found in Ref. 14 for differ-
ent angular momenta L=−Lmax, . . . ,Lmax, where Lmax=12.
The index j=1,2 ,3 , . . . labels single-electron eigenstates in
the order of increasing energy. In the case of vanishing an-
isotropy, the correspondence between the index j at H=0 and
the angular momenta is as follows: j=1→L=0, j=2→L=
−1, j=3→L=1, j=4→L=−2, j=5→L=2, etc.

C. Two electrons

In order to obey the Pauli exclusion principle, the spin-
singlet �spin-triplet� states in the two-electron rings must
possess orbital wave functions which are symmetric �anti-
symmetric� with respect to the permutation of the coordi-
nates of electrons. Aimed at finding two-electron eigenstates,
we start, as a preparatory step, with constructing the basis
functions, which describe the orbital wave functions of spin-
singlet and spin-triplet states in the absence of the electron-
electron interaction:

� j1j2
�ee,0��r1,r2� = cj1j2

��1j1
�e� �r1��1j2

�e� �r2� + �1j1
�e� �r2��1j2

�e� �r1�� ,

�4�

� j1j2
�ee,1��r1,r2� = cj1j2

��1j1
�e� �r1��1j2

�e� �r2�

− �1j1
�e� �r2��1j2

�e� �r1��, j1 � j2, �5�

where cj1j2
=1 /�2 for j1� j2 and cj1j1

=1 /2. In the present
calculations, this basis corresponds to j1 , j2=1 , . . . , jmax,
where jmax=9 and contains jmax�jmax+1� /2=45 functions for
spin-singlet states and jmax�jmax−1� /2=36 functions for
spin-triplet states. We diagonalize the Hamiltonian �1� in the
above basis looking for the wave functions of the two inter-
acting electrons in the form

�̃J
�ee,S��r1,r2� = �

j1=1

jmax

�
j2=1

j1−S

AJj1j2
� j1j2

�ee,S��r1,r2� , �6�

where S=0 �S=1� in the case of spin-singlet �spin-triplet�
states.

When calculating matrix elements of the Coulomb inter-
action VCoul�r1 ,r1� in the basis �4� and �5�, it is convenient to
represent them as

�VCoul� j1,j2,i1,i2
�S� =� d3re� d3rh�� j1j2

�ee,S��r1,r2���

�VCoul�r1,r2��i1i2
�ee,S��r1,r2�

= 2cj1j2
2 ci1i2

2 �
Lj1,Lj2,Li1,Li2=−Lmax

Lmax �
0

�

d�1�
0

�

d�2

��
1j1Lj1

�e� ��1�
1j2Lj2

�e� ��2���

� �
1i1Li1

�e� ��1�
1i2Li2

�e� ��2�S̃Li1−Lj1,Li2−Lj2
��1,�2�

� 
1i1Li1

�e� ��2�
1i2Li2

�e� ��1�S̃Li2−Lj1,Li1−Lj2
��1,�2�	 ,

�7�

where the upper �lower� sign in the rhs corresponds to S=0
�S=1� and

S̃L1,L2
��1,�2� =

e2�1�2

4��0�r
�

0

2�

d�1�
0

2�

d�2�
−�

�

dz1�
−�

�

dz2

�
�1
�e��z1;�1,�1�
2
�1

�e��z2;�2,�2�
2

�
eiL1�1+iL2�2

��1
2 + �2

2 − 2�1�2 cos��1 − �2� + �z1 − z2�2
.

�8�

Importantly, the integrals S̃L1,L2
��1 ,�2� do not depend

on the magnetic field. Therefore, we first tabulate

S̃L1,L2
��1 ,�2�. Then, for each magnetic field H, the matrix

elements �7� are calculated and the lowest two-electron states
are found by numerical diagonalization of the Hamiltonian
�1� in the basis �4� and �5�.

III. RESULTS

The states � j1j2
�ee,S� for S=0,1 are labeled as �j1 , j2�S, where

the numbers j1 and j2 correspond to the order of the single-

electron energy levels at H=0. The states �̃J
�ee,S� are labeled

as �J�S for S=0,1.
In Figs. 1 and 2, the calculated two-electron energy spec-

tra are plotted for the cases, respectively, of no electron-
electron interaction and with the Coulomb interaction taken

Pauli

FIG. 1. �Color online� Energy spectrum of two noninteracting
electrons in a strained quantum ring as a function of the applied
magnetic field. The states � j1j2

�ee,S� for S=0,1 are labeled as �j1 , j2�S,
where the numbers j1 and j2 correspond to the order of the single-
electron energy levels at H=0. All triplet energy levels �j1 , j2�1 for
j1� j2 overlap with singlet energy levels �j1 , j2�0. The heavy dashed
line, which indicates the region of the continuum as obtained from
our numerical simulation, is a guide to the eye.
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into account. The Pauli exclusion principle is fulfilled when
constructing the wave functions �4�–�6�, which are used to
calculate the energy levels shown in Figs. 1 and 2.

In Fig. 1, the spin-singlet �j1 , j2�0 and spin-triplet states
�j1 , j2�1 are degenerate because the Coulomb interaction is
not taken into account. It is worth recalling here that the
index j, rather than the electron angular momentum L, is
specific for single-electron eigenstates in an anisotropic
quantum ring. Due to the Coulomb interaction, the energy
spectrum of two electrons represented in Fig. 2 is signifi-
cantly modified as compared to that shown in Fig. 1. Ap-
proximately, the correspondence between the states of two
electrons in a quantum ring with the Coulomb interaction
and the states of two noninteracting electrons in a quantum
ring is as follows: �1,1�0→ �1�0 ; �2,1�0→ �2�0 ; �2,2�0

→ �3�0 ; �2,1�1→ �1�1 ; �3,1�1→ �2�1.
As follows from Fig. 2, the degeneracy between the spin-

singlet and spin-triplet states is lifted due to the Coulomb
interaction. For example, there is a significant splitting be-
tween the spin-singlet �2�0 and the spin-triplet �1�1 states,
although the corresponding states of two noninteracting elec-
trons �2,1�0 and �2,1�1 are degenerate. This fact indicates a
strong exchange interaction in the quantum ring under con-
sideration.

At relatively low magnetic fields, the ground state in Fig.
2 corresponds to the lowest spin-singlet energy level. At H
�10 T, the ground state becomes spin triplet. With a further
increase in magnetic field, the lowest spin-singlet and spin-
triplet states sequentially replace each other as the ground
state. This behavior is reminiscent of the Aharonov–Bohm
effect in a single-electron quantum ring. At H�12 T, the
state originating from �1,1�0 reveals anticrossing from those
states which originate from �2,1�0 and �2,2�0. Different en-
ergy levels corresponding to the abovementioned states are
shifted differently due to the Coulomb interaction.

In Fig. 3, the calculated magnetic moment � of the two
noninteracting and interacting electrons is plotted as a func-

tion of the applied magnetic field. As seen from Fig. 3, the
Coulomb interaction leads to a more complicated oscillating
structure of � versus H, as compared to the case when the
electron-electron interaction is absent. In particular, the first
oscillation of the magnetic moment shifts due to the Cou-
lomb interaction toward the weaker magnetic fields. One of
the reasons for this shift is an increase in the effective elec-
tronic radius of the ring due to the mutual Coulomb repul-
sion of the two electrons. At H�15 T, the Aharonov–Bohm
oscillations of the magnetic moment are still present but are
substantially smoothed out.

IV. CONCLUSION

In conclusion, the major effect of the Coulomb interaction
is lifting the degeneracy between the spin-singlet and spin-
triplet states. For the two-electron quantum rings with radial
sizes �10 nm, the Aharonov–Bohm-effect-related phenom-
ena appear at magnetic fields �10 T even in the case of an
appreciable shape anisotropy. In the experiment on magneti-
zation in SAQRs with those sizes and shape,13 no appre-
ciable oscillations are detected in the above region. There-
fore, it is assumed that the observed Aharonov–Bohm effect
is mainly due to the single-electron quantum rings in the
ensemble of rings under investigation.
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