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The role of multimode vibrational dynamics in electron transport through single-molecule junctions is
investigated. The study is based on a generic model, which describes charge transport through a single mol-
ecule that is attached to metal leads. To address vibrationally coupled electron transport, we employ a non-
equilibrium Green’s function approach that extends a method recently proposed by Galperin et al. �Phys. Rev.
B 73, 045314 �2006�� to multiple vibrational modes. The methodology is applied to two systems: a generic
model with two vibrational degrees of freedom and benzenedibutanethiolate covalently bound to gold elec-
trodes. The results show that the coupling to multiple vibrational modes can have a significant effect on the
conductance of a molecular junction. In particular, we demonstrate the effect of the electronically induced
coupling between different vibrational modes and study nonequilibrium vibrational effects by calculating the
current-induced excitation of the vibrational modes.
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I. INTRODUCTION

Experimental studies of single-molecule conductance1–4

have revealed a wealth of interesting transport phenomena
and have stimulated great interest in the basic mechanisms
that determine electron transport on the molecular scale.5–7

Thereby, effects due to coupling between electronic and
nuclear degrees of freedom have been of particular interest.8

The small size and the low mass of molecules may result in
a strong coupling between the electronic and nuclear degrees
of freedom.9,10 Vibrational structures in molecular conduc-
tance have been observed for a variety of different
systems.9,11–19 Electronic-vibrational coupling can result in
the excitation of the vibrational modes of the molecular
bridge as well as local heating.15 Conformational changes in
the geometry of the conducting molecule are possible
mechanisms for switching behavior and negative differential
resistance.20 Furthermore, the observation of vibrational
structures in conductance measurements allows the unam-
biguous identification of the molecule in the junction.

These experimental findings have inspired great interest
in the theoretical modeling and simulation of vibrationally
coupled charge transport in molecular junctions.8,21–37 A va-
riety of different approaches have been used to study the
influence of the vibrational degrees of freedom on single-
molecule conductance, including inelastic scattering theory,
density matrix approaches, and nonequilibrium Green’s func-
tion methods. Green’s functions are particularly well suited
in studying many-body and vibrational nonequilibrium ef-
fects. Employing perturbation theory, nonequilibrium
Green’s function methods have been applied in the off-
resonant tunneling regime to study, e.g., inelastic tunneling
spectra.25,26,36 In this regime, the effective electronic-
vibrational coupling is typically small and perturbation
theory is valid. Galperin et al.33 recently proposed a method
that allows the study of vibrational effects in the resonant
transport regime. This method is based on polaron transfor-
mation of the Hamiltonian and employs perturbation theory
within a self-consistent scheme to solve the equations of mo-

tion for the nonequilibrium Green’s function.
In the original formulation, the method of Galperin et al.33

is limited to the treatment of a single-vibrational mode that is
coupled to a thermal bath. In this paper, we extend this
Green’s function method to allow the treatment of several
vibrational degrees of freedom. Moreover, we outline a
scheme that allows the explicit calculation of current-
induced vibrational excitation and, thus, to study vibrational
nonequilibrium effects. The methodology is applied to two
different systems: a generic model of a molecular junction
with two active vibrational modes and charge transport
through benzenedibutanethiolate covalently bound to gold
electrodes based on a recently developed38 first-principles
model.

II. THEORY

A. Model

To study vibrationally coupled electron transport through
a molecular junction, we consider a generic tight-binding
model,33,39 wherein a single electronic state localized on the
molecule is coupled to respective states in the left �L� and
right �R� leads by tunneling matrix elements, Vk,

H = �0c†c + �
k�L,R

�kck
†ck + �

k�L,R
�Vkck

†c + Vk
�c†ck�

+ �
�

��a�
†a� + �

�

��Q��c†c − �� + �
�

	�b�
†b�

+ �
��

Q�U��Q�. �1�

Here, ck
† and c† are operators that create an electron in the

leads and on the molecular bridge, respectively, and �k and �0
denote the energies of the corresponding electronic states.
The nuclear degrees of freedom of the molecule are de-
scribed in Eq. �1� within the harmonic approximation em-
ploying the normal modes of the neutral junction in equilib-
rium at zero bias. Thereby, a�

† denotes the creation operator
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for a normal mode of the neutral molecule with frequency
�� and Q�= �a�+a�

†� is the corresponding displacement op-
erator.

If an external bias is applied to the junction, electrons will
be transferred from the leads to the junction and vice versa.
Accordingly, the potential energy of the nuclei will be dis-
torted. The corresponding interaction potential is approxi-
mated by employing a linear expansion in the displacement
operator Q� around the equilibrium geometry of the neutral
junction, resulting in the electronic-vibrational interaction
term ����Q��c†c−�� in Eq. �1�. The charge density, to
which this interaction potential is linked, depends on whether
the molecular state through which the transport takes place is
unoccupied ��=0, corresponding, e.g., to charge transport
through the lowest unoccupied molecular orbital� or occu-
pied ��=1, corresponding, e.g., to the highest occupied mo-
lecular orbital� in equilibrium.40 The corresponding shift in
the equilibrium geometry of mode � is given by 
Q�

=2�� /��.
To account for the effect of relaxation of the vibrational

modes, which is induced by anharmonic interactions and
coupling to phonons in the electrodes, we adopt a linear re-
sponse model for vibrational relaxation.33,39 Within this
model, the normal modes of the molecule are linearly
coupled in Eq. �1� to a thermal bath of secondary modes.
Thereby, b�

† denotes the creation operator for a bath mode
with frequency 	� and U�� determines the system-bath cou-
pling strength. All properties of the bath that influence the
dynamics of the system are characterized by the spectral
density,41

J��	� = �
�

�U���2��	 − 	�� . �2�

In the applications considered below, we have used an
Ohmic spectral density,

J��	� = ��	e−	/	c�. �3�

Here, the characteristic frequency 	c� defines the maximum
of the spectral density and the overall coupling strength is
determined by ��. Both values may depend on the specific
system mode �.

To apply �self-consistent� perturbation theory within the
nonequilibrium Green’s functions approach considered be-
low, it is expedient to remove the direct coupling terms be-
tween electrons and vibrations in the Hamiltonian,
��Q��c†c−��. To this end, we apply a standard canonical
transformation, which is also referred to as the Lang–Firsov
�or small polaron� transformation,42,43

H̄ � eSHe−S

= �̄0c†c + �
k�L,R

�kck
†ck + �

k�L,R
�VkXck

†c + Vk
�X†c†ck�

+ A†WaA + B†WbB + Qa
†UQb, �4�

with X=exp�iPa
†Wa

−1�� and S=−iPa
†Wa

−1��c†c−��. For no-
tational convenience, we introduce the vectors �Qa��=Q�,
�Pa��=−i�a�−a�

†�, �A��=a�, and ����=��, the matrices
�Wa����=������ and �U���=U��, as well as the respective

quantities for the bath modes. It is noted that, in the presence
of a bath, the steps leading to Eq. �4� require that the eigen-
values of the matrix �4UWb

−1U†Wa
−1� are smaller than

unity,33 corresponding to a weak system-bath coupling.
The electronic-vibrational coupling manifests itself in the

transformed Hamiltonian in Eq. �4� as a polaron shift of the
electronic energy,

�0 → �̄0 = ��0 − �†Wa
−1� , � = 0

�0 + �†Wa
−1� , � = 1,

	 �5�

and as the shift generator X that dresses the molecule-lead
couplings Vk.

B. Nonequilibrium Green’s function approach

To describe the transport properties for the model intro-
duced above, we employ a nonequilibrium Green’s function
method, which was proposed by Galperin et al.33 Here, we
generalize this method for applications to multiple vibra-
tional system modes and outline how this method can be
used to calculate vibrational properties.

The central quantity in the nonequilibrium Green’s func-
tion theory is the electronic Green’s function on the molecu-
lar bridge,

G�,�� = − i
Tcc��c†����H,

=− i
Tcc��c†���X��X†����H̄, �6�

where Tc denotes the time-ordering operator along the

Keldysh contour44 and the subscripts H / H̄ indicate the
Hamiltonian that is used in the calculation of the respective
expectation value. Most expectation values considered below

refer to H̄, for which the corresponding subscript is omitted
in the following.

Following Galperin et al.,33 the electronic Green’s func-
tion G� ,�� is factorized,

G�,�� � Gc�,��
TcX��X†���� �7�

into a correlation function of the shift generator,

TcX��X†����, and an electronic Green’s function, Gc� ,��,
with

Gc�,�� = − i
Tcc��c†����H̄. �8�

This factorization is valid in the limit of a weak molecule-
lead coupling corresponding to a relatively long residence
time of the electron on the molecular bridge. This is the
regime wherein vibrational effects are expected to be particu-
larly pronounced.38

Based on the Hamiltonian H̄ and employing the equation
of motion for the electronic Green’s function, the following
equation for Gc� ,�� is obtained:33,45

Gc�,�� = Gc
0�,�� + d1d2Gc

0�,1��c�1,2�Gc
0�2,�� ,

�9�

where Gc
0 denotes the electronic Green’s function for a van-

ishing electronic coupling �i.e., Vk=0�. The self-energy
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�c� ,��, introduced in Eq. �9�, comprises all interactions of
the electronic degrees of freedom on the molecule with those
in the leads and the vibrational modes and is given by

�c�,�� = �
k�L,R

�Vk�2gk�,��
TcX���X†��� ,

��c
0�,��
TcX���X†��� , �10�

with gk=−i
Tcck��ck
†����. The above expression holds to

second order in Vk, i.e., for a weak molecule-lead coupling.
To extend the validity to a moderate coupling, which is

particularly important in describing vibrational effects in
resonant electron transport, higher order terms are taken into
account. To this end, a self-consistent scheme is introduced
by replacing the last Gc

0 in the integral kernel of Eq. �9� by
Gc,

33,45

Gc�,�� = Gc
0�,�� + d1d2Gc

0�,1��c�1,2�Gc�2,�� .

�11�

It is noted that Eq. �11� gives the exact electronic Green’s
function for a vanishing electronic-vibrational coupling �i.e.,
��=0�.

Projection of Eq. �11� onto the real time axis, according to
analytical continuation rules,46 and Fourier transformation of
the resulting equations give a Dyson equation,

Gc
r�E� = Gc

0,r + Gc
0,r�E��c

r�E�Gc
r�E� , �12a�

and a Keldysh equation,

Gc
��E� = Gc

r�E��c
��E�Gc

a�E� , �12b�

where we have introduced the retarded �Gc
r�, advanced �Gc

a�,
and lesser �Gc

�� Green’s functions and the corresponding
self-energies. It should be emphasized that the derivation of
the compact form of these equations requires time-
translational invariance and the existence of a steady-state
transport regime.

So far, we have only considered the electronic part of the
Green’s function G� ,��. The solution of the equations also
requires the calculation of the shift generator correlation
function 
TcX��X†����. Using a cumulant expansion up to
second order in the vibronic coupling parameters, �� /��

yields33,42


TcX��X†���� = exp�i�†Wa
−1�D�,�� − D�,��Wa

−1�� ,

�13�

where D� ,��=−i
TcPa��Pa
†���� denotes the correlation

matrix of the momentum vector Pa, in the following referred
to as the vibrational Green’s function. In the limit Vk→0, Eq.
�13� constitutes an analytically exact expression. By again
employing an equation of motion approach, one can derive
the Dyson and the Keldysh equations for the vibrational
Green’s function D� ,��. The resulting self-energy term
�el� ,�� describes interactions between electrons and vibra-
tions. This self-energy was obtained by Galperin et al.33 for a
single-vibrational mode. Employing the same level of ap-
proximations, we obtain for multiple vibrational modes:

�el�,�� = − iWa
−1��†Wa

−1��c�,��Gc��,�

+ �c��,�Gc�,��� �14�

and

Dr�E� = D0,r + D0,r�E��el
r �E�Dr�E� , �15a�

D��E� = Dr�E��el
��E�Da�E� . �15b�

The off-diagonal elements of the self-energy matrix �el
describe interactions between different vibrational modes
mediated by the electronic degrees of freedom. The matrix
D0 describes momentum correlations of the vibrations in
thermal equilibrium and plays the same role for the vibra-
tional Green’s function D as Gc

0 for the electronic Green’s
function Gc. In the presence of a thermal bath, the matrix D0

need not be of diagonal form, especially if the bath degrees
of freedom couple the various vibrational modes with each
other. Formally, the above equations for multiple vibrational
modes differ from the corresponding equations for a single-
vibrational mode33 only by the matrix structure of the vibra-
tional parts. The derivation of the equations is, however, sig-
nificantly more involved in the former case. Furthermore, it
is noted that the formal structure of the equations is changed
for multiple electronic states. This case will be considered in
a future work.

The equations for the electronic and vibrational Green’s
functions outlined above have to be self-consistently solved.
We employ the following self-consistent scheme:33 As a
starting point, we use the free electronic and vibrational
Green’s functions. The free vibrational Green’s function D0

enters the shift generator correlation function according to
Eq. �13�. Next, the shift generator correlation function is
convoluted with the bare self-energy �c

0, which gives the
dressed self-energy �c according to Eq. �10�. The dressed
self-energy �c, which now contains interactions of the elec-
tronic degrees of freedom on the molecule with both the
leads and the vibrations, is inserted into the electronic
Green’s function Gc �Eqs. �12a� and �12b�� and into the self-
energy term �el of the vibrational Green’s function �Eq.
�14��. The new Green’s function D is obtained from the
Dyson and Keldysh equations �Eqs. �15a� and �15b�� and
enters the shift generator correlation function. Thus, the self-
consistent cycle closes, and all steps can be repeated with the
updated shift generator correlation function. Convergence is
reached as soon as the variation in the electronic occupation
number, nc=Im�Gc

��t=0��, between subsequent iteration
steps falls below a threshold of 10−7. This way, we obtain
self-consistent solutions of Eqs. �12a�, �12b�, �15a�, and
�15b�.

C. Observables of interest

Several observables can be considered to study the effects
of vibrational motion on charge transport through single-
molecule junctions. Here, we will focus on the current-
voltage characteristic, the differential conductance, and the
vibrational nonequilibrium distribution.

Based on the self-consistent result for the Green’s func-
tion, the current through lead K �K� �L ,R�� induced by
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an external dc bias � is obtained by employing the
formula,45,47,48

IK =
2e

�
 dE

2�
��c,K

0,��E�G��E� − �c,K
0,��E�G��E�� ,

�16a�

=
2e

�
 dE

2�
��c,K

� �E�Gc
��E� − �c,K

� �E�Gc
��E�� , �16b�

with

�c,K�,�� = �
k�K

�Vk�2gk�,��
TcX���X†���

��c,K
0 �,��
TcX���X†��� . �17�

Thereby, the factor of two accounts for spin degeneracy. The
differential conductance is given by g=dI /d�.

It is noted that the scheme outlined above conserves the
number of electrons and thus obeys Kirchhoff’s law, IL=
−IR. Furthermore, as there is no direct electron-vibrational

coupling term in the transformed Hamiltonian H̄, the sym-
metrized current, I=1 /2�IL− IR�, can be straightforwardly ex-
pressed in terms of a transmission function T�E�,

I =
2e

�
 dE

2�
�fL�E� − fR�E��T�E� , �18�

with

T�E� =
�L�E��R�E�

�L�E� + �R�E�
i�Gc

r�E� − Gc
a�E�� . �19�

Here, we have introduced the nonequilibrium distribution
function:

fK�E� =
Im��c,K

� �E��
�K�E�

, �20�

and the width function:

�K�E� = − 2 Im��c,K
r �E�� . �21�

We emphasize that Eqs. �18� and �19� are derived without
assuming the proportionality relation �L�E���R�E�. In fact,
for the models discussed below, this relation is not fulfilled.
As a result of the small polaron transformation, the self-
energy �c,K describes not only the electronic structure of the
leads and their interaction with the bridging molecule but
also the nonequilibrium dynamics of the molecular vibra-
tions �cf. Eq. �17��. Thus, the distribution function fK en-
codes information on the population of the electronic states
in the leads, which remain in thermal equilibrium, and the
vibrational population on the molecule that is driven out of
equilibrium.

Another interesting observable to investigate vibrationally
coupled electron transport in molecular junctions is the non-
equilibrium vibrational distribution. Due to current-induced
excitation and deexcitation of the vibrational modes, the vi-
brational distribution in the stationary state may significantly
differ from its equilibrium distribution. To study such vibra-

tional nonequilibrium effects, in this work, we consider the
average occupation number of different vibrational modes,

n� = 
a�
†a��H. �22�

Within the self-consistent Green’s function approach em-
ployed here, n� is given �up to second order in the system-
bath interaction U��� by the expression:

n� = − �A� +
1

2
�Im��D�t = 0����� − �B� +

1

2
�

+
��

2

��
2�nc, � = 0

1 − nc, � = 1,
	 �23�

with

A� = �
�

U��
2 	�

���	�
2 − ��

2�
, �24a�

B� = �
�

U��
2

�	�
2 − ��

2�
�1 + 2NB�	��� . �24b�

Thereby, nc= 
c†c�H denotes the stationary population of the
molecular electronic state. The derivation of Eq. �23� is out-
lined in the Appendix.

III. RESULTS AND DISCUSSION

The methodology outlined above is applied to two differ-
ent systems: A generic model for a molecular junction in-
cluding two vibrational modes and charge transport through
benzenedibutanethiolate coupled to gold electrodes. In the
latter system, the four most strongly coupled vibrational
modes are taken into account.

A. Generic model system with two vibrational degrees of
freedom

First, we consider a generic model system with a single-
molecular orbital coupled to two vibrational degrees of free-
dom. The energy of the molecular state is chosen as �0
=1 eV and is located well above the Fermi energy of the
leads, �F=0 eV. Thus, in equilibrium, the molecular state is
unoccupied �corresponding to �=0�. The leads are modeled
by a one-dimensional tight-binding model with a nearest-
neighbor coupling constant of �=2 eV and a molecule-lead
coupling strength of �=0.1 eV. This results in an unstruc-
tured semielliptic conduction band with the following
self-energies:39

�c,K
0,r �E� = 
K

0 �E� −
i

2
�K

0 �E� , �25a�

�c,K
0,��E� = ifK

0 �E��K
0 �E� , �25b�

�c,K
0,��E� = − i�1 − fK

0 �E���K
0 �E� , �25c�

where the corresponding level-width function reads as
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�K
0 �E� =

�2

�2 Im���E − �K�2 − 4�2� , �26�

and 
K
0 is the Hilbert transform of �K

0 . Furthermore, fK
0 de-

notes the Fermi distribution in the leads,

fK
0 �E� =

1

1 + exp�E−�K

kBT �
, �27�

�L�R� is the chemical potential in the leads, and � is the bias
voltage. We assume the bias voltage to symmetrically drop at
the right and the left contact, �L�R�=�F�� /2. For the results
presented below, we have used a temperature of kBT
=1 meV. This temperature is low enough to study vibra-
tional features undistorted by thermal fluctuations
�kBT��1�2��.

The parameters of the two vibrational modes of the model
are given in Table I. Each mode is coupled to an Ohmic bath,
as described by Eqs. �2� and �3�. Thereby, the characteristic
frequencies of the bath spectral densities are chosen to coin-
cide with the frequency of the respective system mode, i.e.,
	c�=��. A relatively weak system-bath coupling strength is
used, ��=0.001, corresponding to vibrational relaxation
times of about 1–5 ps. In principle, the thermal bath couples
the two vibrational modes with each other. This interaction is
neglected in the calculation presented below. Hence, the re-
tarded projection of the correlation matrix D0 has the follow-
ing diagonal form:

D���
0,r �	� = ����

2��

	2 − ��
2 − 2���bath,�

r �	�
, �28�

with

− 2 Im��bath,�
r �	�� = 2�J��	� . �29�

The approach presented above can be used to describe
two different regimes of electron transport: inelastic electron
tunneling in the off-resonant regime and inelastic resonant
electron transport. Figure 1 shows the conductance as a func-
tion of bias voltage in the inelastic electron tunneling regime,
��1 V. In this off-resonant transport regime, the
electronic-vibrational coupling manifests itself in steps of the
conductance at voltages �=�1 ,2�1 ,�2 , . . ., which corre-
spond to the opening of inelastic channels. These channels
are related to the excitation of vibrational quanta and will be
referred to as emission channels in the following. The rela-
tive step heights reflect the respective transition probabilities
determined by the corresponding Franck–Condon factors.
Absorptive channels, corresponding to deexcitation of vibra-
tional quanta, play only a minor role in this regime. This is
due to the low temperature and the small electric current,

which is insufficient to drive the vibrational system far from
equilibrium. The comparison of the results obtained with
�black line� and without �gray line� vibrational self-energy
�el shows that in the off-resonant regime, vibrational non-
equilibrium effects manifest themselves as a shift in the con-
ductance steps.

We next consider the resonant transport regime, which is
found for voltages ��1.5 V. Figure 2 shows the current
and the conductance in this regime based on three different
calculations: full vibronic calculations with �solid black
lines� and without �solid gray lines� vibrational nonequilib-
rium effects as well as results of a purely electronic calcula-
tion �i.e., ��=0, black dashed lines�. The purely electronic
calculation exhibits a single peak in the conductance at a bias
voltage of ��2�0 when the molecular level enters the con-
ductance window between the chemical potentials of the left
and the right lead ��L��0��R�. The subsequent decrease in
the current results from the finite width of the conduction
band.39

The coupling to the vibrational degrees of freedom mani-
fests itself as steps in the current and as peaks in the conduc-
tance. For the present model ��=0�, these resonance struc-
tures can be approximately associated with transitions
between the vibrational states of the neutral molecule and
those of the molecular anion. Thereby, transitions from the
vibrational states of the neutral molecule to those of the an-
ion dominate in the low-voltage regime, wherein the elec-
tronic state on the molecular bridge is essentially unoccupied
�cf. Fig. 3�. For higher voltages, the electronic population on
the molecular bridge is no longer negligible, and therefore,
transitions from the vibrational states in the molecular anion
to those in the neutral system also contribute to the current.
Because the vibrational frequencies are the same for both
electronic states in the present model, features related to
these transitions appear at the same voltages and cannot be
straightforwardly distinguished. The population of the elec-
tronic state is depicted in Fig. 3. The electronic population
increases with the bias voltage in a steplike fashion similar to
the current-voltage characteristic �cf. Fig. 2�a��. In contrast to
the current, which decreases for large voltages due to the

TABLE I. Vibrational parameters of the model system with two
vibrational modes.

Frequency Vibronic coupling System-bath coupling

�1=0.10 eV �1=0.06 eV �1=0.001

�2=0.25 eV �2=0.15 eV �2=0.001

0.1 0.2 0.3 0.4
bias voltage � �V�

2

4

6

8

10

co
nd

uc
ta

nc
e

g
�n

A
�V
�

�
1

2�
1

�
2

3�
1

�
1
�
�

2

4�
1

2�
1
�
�

2

vibronic � no �el

vibronic � full �el

FIG. 1. Conductance g for the model with two vibrational
modes in the inelastic electron tunneling regime. The solid gray line
refers to a calculation with vibrations in thermal equilibrium, �el

=0, while the solid black line presents results including nonequilib-
rium effects, �el�0. The thin dashed lines indicate the voltages
corresponding to the opening of vibrationally inelastic channels.
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finite band width, the population increases for larger voltages
and exceeds the wide-band limit, which is 0.5 for a symmet-
ric junction.

If vibrational nonequilibrium effects are neglected ��el
=0, solid gray line�, the molecule is �due to the low tempera-
ture� in its vibrational ground state. Correspondingly, the
transmitting electrons can only induce transitions starting
from the vibrational ground state. The lowest peak in the
conductance predominantly corresponds to the transition
from the vibrational ground state in the neutral molecule to

the vibrational ground state of the anion. Due to the polaron
shift �cf. Eq. �5��, which accounts for the difference between
the vertical �purely electronic� and adiabatic transition ener-
gies, this peak appears at a lower bias voltage ���2�̄0, with
�̄0=0.874 eV� than that of the peak in the purely electronic
calculation. According to the moderate coupling parameters,
�1�2� /�1�2�=0.6, this conductance peak has the largest inten-
sity. Several resonance structures appear at larger voltages.
These structures can be approximately associated with vibra-
tionally excited states in the molecular anion. The relative
peak heights qualitatively follow the respective Franck–
Condon factors. However, the intensities do not coincide
with the relative Franck–Condon factors because both elec-
tron and hole transport contribute to the current.

If vibrational nonequilibrium effects are included, �el
�0, additional peaks appear in the conductance. These are
due to the fact that the nonequilibrium stationary state of the
vibrational modes is no longer the ground state but involves
excited states. Thus, in addition to the transitions considered
above, wherein the electrons can only lose energy to the
vibrations, the electrons may induce transitions from vibra-
tionally higher excited states to lower vibrational states, cor-
responding to the absorption of vibrational energy by the
transmitting electrons. As a result, the current �solid black
lines� already increases before the shifted electronic state en-
ters the conductance window ��L ,�R�. The four conductance
peaks, which are seen in the inset of Fig. 2�b�, are predomi-
nantly caused by such absorptive processes. Some of the
structures involve both excitation and deexcitation of vibra-
tional modes. For example, the peak at ��1.45 V is asso-
ciated with emission of energy to mode �1� and absorption of
energy from mode �2�. Similar processes are found for higher
voltages. The position of features that exist only due to ab-
sorptive processes is highlighted by thin dashed lines. For
voltages ��1.75 V, the current including vibrational non-
equilibrium effects is found to be smaller than the current
neglecting such effects. This is in agreement with previous
model studies.49 The reduced current reflects the fact that
transitions between the neutral molecule and the anion are
suppressed for a vibrationally excited molecular bridge.

The findings discussed above are corroborated by Fig. 4,
which shows the nonequilibrium vibrational excitation n1�2�
in the stationary state. For voltages in the resonant regime
���1.5 V�, the results exhibit a pronounced vibrational ex-
citation, corresponding to a significant deviation in the non-
equilibrium vibrational distribution from the equilibrium dis-
tribution. Because the excitation of mode �1� requires less
energy than that of mode �2� and because of the equal cou-
pling parameters, �1�2� /�1�2�=0.6, n1 is systematically larger
than n2. The vibrational occupation numbers exhibit steplike
changes at the same bias voltages as the current.49 In contrast
to the current-voltage characteristic, however, at some steps,
the vibrational excitation decreases, corresponding to absorp-
tive processes.

Finally, we discuss the coupling of the two vibrational
modes mediated by the electronic degrees of freedom. Tech-
nically, this coupling is described by the off-diagonal ele-
ments of the self-energy �el, which depend both on the elec-
tronic molecule-lead coupling and on the electronic-
vibrational coupling. Because the coupling of the vibrational
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FIG. 2. Current �top� and conductance �bottom� for the model
with two vibrational modes in the resonant transport regime. The
dashed black lines refer to a purely electronic calculation. The solid
gray lines depict results with vibrations in thermal equilibrium,
�el=0, while the solid black lines present results including non-
equilibrium effects, �el�0.
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modes is mediated by the electronic degrees of freedom, it
would enter a perturbative description only in the second
order. As a result, for the relatively small molecule-lead cou-
pling considered here, large contributions are only expected
for quasidegenerate vibrational modes, �1��2. To study
this effect, Fig. 5 shows the nonequilibrium vibrational exci-
tation of the two modes and the resulting current for a fixed
voltage ��=3.5 V� as a function of the frequency of mode
�1�. Thereby, the electronic-vibrational coupling strength �1
is adjusted to keep the dimensionless coupling parameter at
the constant value of �1 /�1=0.6. All the other parameters of
the model remain unchanged. In addition to the results in-
cluding the full self-energy �el �solid lines�, results neglect-
ing the off-diagonal elements of �el are depicted �dashed
lines�. The results demonstrate that for vibrational modes
with significantly different frequencies, as considered above
in Figs. 2–4, the electronically mediated mode-mode cou-
pling has little effect, and thus, the off-diagonal elements of
�el could be neglected. For quasidegenerate modes with
similar frequencies, �1��2, on the other hand, neglecting
the off-diagonal elements of �el would result in qualitatively
incorrect results. In particular, the results including the full
self-energy matrix predict a resonant behavior of the vibra-
tional excitation for quasidegenerate modes, which is missed
if the off-diagonal elements of the self-energy �el are ne-
glected.

It is noted that if the modes are exactly degenerate, �1
=�2=�, and have the same vibronic coupling, �1=�2=�,
the system can be equivalently represented by a single-
vibrational mode with energy � and coupling parameter �2�
�or �N� for N degenerate modes�. By calculating the excita-
tion number nsingle for this single mode system, we obtain
nsingle�n1+n2=2n1�2�. The agreement of nsingle with 2n1�2�
corroborates the approximations employed in the derivation
of Eq. �23�.

Similar to the vibrational population, the current shows a
resonance at degenerate vibrational frequencies. Thereby, the
current calculated with the full self-energy matrix �el de-
creases by �0.1�A. This effect cannot be described if the
nondiagonal elements of �el are neglected. Referring again
to a single-vibrational mode at the �1��2 point, this de-

crease in the current can be understood by the increased cou-
pling �2� that results in a broader Franck–Condon structure
and, hence, in a suppression of the current.

B. Benzenedibutanethiolate

As a second application, we consider electron transport
through p-benzene-di�butanethiolate� �BDBT� bound to gold
electrodes. This system is chosen because the butyl spacer
group acts as an insulator between the electronic � system of
benzene and the gold electrodes. Compared to
benzenedithiolate,50 the residence time of the electron on the
molecular bridge is thus significantly longer, which results in
pronounced vibrational effects. In a recent work, we have
developed a first-principles model to describe vibrationally
coupled electron transport through BDBT and studied the
conductance properties by employing inelastic scattering
theory.38 Here, we apply the nonequilibrium Green’s function
approach outlined above to investigate charge transport
through BDBT.

The details of the model are described in Ref. 38. Briefly,
electron transport through BDBT is dominated by two elec-
tronic states localized at the molecular bridge �denoted as A
and B in the following�. The energies of these two states are
located at �A=−1.38 eV and �B=−1.77 eV with respect to
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FIG. 4. Nonequilibrium vibrational excitation for the model
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�2=0.25 eV.
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FIG. 5. Vibrational occupation numbers n1�2� �top� and current
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two vibrational modes. The bias voltage is set to 3.5 V. The gray
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the Fermi energy of the junction. As a result, the states are
occupied in equilibrium, corresponding to �=1. The model
includes the four most strongly coupled vibrational modes.
The parameters of these modes are given in Table II. Vibra-
tional relaxation is described in the same manner as for the
model system considered above. It has to be mentioned that
all the parameters of the model are determined at zero bias
voltage and are not changed in the self-consistent calculation
scheme �cf. Sec. II B�.

Strictly speaking, the nonequilibrium approach outlined
above can only be applied to a single electronic state on the
molecular bridge. The extension of the approach to allow the
description of multiple electronic states will be the subject of
a future work. In the system considered here, the electronic
states are separated well from each other �with respect to the
corresponding level broadening �K�, and furthermore, at
least three vibrational quanta are required to bridge the elec-
tronic energy gap, �̄A− �̄B�0.37 eV. Therefore, we neglect
coherences between the two electronic states and calculate
the overall current as the sum of the currents separately ob-
tained for the two states. This approximate treatment is sup-
ported by purely electronic as well as inelastic scattering
theory calculations that simultaneously include both elec-
tronic states.38

We start our discussion with the conductance in the in-
elastic tunneling regime, which is shown in Fig. 6. The re-
sults exhibit distinct steps at the onset of the inelastic chan-
nels corresponding to the excitation of a single-vibrational
quantum, �=�a ,�b , . . .. For larger voltages, structures re-
lated to double excitation processes can be seen. These are
highlighted with thin dashed lines. The comparison of the

results with and without self-energy �el shows that the
renormalization of the vibrational energies, originating from
interactions with the electronic degrees of freedom, is negli-
gible.

Next, we consider charge transport through BDBT in the
resonant regime. Figure 7 depicts results of calculations with
and without vibrational nonequilibrium effects. In addition,
results of purely electronic calculations ���=0� are shown.
The purely electronic result �dashed line� shows two pro-
nounced steps at voltages where the two electronic states
enter the conductance window, respectively. All the other
smaller structures are due to the energy dependence of the
electronic self-energy.38

The inclusion of the electronic-vibrational coupling re-
sults in a shift of the two major steps from �=2.76 V to
�=2.54 V and from �=3.54 V to �=3.29 V. This shift
corresponds to the nuclear reorganization energy in the two
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FIG. 6. Conductance of a benzenedibutanethiolate molecular
junction in the inelastic tunneling regime. The solid gray line refers
to a calculation with vibrations in thermal equilibrium, �el=0,
while the solid black line presents results including nonequilibrium
effects, �el�0.
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FIG. 7. Current and conductance of the benzenedibutanethiolate
molecular junction in the resonant transport regime. The dashed
black lines represent results of a purely electronic calculation ���

=0�. The solid gray lines refer to a calculation with vibrations in
thermal equilibrium, �el=0, while the solid black lines present re-
sults including nonequilibrium effects, �el�0.

TABLE II. Vibrational parameters for the benzenedibutanethiolate molecular junction.

Frequency Vibronic coupling in state A Vibronic coupling in state B System-bath coupling

�a=0.070 eV �a
�A�=0.021 eV �a

�B�=0.049 eV �a=0.001

�b=0.149 eV �b
�A�=0.052 eV �b

�B�=0.037 eV �b=0.001

�c=0.153 eV �c
�A�=0.039 eV �c

�B�=0.080 eV �c=0.001

�d=0.208 eV �d
�A�=0.120 eV �d

�B�=0.093 eV �d=0.001
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electronic states. Furthermore, a number of additional struc-
tures appear. For the model considered here, which is domi-
nated by hole transport through occupied states ��=1�, these
structures can be associated with transitions from vibrational
states in the neutral molecule to those in the molecular cat-
ion. The first four peaks after the onset of the current can be
associated with transitions corresponding to state A involving
excitation of a single-vibrational quantum �i.e., “emission”
processes�. For higher voltages, a number of structures can
be seen, which are related to vibronic transitions in state B.
Thereby, excitation of single-vibrational quanta is the domi-
nant process and gives rise to the fundamental peaks at volt-
ages �=3.43, 3.59, 3.60, and 3.71 V. Each of these peaks is
accompanied by another peak that results from the excitation
of an additional quantum of mode �a� at �=3.57, 3.73, 3.74,
and 3.85 V. This result demonstrates the strong coupling of
mode �a� to state B �cf. Table II�. Absorptive channels, which
are related to a transition from higher excited vibrational
states to lower vibrational states, only play a minor role.
Three smaller peaks can be assigned to such processes: The
first one coincides with the double emission peak at �
=3.57 V and corresponds to emission of a vibrational quan-
tum with energy �d and absorption of a quantum with en-
ergy �a, i.e., 
E=�d−�a. The second peak at �=3.46 V
involves emission of a vibrational quantum with energy �c
and absorption of a quantum with energy �a, i.e., 
E=�c
−�a. Finally, the small feature at �=3.87 V corresponds to
a transition with 
E=�d+�c−�a.

The electronically mediated mode-mode coupling de-
scribed by the off-diagonal elements of the self-energy ma-
trix �el has negligible influence on the results �data not
shown�. In view of the very similar frequencies of modes �b�
and �c�, this finding is at first glance surprising. The differ-
ence in their frequencies, �c−�b, is, however, large com-
pared to the electronic level broadening �K, thus effectively
reducing the mode-mode coupling.

In a recent study, we have investigated the vibrational
effects in charge transport through BDBT by employing in-

elastic scattering theory.38 Scattering theory has the advan-
tage that the transmission process of a single electron is nu-
merically exactly described. The calculation of the current,
however, involves the assumption that the vibrational de-
grees of freedom of the molecular bridge relax to their equi-
librium distribution between two consecutive electron trans-
mission processes. Furthermore, the scattering theory
approach cannot straightforwardly account for the nonsta-
tionary electronic occupation of the molecular states and,
therefore, fails if the molecular levels, which determine the
transport, are located close to the Fermi energy.38,39 Figure 8
shows a comparison of the results obtained for the current
through BDBT by employing scattering theory and the non-
equilibrium Green’s function approach. In addition, the re-
sults of a purely electronic calculation are shown, where both
methods give identical results. To allow a direct comparison,
the results are obtained by including only one electronic state
on the molecule �state B� and without coupling to the vibra-
tional bath ���=0�. Overall, the results show rather good
agreement between the two methods. This is due to the fact
that the molecule-lead coupling is rather weak and the en-
ergy of state B is located well below the Fermi energy. The
major differences are the earlier onset of the current and the
smaller current for larger voltages in the Green’s function
calculation, as well as different heights of the step structures.
The earlier onset of the current as well as the different step
heights are caused by absorptive vibrational transitions re-
lated to the nonequilibrium vibrational distribution and con-
tributions from electron transport. Such processes are not
accounted for in scattering theory, which assumes the vibra-
tional degrees of freedom to relax to their equilibrium distri-
bution between two consecutive electron transmission events
and �in this case� only considers hole transport. Because the
transmission probability is normalized to unity, both results
approach each other for larger biases ���3.7 V�. By in-
creasing the bias voltage even further, the results start to
deviate again. In this regime, current-induced vibrational ex-
citations cannot be neglected and lead to a substantial sup-
pression in the current in the Green’s function calculation.49

To conclude, we consider nonequilibrium vibrational ex-
citation induced by the current through the BDBT junction.
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FIG. 8. Comparison of different methods for the current through
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vibronic calculations by employing the nonequilibrium Green’s
function approach with the full self-energy matrix �el �solid line�
and inelastic scattering theory �dotted line� �Ref. 38�. The dashed
line depicts results of a purely electronic calculation, wherein both
methods give identical results. In contrast to Fig. 7, all calculations
include only one electronic state �state B�.

3.5 4. 4.5 5. 5.5
bias voltage � �V�

0

1

2

3

4

5

n Α

�a�

�c�

�d�
�b�

ΗΑ	10�3

FIG. 9. Nonequilibrium vibrational excitation in charge trans-
port through benzenedibutanethiolate. Shown is the average number
of vibrational quanta in the stationary state for modes �a�– �d�. The
calculation includes only transport through state B and is obtained
for a system-bath coupling strength of ��=10−3.

MULTIMODE VIBRATIONAL EFFECTS IN SINGLE-… PHYSICAL REVIEW B 77, 205314 �2008�

205314-9



Figure 9 shows the average vibrational excitation of the four
modes. It is seen that in the resonant transport regime, the
current results in significant deviations from the equilibrium
distribution. Overall, the amount of excitation of the four
modes follows the value of the dimensionless vibronic cou-
pling, �� /��. In particular, mode �a�, which has the stron-
gest vibronic coupling, acquires pronounced excitations in
the stationary state.

Current-induced excitation of vibrational modes competes
with the relaxation of vibrational energy due to system-bath
coupling and, thus, depends on the time scale of the vibra-
tional relaxation. The influence of the relaxation time is il-
lustrated in Fig. 10 for the strongest coupled mode�a�. The
results obtained for different values of the system-bath cou-
pling strength �� show the increase in the vibrational exci-
tation for longer vibrational relaxation times. In the limit of
negligible vibrational relaxation ���=0�, mode �a� is excited
to rather high quantum numbers �na�20�. The correspond-
ing energy is still smaller than the typical dissociation ener-
gies of a C-C or a C-H bond �Ediss�3 eV�. In this regime,
however, the harmonic approximation ceases to be valid and
anharmonicities should be taken into account.

IV. CONCLUSIONS

In this paper, we have studied the effect of multimode
vibrational dynamics on charge transport through single-
molecule junctions. To this end, we have extended a non-
equilibrium Green’s function method, which was developed
by Galperin et al.,33 to treat multiple vibrational modes in
transport calculations. This method is based on polaron
transformation of the Hamiltonian and employs perturbation
theory within a self-consistent scheme to solve the equations
of motion for the nonequilibrium Green’s function. In addi-
tion to the simulation of electronic properties such as the
electronic current and the conductance, we have also out-
lined a scheme to calculate the average vibrational excitation
in the stationary state by using the nonequilibrium Green’s
function approach.

The methodology has been applied to two examples: a
generic model of a molecular junction with two active vibra-
tional modes as well as charge transport through benzened-
ibutanethiolate covalently bound to gold electrodes based on
a first-principles model. In both cases, the results show that
the electronic-vibrational coupling may have significant ef-
fects on the current through the molecular junction. The cou-
pling to the vibrational degrees of freedom manifests itself as
pronounced structures in the current-voltage characteristic
and the differential conductance. Moreover, the current-
induced excitation of vibrational modes may result in a sig-
nificant deviation of the nonequilibrium vibrational distribu-
tion from the equilibrium distribution. For modes with
similar frequency, mode-mode coupling mediated by the
electronic degrees of freedom is of importance. The results
show that in this case, the full self-energy matrix needs to be
taken into account in the calculation.

The study in this paper was based on a model that de-
scribes the vibrational degrees of freedom in the harmonic
approximation. This approximation is well suited for small
amplitude motions and low excitation energies. To investi-
gate the influence of higher vibrational excitations and the
possible dissociation of the molecular bridge, the approach
has to be extended to include anharmonic effects. This will
be the subject of a future work.
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APPENDIX: AVERAGE NUMBER OF VIBRATIONAL
EXCITATIONS

In this appendix, we outline the method used to calculate
the average vibrational excitation in the stationary state,

n� = 
a�
†a��H. �A1�

In contrast to the population of the electronic state nc, the
excitation number n� of mode � is not an invariant of the
Lang–Firsov transformation,

nc = 
c†c�H = 
c†XX†c�H̄ = 
c†c�H̄ = Im�Gc
��t = 0�� ,

�A2�
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FIG. 10. Nonequilibrium vibrational excitation in charge trans-
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n� = 
a�
†a��H = �
a�

†a��H̄ −
��

��


Q�c†c�H̄ +
��

2

��
2 nc, � = 0


a�
†a��H̄ −

��

��


Q�c†c�H̄ +
��

2

��
2 �1 − nc� +

��

��


Q��H̄, � = 1.� �A3�

As a result, we have to calculate four different expectation
values to obtain the average excitation number n�. Thereby,

the subscripts H / H̄ denote the Hamilton operator that is used
to compute the respective expectation values. In the follow-

ing, we only consider expectation values calculated with H̄,
for which the corresponding subscript is omitted from now
on.

The third term in Eq. �A3�, � ��
2 / ��

2 , which can be inter-
preted as the contribution from the polaron formation, can be
directly extracted from the electronic Green’s function Gc. It
only contributes in the resonant transport regime, where nc
significantly deviates from its equilibrium value �.

The fourth term in Eq. �A3� for the �=1 case contains a
single displacement operator, Q�. For its determination, we
consider the following steady-state relations:

0 =
i � 
Pa�

�t
= − iWa
Qa� − 2iU
Qb� , �A4a�

0 =
i � 
Pb�

�t
= − iWb
Qb� − 2iU†
Qa� , �A4b�

which result in

�1 − 4Wa
−1UWb

−1U†�
Qa� = 0. �A5�

Because the eigenvalues of the matrix 4Wa
−1UWb

−1U† have to
be smaller than unity in order to perform the Lang–Firsov
transformation �cf. Sec. II�, the expectation value of Q� van-
ishes, 
Q��=0.

To treat the second term in Eq. �A3�, we consider the
similar steady-state relations:

0 =
i � 
Pac†c�

�t
= − iWa
Qac†c� − 2iU
Qbc†c�

− �
k�L,R

Vk
Pack
†cX� + �

k�L,R
Vk

�
Pac†ckX
†� , �A6a�

0 =
i � 
Pbc†c�

�t
= − iWb
Qbc†c� − 2iU†
Qac†c�

− �
k�L,R

Vk
Pbck
†cX� + �

k�L,R
Vk

�
Pbc†ckX
†� . �A6b�

Here, additional terms linear in the molecule-lead coupling
Vk appear. However, because all the expectation values are
taken at equal times, these terms cancel each other. This
finding is closely related to the existence of a steady-state
transport regime that preserves Kirchhoff’s law, IL=−IR.
Without the terms linear in Vk, we can follow the same line
of argument as for 
Q�� and obtain 
Q�c†c�=0.

Finally, to calculate 
a�
†a��, we exploit the momentum

correlation matrix D:


a�
†a�� =

1

4
�
Q�Q�� − Im��D�t = 0������ −

1

2
. �A7�

The expectation value 
Q�Q�� can be rewritten in terms of

P�P�� and 
Q�Q��. For that purpose, we use the following
steady-state relations:

0 =
i � 
Q�P��

�t
= i��
P�P�� − i��
Q�Q��

− 2i�
�

U��
Q�Q�� , �A8a�

0 =
i � 
Q�P��

�t
= i��
P�P�� − i	�
Q�Q��

− 2i�
��

U���
Q�Q��� , �A8b�

0 =
i � 
P�Q��

�t
= i	�
P�P�� − i��
Q�Q��

− 2i�
��

U���
Q��Q�� , �A8c�

where, based on the same argument as before, we have dis-
regarded terms linear in Vk. By using these relations, we
obtain to second order in the system-bath coupling �O�U��

2 ��:


Q�Q�� = 
P�P�� + �
�,��

4	�U��U���

����	�
2 − ��

2�

P�P���

− �
�

4U��
2

	�
2 − ��

2 
Q�Q�� ,

�
P�P���1 + �
�

4	�U��
2

���	�
2 − ��

2�� − �
�

4U��
2

	�
2 − ��

2 
Q�Q�� .

�A9�

Thereby, we disregard off-diagonal contributions 
P�P���,
which turn out to be negligible. This step is corroborated by
considering the special case of degenerate modes �cf. the
discussion at the end of Sec. III A�.

By inserting Eq. �A9� into Eq. �A7�, we obtain the final
expression for the excitation number,
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n� = − �A� +
1

2
�Im��D�t = 0����� − �B� +

1

2
�

+
��

2

��
2�nc � = 0

1 − nc, � = 1,
	 �A10�

where

A� = �
�

U��
2 	�

���	�
2 − ��

2�
, B� = �

�

U��
2

�	�
2 − ��

2�

Q�Q�� .

�A11�

The bath modes remain in thermal equilibrium, for which

Q�Q��=1+2NB�	��, where NB�	� is the Bose distribution
function.
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