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Effects of resonant acoustic phonon scattering on magnetoresistivity are examined in two-dimensional
electron systems at low temperatures by using a balance-equation magnetotransport scheme directly controlled
by the current. The experimentally observed resonances in linear resistivity are shown to result from the
conventional bulk phonon modes in a GaAs-based system without invoking leaky interface phonons. Due to
quick heating of electrons, phonon resonances can be dramatically enhanced by a finite bias current. When the
electron drift velocity increases to the speed of sound, additional and prominent phonon resonance peaks begin
to emerge. As a result, remarkable resistance oscillation and negative differential resistivity can appear in
nonlinear transport in a modest mobility sample at low temperatures, which is in agreement with recent
experiments.
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I. INTRODUCTION

Low temperature magnetoresistance oscillations related to
linear and nonlinear transport of electrons in high Landau
levels of high-mobility two-dimensional systems, induced by
microwave radiation1–9 or by direct current excitation,10–17

have attracted a great deal of attention in the past few years.
Despite the fact that detailed microscopic mechanisms are
still under debate, there is almost no objection to refer these
oscillatory magnetoresistances mainly to impurity or disor-
der scatterings, and the direct phonon contributions to resis-
tivity are believed to be negligible in these systems at such
low temperatures.

Recently, the magnetophonon resonance in semiconduc-
tors, previously known to result from electron coupling with
optic phonons and can be observed only at high temperatures
and high magnetic fields,18,19 has been demonstrated to occur
at temperatures as low as T�3 K and lower magnetic fields
in GaAs-based heterosystems.20–23 The resonant magnetore-
sistance was detected and referred to as electron scatterings
by two leaky interface phonon modes that have sound veloci-
ties vs�2.9 km /s and vs�4.4 km /s,20–22 or by a single
leaky interface phonon mode that has a velocity vs
=5.9 km /s.23 Very recently, Zhang et al.24 found that acous-
tic phonon-induced resistance resonances are dramatically
enhanced in the nonlinear dc response and a finite current
can strongly modify the phonon resonance behavior, trans-
forming resistance maxima into minima and back.24 These
phonon-related resistance oscillations remain poorly under-
stood, especially the exact resonant condition, relative con-
tributions of different modes, and how they are affected by
temperature and current.

In this paper, we present a systematic analysis on nonlin-
ear magnetotransport in GaAs-based semiconductors with a
microscopic balance-equation scheme directly controlled by
the current, which takes into account electron couplings with
impurity, bulk longitudinal and transverse acoustic phonons,
as well as polar optic phonons. Due to the quick rise of
electron temperature, the phonon resonances are dramatically
enhanced by a finite current. When electron drift velocity v

gets into the supersonic regime �v�vs, the speed of sound�,
additional magnetophonon resonance peaks emerge. As a re-
sult, a remarkable resistance oscillation and a negative dif-
ferential resistivity appear in the nonlinear magnetotransport
in a modest mobility sample at low temperatures.

II. BALANCE EQUATIONS FOR NONLINEAR
MAGNETOTRANSPORT

We consider a quasi-two-dimensional system consisting
of Ns electrons in a unit area of an x-y plane. These electrons,
subjected to a uniform magnetic field B= �0,0 ,B� along the z
direction and a uniform electric field E in the x-y plane, are
scattered by random impurities and by phonons in the lattice.
In terms of the center-of-mass momentum and coordinate
defined as P�� jp j� and R�Ns

−1� jr j, with p j� ��pjx , pjy� and
r j ��xj ,yj� being the momentum and coordinate of the jth
electron in the plane, and the relative electron momentum
and coordinate p j�� �p j� −P /Ns and r j��r j −R, the Hamil-
tonian H of this coupled electron-phonon system can be writ-
ten as the sum of a center-of-mass part Hcm, a relative elec-
tron part Her,

25–28

Hcm =
1

2Nsm
�P − NseA�R�	2 − NseE · R , �1�

Her = �
j

 1

2m
�p j�� − eA�r j��	

2 +
pjz

2

2mz
+ V�zj��

+ �
i�j

Vc�ri� − r j�,zi,zj� , �2�

and a phonon part Hph=�q��q�bq�
† bq�, together with

electron-impurity and electron-phonon interactions as fol-
lows:

Hei = �
q�,a

u�q�,za�e−iq�·raeiq�·R�q�
, �3�
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Hep = �
q,�

M�q,��I�qz��bq� + b−q�
† �eiq�·R�q�

. �4�

Here, A�r�, the in-plane component of the vector potential of
the uniform magnetic field, is linear in the spatial coordinate
r= �x ,y�; m and mz are, respectively, the electron effective
mass parallel and perpendicular to the plane; V�z� and
Vc�ri�−r j� ,zi ,zj� stand for the confined and Coulomb poten-

tials, respectively; �q�
=� je

iq�·rj�� is the density operator of the
two-dimensional �2D� relative electrons; u�q� ,za� is the ef-
fective potential of the ath impurity located at �ra ,za� in the
2D Fourier space; bq�

† �bq�� is the creation �annihilation� op-
erator of the bulk phonon with wave vector q= �q� ,qz�
= �qx ,qy ,qz� in branch � that has an energy �q�; M�q ,�� is
the matrix element of the electron-phonon interaction in the
three-dimensional �3D� plane-wave representation; and I�qz�
is a form factor of the quasi-2D electron.27 Here, for simplic-
ity, we have assumed that the quasi-2D electrons occupy
only the lowest subband and, thus, the subband summation
indices in Eqs. �3� and �4� are neglected.27

The separation of the electron Hamiltonian into a center-
of-mass part and a relative electron part amounts to looking
at electrons in a reference frame moving with their center of
mass. The most important feature of this separation is that a
spatially uniform electric field shows up only in Hcm, and
that Her is the Hamiltonian of a many particle system subject
to a perpendicular magnetic field without the electric field.
This enables us to deal with relative electrons in the mag-
netic field without tilting the Landau levels. The coupling
between the center of mass and relative electrons is shown
by the factor eiq�·R inside the momentum summation in Hei
and Hep. The moving center-of-mass assisted transitions of
relative electrons between different Landau levels provide
the major mechanism for the current-driven magnetotrans-
port.

Our treatment starts with the Heisenberg operator equa-
tions for the rate of change in the center-of-mass velocity
V=−i�R ,H	 and that for the relative electron energy Her as
follows:

V̇ = − i�V,H	 , �5�

Ḣer = − i�Her,H	 . �6�

When the electron-impurity and electron-phonon couplings
are weak in comparison with the internal thermalization of
relative electrons and that of phonons, it is good enough to
carry out the statistical average of the above operator equa-
tions to leading orders in Hei and Hep. For this purpose, we
only need to know the distribution of relative electrons and
phonons without being perturbed by Hei or Hep. The distri-
bution function of the relative electron system described by
Hamiltonian �2� without an electric field should be an isotro-
pic Fermi-type function with a single temperature Te. The
phonon system, which is assumed to be in an equilibrium
state, has a Bose distribution with lattice temperature T. Such
a statistical average of the above operator equations yields
the following force and energy balance equations in the
steady state, which has a constant average drift velocity v:

NseE + Nse�v � B� + f�v� = 0, �7�

v · f�v� + w�v� = 0. �8�

Here, f�v�= fi�v�+ fp�v� is the frictional force experienced by
the electron center of mass due to impurity and phonon scat-
terings, given by

fi�v� = �
q�

q��U�q���2�2�q�,	0� , �9�

fp�v� = 2�
q,�

q��M�q,���2�I�qz��2�2�q�,�q� + 	0�

� 
n��q�

T
� − n��q� + 	0

Te
�� , �10�

and w�v� is the electron energy-loss rate to the lattice due to
electron-phonon interactions with an expression obtained
from the right-hand side of Eq. �10� by replacing the q� factor
with �q�. In these equations, 	0�q� ·v, �U�q���2 is the
effective average impurity scattering potential, and
�M�q ,���2�I�qz��2 is the effective coupling matrix element be-
tween a �-branch 3D phonon and a quasi-2D electron,
�2�q� ,�� is the imaginary part of the 2D electron density
correlation function at electron temperature Te in the pres-
ence of the magnetic field, and n�x��1 / �ex−1� is the Bose
function. The effect of interparticle Coulomb interaction is
included in the density correlation function to the degree of
electron level broadening and screening. With the screening
statically considered in the effective impurity and phonon
potentials, the remaining �2�q� ,�� function in Eqs. �9� and
�10� is that of a noninteracting 2D electron gas in the mag-
netic field, which can be written in the Landau representation
as25

�2�q�,�� =
1

2
lB
2 �

n,n�

Cn,n��lB
2 q�

2/2��2�n,n�,�� , �11�

�2�n,n�,�� = −
2



� d��f��� − f�� + ��	

� Im Gn�� + ��Im Gn���� , �12�

where lB=�1 / �eB� is the magnetic length, Cn,n+l�Y��n ! ��n
+ l�!	−1Yle−Y�Ln

l �Y�	2 with Ln
l �Y� the associate Laguerre poly-

nomial, f���= �exp���−�� /Te	+1�−1 is the Fermi function at
electron temperature Te, and Im Gn��� is the density of states
of the broadened Landau level n.

We model the electron density-of-states function with a
Gaussian-type form for both overlapped and separated Lan-
dau levels ��n=n	c is the center of the nth Landau level;
	c=eB /m is the cyclotron frequency�29 as follows:

Im Gn��� = − �2
�1/2
−1 exp�− 2�� − �n�2/
2	 . �13�

The half-width 
, or the lifetime or the quantum scattering
time, �s=1 /2
, of the Landau level, which should be deter-
mined by electron-impurity, electron-phonon, and electron-
electron scatterings in the system, is magnetic-field B and
temperature T dependent. We treat it as a semiempirical pa-
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rameter, which will serve as the only adjustable parameter in
the present investigation.

At lattice temperature T, the energy balance �Eq. �8�	
yields the electron temperature Te for a given carrier drift
velocity v at a given magnetic field. Then, with this Te, the
force balance �Eq. �7�	 determines the relation between v, B,
and E, i.e., the longitudinal and transverse resistivities in the
magnetotransport.

Such a formulation indicates that the carrier drift velocity
v is the basic physical quantity that controls the nonlinear
magnetotransport. The frictional force f�v� and energy dissi-
pation rate w�v� solely depend on the drift velocity v at a
given magnetic field B, while the electric field only plays a
role in balancing the frictional force. Thus, the resistivity is
directly determined by the scattering mechanisms and by the
drift velocity or the current density, rather than by the elec-
tric field. Equations �7� and �8� are conveniently applied to
current-driven magnetotransport of any configuration, in
which the current is an experimentally directly controlled
quantity. For an isotropic system where the frictional force is
in the opposite direction of the drift velocity v and the mag-
nitudes of both the frictional force and the energy-loss rate
depend only on v��v�, we can write f�v�= f�v�v /v and
w�v�=w�v�. In the Hall configuration with velocity v in the x
direction �v= �v ,0 ,0�	 or the current density Jx=J=Nsev and
Jy =0, Eq. �7� gives, after Te �thus, the f�v� function	 deter-
mined from Eq. �8�, vf�v�+w�v�=0, the transverse resistivity
Ryx=B /Nse, and the longitudinal resistivity Rxx and the lon-
gitudinal differential resistivity rxx as

Rxx = − f�v�/�Ns
2e2v� , �14�

rxx = − �� f�v�/�v�/�Ns
2e2� . �15�

Note that, in principle, since the Landau-level broadening
and electron temperature are determined by the simultaneous
existence of all of the scattering mechanisms, contributions
to the total resistivity from different scattering mechanisms
are not independent. Nevertheless, it is still useful to for-
mally write the total resistivity as a direct sum of separate
scattering contributions by the respective components of the
frictional force f�v�.

III. MAGNETOPHONON RESONANCE IN LINEAR
MAGNETORESISTANCE

In the numerical analysis, we first concentrate on a GaAs-
based heterosystem with carrier sheet density Ns=4.8
�1015 m−2 and zero-temperature linear mobility �0
=440 m2 /V s in the absence of a magnetic field, considering
electron scatterings from bulk longitudinal acoustic �LA�
phonons �one branch, via the deformation potential and pi-
ezoelectric couplings with electrons� and transverse acoustic
�TA� phonons �two branches, via the piezoelectric coupling
with electrons�, as well as from remote and background im-
purities. The coupling matrix elements are taken to be well
known expressions27 with typical material parameters in bulk
GaAs: electron effective mass m=0.067me �me is the free
electron mass�, longitudinal sound velocity vsl=5.29
�103 m /s, transverse sound velocity vst=2.48�103 m /s,

acoustic deformation potential �=8.5 eV, piezoelectric con-
stant e14=1.41�109 V /m, dielectric constant �=12.9, and
material mass density d=5.31 g /cm3. We take a magnetic-
field-dependent �B1/2� Landau-level half-width as follows:


 = �8�e	c/
m�0�T�	1/2, �16�

which is expressed in terms of �0�T�, the total linear mobil-
ity at lattice temperature T in the absence of the magnetic
field, and a broadening parameter � to take into account the
difference in the transport scattering time from the
broadening-related quantum lifetime.2,4 A broadening param-
eter �=1.5 is used in the calculation in Secs. III and IV,
which corresponds to taking Landau-level half-widths of 

=1.8 and 2.4 K, respectively, at lattice temperatures of T
=5 and 10 K for magnetic field B=0.5 T.

The calculated total linear �v→0� magnetoresistivity �dif-
ferential resistivity� Rxx=rxx is shown versus 1 /B at lattice
temperatures T=5 K and T=10 K in Figs. 1�a� and 1�b�,
together with separated contributions ri from impurities, rpl
from LA phonons, and rpt from TA phonons: rxx=ri+rpl+rpt.
The resistivity resonances clearly appear in rpl and rpt at both
temperatures. This feature of magnetoresistivity stems from
the property of 2D electron density correlation function
�2�q� ,�q��. In the case of low temperature �Te much less
than the Fermi energy �F� and large Landau-level filling fac-
tor ��=�F /	c�1�, �2�q� ,�� is a periodic function with re-
spect to its frequency variable: �2�q� ,�+ l	c�=�2�q� ,�� for
any integer l of �l���. On the other hand, under the same
conditions �low temperature Te��F and large filling factor
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FIG. 1. �Color online� Linear �v=0� resistivities �rxx, ri, rpl, and
rpt� at �a� T=5 K and �b� T=10 K for a GaAs-based heterosystem
with carrier sheet density Ns=4.8�1015 m−2 and zero-temperature
linear mobility �0=440 m2 /V s. The longitudinal and transverse
sound velocities are taken to be vsl=5.29�103 m /s and vst=2.48
�103 m /s, respectively.
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��1�, the major contributions to the summation in Eq. �11�
come from terms n�n���, and then the function Cn,n��x�
has a sharp principal maximum near x=4�.30,31 Therefore, as
a function of the in-plane momentum q�, �2�q� ,�� sharply
peaks at around q� �2kF. In view of the existence of the form
factor �I�qz��2, which is related to the wave function of the
quasi-2D electron, only very small qz ��kF� can contribute to
the integration in Eq. �10�, and thus, the contribution of the
wave vector integration to the phonon-induced frictional
force heavily weighs around q�2kF. As a result of this
phase-space weight distribution and the 3D phonon disper-
sion ��q�=vs�q��=l , t�	 when 	s��2kFvs�= l	c �l
=1,2 ,3 , . . .�, a quasi-2D relative electron in any Landau
level can be resonantly scattered by absorbing or emitting a
phonon and jumps across l Landau levels. The linear resis-
tivity maxima then show up at

�s� � 	s�/	c = l = 1,2,3, . . . . �17�

This is exactly what is seen in Figs. 1�a� and 1�b� as well as
in the lower part of Fig. 2�a�, where the rpl maxima located at
�sl=1 ,2 ,3 ,4 and rpt maxima at �st=1 ,2 are labeled. The
total resistivity rxx peaks at around �sl=1 ,2 ,3 ,4, which is
essentially determined by the resonant scattering of LA
phonons. These results are in good agreement with
experiments,23,24 which indicates that the observed low tem-
perature magnetophonon resonances in linear magnetoresis-

tance are well explained by the ordinary single bulk LA pho-
non mode in GaAs with no need to invoke leaky interface
modes.

IV. MAGNETOPHONON RESONANCE IN NONLINEAR
TRANSPORT

A finite current density J or a finite drift velocity v in the
x direction has two major effects. First, it results in electron
heating and thus raises the rate of phonon emission. As a
result, the phonon contributed resistivity and the oscillatory
amplitude of magnetophonon resonance is enhanced with in-
creasing bias current density. The electron temperature is de-
termined by the frictional force f�v� and the energy-
dissipation rate w�v� through the energy balance �Eq. �8�	.
Generally, longitudinal acoustic phonons give the dominant
contribution to w�v� in GaAs-based systems at lattice tem-
peratures considered in this paper �T�10 K�, and the polar
optic �LO� phonons are usually frozen. However, electron
scattering from LO phonons should still be taken into ac-
count when the bias current density becomes strong that
electron temperature Te rises up to the order of 20 K, at
which a weak emission of LO phonons can take place. These
emitted LO phonons, although giving little contribution to
the resistivity itself, provide an additional efficient energy-
dissipation channel to prevent the continuing rise in electron
temperature.32 Therefore, we take the LO-phonon scattering
�via the Fröhlich coupling electrons, with an optical dielec-
tric constant ��=10.5� into account in the numerical calcu-
lation in nonlinear transport. The calculated electron tem-
peratures Te in the case of T=10 K at different bias drift
velocities 2v /vF=0.001, 0.002, 0.003, 0.004, 0.005, and
0.006 �vF is the Fermi velocity of the 2D electron system�,
which correspond to current densities J=0.115, 0.231, 0.346,
0.462, 0.577, and 0.693 A/m, are shown in Fig. 2�b� versus
the magnetic field B for the GaAs heterosystem introduced
above.

We see that, in addition to the concordant rise in electron
temperature with increasing current density, at each bias drift
velocity, Te also exhibits resonance when changing magnetic
field. The oscillatory peak-valley structure of Te periodically
shows up, which has a period ��	sl /	c��1, indicating that
it is also a magnetophonon resonance mainly due to LA
phonons. This Te resonance stems from the periodicity of
f�v� and w�v� functions in the energy balance equation �8�.
Note that when the bias current density grows, the oscillatory
amplitude of Te generally increases, but the positions of Te
peaks �valleys� remain essentially the same on the B axis. By
comparing with the magnetophonon resonant linear resistiv-
ity rxx �shown in the lower part of Fig. 2�a�	, the oscillatory
structure of Te peaks �valleys� appears roughly 
 /2 phase
shift down along the B axis.

The differential resistivity rxx of the system at a given bias
drift velocity v is obtained from the �f�v� /�v function
through Eq. �15�, with the electron temperature Te deter-
mined above. Since the peak �valley� positions of Te are
essentially fixed in the B axis, the variation of the resistivity
maxima �minima� with changing bias velocity v is mainly
determined by its direct effect in the �f�v� /�v function, as
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FIG. 2. �Color online� �a� Differential resistivities rxx and �b�
electron temperature Te are shown as functions of the magnetic-
field strength B at lattice temperature T=10 K under different val-
ues of the bias drift velocity v /vF. Here, vF is the Fermi velocity of
the 2D electron system, and rxx curves of different 2v /vF values are
vertically offset for clarity.
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reflected in the frequency shift 	0�q� ·v in the argument of
the electron density correlation function. Physically, because
an extra energy q� ·v is provided by the moving center of
mass to the relative electrons during the scattering process,
the transition rate of an electron from Landau level n to n�
�n� can be equal to or not equal to n� experiences a change
due to impurity and phonon scatterings, which shows up
through the −q� ·v shift in, for instance, the �2�q� ,�q�

−q� ·v� function in −fp �i.e., the resistivity�. The effect of
such an energy shift in the impurity scattering case has been
shown to induce an oscillatory differential magnetoresistance
ri that is controlled by the following parameter:10,12,14

� j � 	 j/	c, 	 j � 2kFv = �8
/NsJ/e , �18�

which has peak positions at around � j �0,1 ,2 , . . .. In the
case of acoustic phonon scatterings, the resistivity maxima
are expected to occur near the possible integer values of
parameter �s�−� j, i.e.,

�s� − � j � l = 0, � 1, � 2, . . . , �19�

and this integer can be used as an identification for each
magnetophonon resonance peak of the differential resistivity
in nonlinear transport. When drift velocity v is smaller than
the sound speed vs� �� j ��s��, the resonance condition �19�
can be satisfied only for positive integers l=1,2 ,3 ,4 , . . .,
whence the effect of a small current J is roughly to change
the resistivity maxima from �s�� l in the linear case to

�s� � l + � j . �20�

This means that for a given index number l, the peak position
of magnetophonon resonance moves toward lower B with
increasing current density, and for a given J, the shifts of
peak positions in the �s� axis are larger for larger index l
�lower B field�. These features are clearly seen in Fig. 2�a�,
where we show the calculated differential resistivity rxx as a
function of the magnetic field at T=10 K under different
bias drift velocities from 2v /vF=0 to 0.006 in steps
of 0.0005, corresponding to current densities J
=0–0.693 A /m in steps of 0.058 A/m. We see that though
within certain v and B-field ranges, e.g., 2v /vF=0.003
�0.005 and B is around 6 T, the peak positions of the resis-
tivity may be somewhat influenced by the rapid change in
the electron temperature because of the enhanced phonon
contributions at higher Te; the main trend of the resistivity
peak shift with increasing J remains. The progress and
movement of respective peaks compare favorably with re-
cent experimental observation.24

When v becomes equal to or greater than the sound speed
vs�, the condition �19� can be satisfied by l=0 and negative
integers, which indicates the occurrence of additional mag-
netophonon resonance peaks under a strong dc excitation.
Figure 3 presents the calculated differential resistivity rxx and
electron temperature Te at the lattice temperature T=5 K as
functions of the current density in terms of � j �	 j /	c at
magnetic fields B=0.27, 0.35, 0.47, and 0.72 T. Due to
the rapid rise in electron temperature Te in this �0
=440 m2 /V s system, acoustic phonon contribution to resis-
tivity becomes significant when � j �0.1. The prominent os-
cillations show up in resistivities ri, rpl, rpt, and rxx, all ex-

hibiting a main oscillation period �� j �1. However, since
the peak positions of LA and TA phonon resistivities rpl and
rpt in the � j axis change with changing magnetic field, as
indicated by condition �19� �� j ��s�− l�, the oscillating be-
havior of total resistivity rxx is strongly B-field dependent.
For instance, in the case of B=0.35 T, the LA phonon reso-
nance peaks 1, 0, −1, and −2 are essentially in phase with the
TA phonon resonance peaks 0, –1, −2, and −3, and close to
the maxima of the impurity resistivity ri near � j =1,2 ,3 ,4,
which lead to an enhanced rxx with maxima around these
positions �Fig. 3�c�	. In the case of B=0.47 T, where the LA
resonance peaks 1, 0, −1, and −2 are around � j =0.5, 1.5, 2.5,
and 3.5, and the TA resonance peaks 0, −1, −2, and −3 are
around � j =0.7, 1.7, 2.7, and 3.7, the resulting rxx oscillation
is out of phase with that of ri oscillation and has secondary
extremes �Fig. 3�b�	. As a result, at fixed � j, e.g., � j =2, rxx
exhibits maxima for B=0.35 and 0.72 T, while minima for
B=0.27 and 0.47 T. Note that the resonant magnetophonon
resistivity at v=vs� �the l=0 peak� is generally the largest
among all of the resistivity maxima in each type of phonon
scattering, as can be seen from all four cases in Fig. 3. It
comes from phonon-induced intra-Landau-level scatterings
of electrons, which are allowed for all of the wave vectors,
with the energy provided by the center of mass that has ve-
locity v=vs�.

At fixed � j, phonon-induced resistivity is periodic in in-
verse B field with period ��s��1. The total resistivity rxx
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FIG. 3. �Color online� Differential resistivities �ri, rpl, rpt, and
rxx� and electron temperature Te are shown as functions of � j at
fixed magnetic fields B=0.27,0.35, 0.47, and 0.72 T, respectively, at
T=5 K. The number near the peak of rpl or rpt is the value of the
integer l in the resonance condition �19� of the corresponding dif-
ferential resistivity peak.
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roughly follows this rule, as shown in Fig. 4, where rxx is
plotted versus B for fixed � j =1 and 1.5. Both curves show
remarkable oscillations that have the same periodicity but in
and out of phase as that of the zero-bias �� j =0� case and with
much enhanced amplitudes. These features are just those ob-
served in the experiments.24

V. LOWER MOBILITY SYSTEMS

Magnetophonon resonance can show up in resistivity at
even lower lattice temperature as long as a finite current
density is applied. In a system with lower mobility, the pho-
non contributions to resistivity can be greatly enhanced by a
modest finite current due to the rapid rise in the electron
temperature.

As another example, Fig. 4 plots the total absolute resis-
tivity Rxx and total differential resistivity rxx and their respec-
tive contributions from impurity, LA phonons, and TA
phonons �Ri and ri, Rpl and rpl, and Rpt and rpt�, and the
electron temperature Te as functions of bias current density
in terms of � j at lattice temperature T=2 K and magnetic
field B=0.51 T for a GaAs-based heterosystem that has car-
rier sheet density Ns=8�1015 m−2 and zero-temperature lin-
ear mobility �0=80 m2 /V s in the absence of magnetic
field. The Landau-level half-width 
 is taken to be 1.3 K
�2
�0.25	c at this magnetic field�.

Note that the phonon-induced absolute resistivities Rpl
and Rpt can become negative in this case. Although the total
resistivity Rxx remains always positive, the growing negative
rpl and rpt with increasing current density at the initial stage
greatly accelerate the drop in the total differential resistivity
such that rxx goes down and become negative at � j �0.07,
which is much smaller than it would be without phonon con-
tribution �� j �0.14�, solely determined by the width of the
Landau level.14 As a result, the total differential resistivity is
negative within a wide current range 0.07�� j �0.42 before
it becomes positive with further increasing current density.
This may provide a possible explanation for the zero-
differential resistance state recently observed at quite small
dc bias in impure samples.33

As an important parameter in the present analysis, the
half-width 
 of the Landau level, or the single particle life-
time or �s=1 /2
 of the electron in the magnetic field, which
depends on all kinds of elastic and inelastic scatterings in-
duced by electron-impurity, electron-phonon, and electron-
electron interactions in the system, is temperature T depen-
dent. At fixed B field, 
 certainly increases with increasing
temperature due to enhanced electron-phonon and electron-
electron scatterings. With this in consideration, the sharp
drop in differential resistivity rxx at T=2 K rapidly disap-
pears when increasing temperature, as shown in the inset
of Fig. 5, which is calculated with enlarged 
 at T=4, 6, and
8 K.

VI. SUMMARY

In summary, we have examined magnetophonon reso-
nances in GaAs-based 2D systems at low temperatures.
Good agreement between theoretical prediction and experi-
mental observation is obtained by using the well-defined
bulk LA and TA phonon modes with no adjustable parameter.
We find that a finite dc excitation can not only greatly en-
hance the phonon resistivity by heating the electron gas, but
can also induce additional and prominent phonon resonance
peaks, which give rise to remarkable resistance oscillations
and negative differential resistivity in nonlinear transport.
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