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The longitudinal and transverse resistivities of differently strained �Ga,Mn�As layers are theoretically and
experimentally studied as a function of the magnetization orientation. The strain in the series of �Ga,Mn�As
layers is gradually varied from compressive to tensile using �In,Ga�As templates with different In concentra-
tions. Analytical expressions for the resistivities are derived from a series expansion of the resistivity tensor
with respect to the direction cosines of the magnetization. In order to quantitatively model the experimental
data, terms up to the fourth order have to be included. The expressions derived are generally valid for any
single-crystalline cubic and tetragonal ferromagnet and apply to arbitrary surface orientations and current
directions. The model phenomenologically incorporates the longitudinal and transverse anisotropic magnetore-
sistance as well as the anomalous Hall effect. The resistivity parameters obtained from a comparison between
experiment and theory are found to systematically vary with the strain in the layer.
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I. INTRODUCTION

The implementation of ferromagnetism in III-V semicon-
ductors by incorporating high concentrations of magnetic el-
ements into the group-III sublattice has opened the prospect
of extending conventional semiconductor technology to
magnetic applications.1–3 A prominent example, which is
presently intensely studied, is the diluted ferromagnetic
semiconductor �Ga,Mn�As. Even though the Curie tempera-
tures reported so far are well below room temperature, it
represents a potential candidate or at least an ideal test sys-
tem for spintronic applications due to its compatibility with
the standard semiconductor GaAs. During the past decade,
considerable progress has been made in understanding the
basic structural, electronic, and magnetic properties of
�Ga,Mn�As.3 Longitudinal anisotropic magnetoresistance4–8

�AMR� and transverse AMR, often called as planar Hall
effect,9 anomalous Hall effect �AHE�,10–12 and magnetic an-
isotropy �MA�,13,14 have been established as characteristic
features, making �Ga,Mn�As potentially suitable for field-
sensitive devices and nonvolatile memories.15–17 Great effort
has been made to understand the microscopic mechanisms
behind the observed magnetic phenomena and to obtain,
theoretically and experimentally, values for the correspond-
ing physical parameters. In particular, the storage and pro-
cessing of information by manipulating the magnetization as
well as the readout via electrical signals demand a precise
knowledge of the parameters controlling the MA and the
AMR. It has been shown that both the MA and the AMR are
affected by temperature, hole density, and strain.1,18–23 For
example, changing the strain from compressive to tensile, the
surface normal which usually represents a magnetic hard axis
in compressively strained �Ga,Mn�As layers turns into an
easy axis in tensily strained layers.1,19,24

As demonstrated in Ref. 25, angle-dependent magneto-
transport measurements, performed at different strengths of
an external magnetic field, are a genuine alternative to ferro-
magnetic resonance spectroscopy19,26 for probing the MA in
�Ga,Mn�As. The application of this method, however, re-

quires analytical expressions for the longitudinal and trans-
verse resistivities �long and �trans, respectively, correctly de-
scribing the AMR and the AHE. Based on symmetry
considerations, such expressions can be derived in a phe-
nomenological way by writing the resistivity tensor as a se-
ries expansion with respect to the direction cosines of the
magnetization. In Ref. 25, the angle-dependent magne-
totransport data of compressively strained �Ga,Mn�As layers,
grown on �001�- and �113�A-oriented GaAs substrates, could
be well simulated considering only terms up to the second
order.

In the present work, we systematically study the influence
of vertical strain on the AMR and the AHE, investigating a
series of compressive- to tensile-strained �Ga,Mn�As layers,
grown on �In,Ga�As templates with different In contents. An
advanced macroscopic model is presented that phenomeno-
logically describes the dependence of �long and �trans on the
magnetization orientation for cubic ferromagnets with tetrag-
onal distortion along �001�. The analytical expressions for
�long and �trans are first discussed for a variety of configura-
tions with in-plane and out-of-plane magnetizations and are
then used to analyze the angle-dependent resistivities re-
corded from the �Ga,Mn�As layers under study. In contrast to
Ref. 25, distinct features in the longitudinal out-of-plane
AMR occurred which can only be described by taking into
account terms up to the fourth order in the magnetization
components. Finally, the resistivity parameters, determined
by fitting the calculated curves to the experimental data, are
discussed as a function of the vertical strain in the layer. The
model presented in this work applies not only to �Ga,Mn�As
but also most generally to single-crystalline cubic and tetrag-
onal ferromagnets.

II. EXPERIMENTAL DETAILS

A series of differently strained �Ga,Mn�As layers with
constant thickness of �180 nm and Mn concentration of
�5% was grown by low-temperature molecular-beam epi-
taxy on �In,Ga�As templates in the following way: After ther-
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mal deoxidation, a 30 nm thick GaAs buffer layer was grown
at a substrate temperature of TS�580 °C on semi-insulating
GaAs�001�. Then, the growth was interrupted, TS was low-
ered to �430 °C, and a graded �In,Ga�As layer with a thick-
ness between 0 and 5 �m was deposited following the
method described in Ref. 27. In order to minimize the num-
ber of threading dislocations and to end up with different
lateral lattice constants in the �In,Ga�As templates, the In
content was continuously increased in each template from
2% up to a maximum value of 13%. Prior to the epitaxy of
�Ga,Mn�As, the growth was again interrupted and TS was
lowered to �250 °C. High-resolution x-ray diffraction re-
ciprocal space mapping �RSM� of the �224� reflex was used
to determine the vertical strain �zz= �a�−arel� /arel of the
�Ga,Mn�As layers, where the relaxed lattice constants arel
were derived from the lateral and vertical lattice constants a�

and a�, respectively, applying Hooke’s law. The values of �zz
were found to gradually vary from +0.24% for the com-
pressive-strained sample without �In,Ga�As template to
−0.46% for the tensile-strained sample with 13% In. More-
over, RSM showed that the �In,Ga�As layers were almost
completely relaxed whereas the �Ga,Mn�As layers were fully
strained. Further details of the growth procedure and the
RSM method will be presented elsewhere.

For the magnetotransport studies two types of Hall bars
with current directions along �100� and �110� were prepared
on several pieces of the cleaved samples. The width of the
Hall bars is 0.3 mm and the longitudinal voltage probes are
separated by 1 mm. High-field magnetotransport measure-
ments �up to 14.5 T� at 4.2 K yielded hole densities for the
as-grown samples between 3�1020 and 4�1020 cm−3.
Least-squares fits were performed to separate the contribu-
tions of the ordinary and anomalous Hall effect. Curie tem-
peratures between 61 and 83 K were estimated from the peak
positions of the temperature-dependent sheet resistivities at
10 mT. For the angle-dependent magnetotransport measure-
ments, carried out at 4.2 K, the Hall bars were mounted on
the sample holder of a liquid-He-bath cryostat, which was
positioned between the poles of an electromagnet system
providing a maximum field strength of 0.68 T. The sample
holder has two perpendicular axes of rotation, allowing for
any orientation of the Hall bars with respect to the applied
magnetic field H.

III. THEORETICAL MODEL

The macroscopic theoretical model presented in this paper
is based on the assumption that the sample area probed by
magnetotransport can be approximately treated as a single
homogeneous ferromagnetic domain. It provides analytical
expressions for the electrical resistivities as a function of the
magnetization orientation. Although the single-domain pic-
ture is known to usually break down in situations where the
magnetic system is undergoing a magnetization reversal pro-
cess, it has been successfully applied to the description of a
variety of magnetization-related phenomena in �Ga,Mn�As,
particularly at sufficiently high external magnetic fields.

Given a single ferromagnetic domain, the macroscopic
magnetization is described by the vector M=Mm, where M

denotes its magnitude and the unit vector m with the com-
ponents mx, my, and mz its orientation. Throughout this paper,
all vector components labeled by x, y, and z refer to the cubic
or tetragonal coordinate system associated with the �100�,
�010�, and �001� crystal directions, respectively.

A. Longitudinal and transverse resistivities

We consider a standard configuration for magnetotrans-
port measurements where the longitudinal voltage is probed
along and the transverse voltage across the direction j of a
homogeneous current with density J=Jj. Accordingly, we
introduce a right-handed coordinate system with unit vectors
j, t, and n= j� t so that t defines the transverse direction and
n typically the surface normal. The measured voltages arise
from the components Elong= j ·E and Etrans= t ·E of the elec-
tric field E. Starting from Ohm’s law E= �̄ ·J with the resis-
tivity tensor �̄, the longitudinal resistivity �long �sheet resis-
tivity� and transverse resistivity �trans �Hall resistivity� can be
written as

�long =
Elong

J
= j · �̄ · j, �trans =

Etrans

J
= t · �̄ · j . �1�

1. Resistivity tensor

Following the ansatz of Birss,28 we derive the dependence
of �long and �trans on the magnetization orientation m in a
phenomenological approach by writing the components �ij of
the resistivity tensor �̄ as series expansions with respect to
mx, my, and mz. In Ref. 25, we have presented analytical
expressions for �long and �trans including the terms up to the
second order. Now, forced by the experimental results, we
substantially extend this model by taking into account the
terms up to the fourth order. Using the Einstein summation
convention, the series expansions read as

�ij = aij + akijmk + aklijmkml + aklmijmkmlmm + ¯ , �2�

where the components of the galvanomagnetic tensors
aij ,akij , . . . appear as expansion coefficients. For crystals with
cubic symmetry Td and tetragonal symmetry D2d, most of the
expansion coefficients are equal in pairs or vanish. The use
of generating symmetry matrices to obtain the relationship
between the coefficients is described in Appendix A. The
resulting resistivity tensor for tetragonal symmetry can be
separated into two terms,

�̄tetragonal = �̄cubic + ��̄ , �3�

where �̄cubic is the resistivity tensor for cubic symmetry and
��̄ a difference term that vanishes in the case of perfect
cubic symmetry. Writing �̄tetragonal in ascending powers of mx,
my, and mz, our calculations yield the expressions
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�̄cubic = A�1 0 0

0 1 0

0 0 1
	 + B� 0 mz − my

− mz 0 mx

my − mx 0
	 + C1�mx

2 0 0

0 my
2 0

0 0 mz
2	 + C2� 0 mxmy mxmz

mxmy 0 mymz

mxmz mymz 0
	 + D� 0 mz

3 − my
3

− mz
3 0 mx

3

my
3 − mx

3 0
	

+ E1�mx
4 0 0

0 my
4 0

0 0 mz
4	 + E2�my

2mz
2 0 0

0 mx
2mz

2 0

0 0 mx
2my

2	 + E3� 0 mxmymz
2 mxmy

2mz

mxmymz
2 0 mx

2mymz

mxmy
2mz mx

2mymz 0
	 , �4�

��̄ = �0 0 0

0 0 0

0 0 a
	 + � 0 bmz 0

− bmz 0 0

0 0 0
	 + � c3mz

2 0 c2mxmz

0 c3mz
2 c2mymz

c2mxmz c2mymz c1mz
2 	 + � 0 d1mz

3 − d2mymz
2

− d1mz
3 0 d2mxmz

2

d2mymz
2 − d2mxmz

2 0
	

+ � e2my
2mz

2 + e4mz
4 e3mxmymz

2 e6mxmy
2mz + e7mxmz

3

e3mxmymz
2 e2mx

2mz
2 + e4mz

4 e6mx
2mymz + e7mymz

3

e6mxmy
2mz + e7mxmz

3 e6mx
2mymz + e7mymz

3 e5mx
2my

2 + e1mz
4 	 . �5�

Deriving the above equations, we repeatedly made use of the
trivial identity


m
2 = mx
2 + my

2 + mz
2 = 1. �6�

The expansion parameters A , . . . ,E3 and a , . . . ,e7 are linear
combinations of the nonvanishing expansion coefficients as
specified in Eqs. �A3� and �A4�, respectively. It should be
noted that the present notation is partially different from that
used in Ref. 25.

For cubic ferromagnets with a small tetragonal distortion
along �001�, as in the case of the �Ga,Mn�As layers under
investigation, the expansion parameters are expected to lin-
early vary with �zz. The parameters A and a, just as all other
expansion parameters, then read as

A = Arel + �zzA�, a = �zza�. �7�

While a vanishes for zero strain, A becomes identical to Arel,
describing the resistivity of the relaxed cubic crystal.

Once the resistivity tensor �̄ is known, analytical expres-
sions for the dependence of �long and �trans on the magneti-
zation orientation can be derived using Eqs. �1�. The detailed
representation of �̄ in Eqs. �4� and �5� allows us to examine
the resistivities for any current direction j and any orientation
t of the transverse voltage probe relative to the crystal axes,
provided that the crystal exhibits cubic or tetragonal symme-
try. For a concise presentation of the results, it is convenient
to replace the components mx, my, and mz of m referring to
the cubic or tetragonal crystal axes with mj, mt, and mn re-
ferring to the more experiment-related coordinate system de-
fined by j, t, and n according to

mi = jimj + timt + nimn �i = x,y,z� . �8�

Consequently, Eq. �6� has to be rewritten as


m
2 = mj
2 + mt

2 + mn
2 = 1. �9�

For the rest of the paper, we exclusively focus on the most
common case of a current flow parallel to the surface of a
�001�-oriented sample and examine in detail the two situa-
tions where the current direction is along �100� and �110�.

2. �long and �trans for current along the [100]
and [110] directions

In Eqs. �B2� and �B3�, the resistivities �long and �trans,
respectively, are given as a function of the angle � between j
and the �100� crystal axis. The equations drastically simplify
for current directions along �100� and �110�, referring to �
=0° and �=45°, respectively. In both cases, the correspond-
ing expressions for the resistivities take the same form,
namely,

�long = �0 + �1mj
2 + �2mn

2 + �3mj
4 + �4mn

4 + �5mj
2mn

2, �10�

�trans = �6mn + �7mjmt + �8mn
3 + �9mjmtmn

2. �11�

All resistivity parameters �i �i=0, . . . ,9� are linear combina-
tions of the expansion parameters A ,B ,C1 , . . ., as specified in
Eqs. �B4� and �B5� for j � �100� and j � �110�, respectively. The
parameter �0 in Eq. �10� may be regarded as a reference for
the angular dependence of �long. It represents the longitudinal
resistivity for parallel alignment between m and t, where
mj =mn=0. The reference direction t can be easily changed to
j or n by substituting mj or mn, respectively, with the help of
Eq. �9�.

3. Polar plots of �long and �trans

In order to graphically illustrate the dependence of �long
and �trans on the magnetization orientation m, it is instructive
to set either mn, mj, or mt in Eqs. �10� and �11� equal to zero
and to display the resulting analytical expressions for �long
and �trans in polar plots.

ADVANCED RESISTIVITY MODEL FOR ARBITRARY… PHYSICAL REVIEW B 77, 205210 �2008�

205210-3



For in-plane magnetization, the identity mn=0 holds and
Eqs. �10� and �11� simplify to

�long = �0 + �1mj
2 + �3mj

4, �12�

�trans = �7mjmt. �13�

In Fig. 1, the angular dependence of �long−�0 is depicted by
the solid line, clearly reflecting the longitudinal in-plane
AMR, i.e., the variation of �long with the magnetization ori-
entation. The dashed line illustrates the angular dependence
of �trans and reflects the transverse AMR. The roots of �long
−�0 and �trans are given by the intersection points of the solid
and dashed lines, respectively, and the dotted zero line sepa-
rating the negative and positive values of �long−�0 and �trans.

An orientation of the magnetization perpendicular to the
current direction is equivalent to the condition mj =0. In this
case, Eqs. �10� and �11� reduce to

�long = �0 + �2mn
2 + �4mn

4, �14�

�trans = �6mn + �8mn
3. �15�

The corresponding polar plots of �long−�0 and �trans in Fig. 2
reflect the longitudinal out-of-plane AMR for m� j and the
AHE, respectively. In the special case of cubic crystal sym-
metry and j � �100�, Eq. �14� further reduces to

�long = �0 + �2mt
2mn

2 �16�

since �4=−�2 �see Appendix B�. As demonstrated by the
dash-dotted line in Fig. 2, �long now exhibits fourfold sym-
metry.

The case m� t, or equivalently mt=0, is illustrated in Fig.
3, where the solid line again describes the longitudinal out-
of-plane AMR and the dashed line the AHE. The appropriate
equations for �long and �trans read as

�long = �0 + �1mj
2 + �2mn

2 + �3mj
4 + �4mn

4 + �5mj
2mn

2, �17�

�trans = �6mn + �8mn
3. �18�

4. Anomalous and ordinary Hall effect

The AHE manifests itself in a contribution to �trans, which
is linear proportional to the normal component of M. It reads
as

�trans,AHE = ��1�long + �2�long
2 �Mmn, �19�

where the linear and quadratic terms in �long are usually at-
tributed to the skew scattering and the side-jump scattering
mechanisms, respectively.10,11 A disorder-independent qua-
dratic contribution has also been proposed to arise from
Berry phase effects.12 The experimental results presented in
Sec. IV show that �0	�1 , .. ,�5, and therefore, as a good
approximation, �long can be replaced by �0 in Eq. �19�. Iden-
tifying �6 with ��1�0+�2�0

2�M, the model presented in this
paper properly describes the AHE in a phenomenological
way. However, information on the specific contributions of
the linear and quadratic terms to �trans, quantified by the
weighting coefficients �1 and �2, cannot be inferred from
experiment within the framework of the model.

t

jn
•

ρtrans
(transverse AMR)

ρlong-ρ0
(longitudinal

in-plane
AMR)+

_

FIG. 1. Schematic polar plot in arbitrary units showing the de-
pendence of �long−�0 �solid line� and �trans �dashed line� on m for
in-plane magnetization perpendicular to n. The dotted circle indi-
cates the zero line that separates negative and positive values of
�long−�0 and �trans.

n

tj
•

ρtrans
(AHE)

ρlong-ρ0
(longitudinal

out-of-plane AMR)

+ _

FIG. 2. Dependence of �long−�0 �solid line� and �trans �dashed
line� on m for out-of-plane magnetization perpendicular to j. The
dash-dotted line illustrates the special case of cubic crystal symme-
try and current along �100�. The dotted circle indicates the zero line
that separates negative and positive values of �long−�0 and �trans.

n

j-t
•

ρtrans
(AHE)

ρlong-ρ0
(longitudinal

out-of-plane AMR)

+
_

FIG. 3. Schematic polar plot in arbitrary units showing the de-
pendence of �long−�0 �solid line� and �trans �dashed line� on m for
out-of-plane magnetization perpendicular to t. The dotted circle in-
dicates the zero line that separates negative and positive values of
�long−�0 and �trans.
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In Eq. �2�, the resistivity tensor is expanded with respect
to the components of M. Therefore, the expressions for �trans
do not account for the ordinary Hall effect, which is related
to the magnetic induction B. For magnetic field strengths
�0H
1 T and hole concentrations p�1020 cm−3 as in our
experiments, however, the contribution of the ordinary Hall
effect �0H /ep �where e denotes the elementary charge� to
�trans is smaller than 6�10−6 � cm and thus about 2 orders
of magnitude smaller than the measured peak values of �trans
�see Sec. IV�. Other effects correlated with B, such as the
negative magnetoresistance, may be taken into account by
considering B-dependent resistivity parameters.

5. Polycrystalline materials

In the literature, the longitudinal in-plane AMR and the
transverse AMR in �Ga,Mn�As are often theoretically de-
scribed by29,30

�long = �� + ��� − ���cos2  , �20�

�trans = ��� − ���sin  cos  , �21�

where  denotes the angle between j and m. Taking into
account the relations cos2 =mj

2 and sin  cos =mjmt,
which are only valid for an in-plane configuration, it be-
comes clear that Eq. �20� is a good approximation to Eq. �12�
only if the fourth-order term �3mj

4 is negligibly small com-
pared to �1mj

2, i.e., if 
�3
� 
�1
 or more generally 
E1

� 
C1
 , 
C2
. The results presented in Sec. IV B reveal that
these inequalities do not apply to any of the �Ga,Mn�As
samples under study. On the other hand, the angular depen-
dence of �trans described by Eq. �21� agrees with that given
by Eq. �13�. The prefactors of the cos2  and sin  cos 
terms, however, are in general different and equal only in the
special case, where �1=�7, or equivalently, C1=C2. As al-
ready pointed out in Ref. 25, Eqs. �20� and �21� only apply to
isotropic materials such as polycrystals where the resistivi-
ties do not depend on the direction j of the current relative to
the crystal axes. In fact, Eqs. �20� and �21� result from Eqs.
�1� and �4� by averaging over all possible spatial orientations
of the coordinate system �j , t ,m� with respect to the cubic
crystal axes.31 Calculation yields

�� = A +
1

5
�C1 − C2� +

1

35
�3E1 + 3E2 − E3� ,

�� − �� =
1

5
�2C1 + 3C2� +

1

35
�12E1 − 2E2 + 3E3� . �22�

6. Uniaxial [110] in-plane anisotropy

Recently, Rushforth et al.32 presented an experimental and
theoretical study on the components of the in-plane AMR
based on

�long − �av

�av
= CI cos 2 + CU cos 2� + CC cos 4�

+ CI,C cos�4� − 2� , �23�

�trans

�av
= CI sin 2 − CI,C sin�4� − 2� , �24�

which were obtained by extending the model of Döring,33

introduced for cubic Ni, to systems with cubic �100� plus
uniaxial �110� anisotropy. Here,  again denotes the angle
between j and m, and � the angle between m and the �110�
crystal direction. The coefficients CI, CU, CC, and CI,C rep-
resent a noncrystalline, a uniaxial, a cubic, and a crossed
noncrystalline/crystalline contribution, respectively. �av is the
average value of �long as M is rotated through 360°. Starting
from Eqs. �B2� and �B3� with mn=0, it can be shown that the
coefficients CI, CC, CI,C, and �av are related to the parameters
A, C1, C2, and E1, introduced in Sec. III A, by

CI =
1

4�av
�C1 + C2 + E1� , CC = −

1

8�av
E1,

CI,C = −
1

4�av
�C1 − C2 + E1� ,

�av = A +
1

2
C1 +

3

8
E1. �25�

In our model no uniaxial �110� anisotropy of the resistivity
has been taken into account, i.e., CU=0, since no significant
influence of such a contribution has been found in analyzing
the angle-dependent magnetotransport data. This is consis-
tent with the fact that the strength of the magnetic uniaxial
in-plane anisotropy �for definition, see Sec. III B�, inferred
from the experimental data, turned out to be negligibly small
in the �Ga,Mn�As samples under study. A uniaxial in-plane
contribution may become important, however, when the ex-
periments are performed at temperatures much higher than
4.2 K,21 when the thickness of the �Ga,Mn�As sample is
small,32 or a uniaxial in-plain strain is induced by a piezo-
electric actuator mounted onto the sample.34,35 The incorpo-
ration of the contribution CU cos 2� from Eq. �23� into our
model would yield a further term in the expression of �long in
Eq. �10�. For j � �100�, it reads as �umjmt and leads to an
additional angular dependence of �long. For j � �110�, it is
given by −�u /2+�umj

2 and can be incorporated into the terms
�0 and �1mj

2.

B. Magnetic anisotropy

In Sec. IIA, analytical expressions for �long and �trans as a
function of the magnetization orientation m have been de-
rived. The direction of m, in turn, is determined by the MA
of the ferromagnetic material and by the strength and orien-
tation of an external magnetic field H. Magnetic anisotropy
stands for the dependence of the free energy density F of a
magnetic system on the orientation of M. In addition to sup-
posing a simple single-domain model, we assume that the
magnitude M of the magnetization is nearly constant under
the given experimental conditions. Instead of F, we therefore
consider the normalized quantity FM =F /M, allowing for a
more concise description of the MA. For a �Ga,Mn�As film
with tetragonal distortion along �001�, the anisotropic part of
FM can be written as19,25

ADVANCED RESISTIVITY MODEL FOR ARBITRARY… PHYSICAL REVIEW B 77, 205210 �2008�

205210-5



FM�m� = B4��mx
4 + my

4� + B4�mz
4 + B2�mz

2

+
�0M

2
mz

2 +
B1̄10

2
�mx − my�2. �26�

The first three terms are intrinsic contributions arising from
spin-orbit coupling in the valence band. The fourth and fifth
terms are extrinsic contributions describing the demagnetiza-
tion energy of an infinite plane �shape anisotropy� and a
uniaxial in-plane contribution, respectively, whose origin is
still under discussion.21,23,36 The two mz

2 terms cannot be
distinguished in our experiments and are therefore lumped
into a single term B001mz

2.
In the presence of an external magnetic field H, one has to

additionally take into account the Zeeman energy, and the
total energy density is finally given by the �normalized� free
enthalpy density,

GM�m� = FM�m� − �0H · m . �27�

Figure 4 shows a graphical illustration of the various contri-
butions to GM. Given an arbitrary magnitude and orientation
of the magnetic field H, the direction of the magnetization M
is determined by the minimum of GM with respect to the
components of m.

IV. RESULTS AND DISCUSSION

For sufficiently high magnetic fields, the contribution of
the free energy FM to the free enthalpy GM in Eq. �27� be-
comes much smaller than the contribution of the Zeeman
energy and can, as a good approximation, be neglected. In
this case, the magnetization M aligns with H and the depen-
dence of �long and �trans on the magnetization orientation can
be simply probed by systematically varying the direction of
H. The values of the resistivity parameters �i are then de-
rived by fitting Eqs. �10� and �11� to the measured data with
the vector components of m replaced by those of h. When
the magnetic field is gradually lowered, however, the Zee-
man term in Eq. �27� decreases, the relative contribution of
FM to GM increases, and the orientation of M more and more
deviates from the direction of H toward one of the easy axes

determined by the minima of FM. In other words, the mea-
sured resistivities are increasingly influenced by the MA. In
Ref. 25, we have shown that this effect can be utilized to
probe the MA in �Ga,Mn�As by means of angle-dependent
magnetotransport measurements.

In our experimental setup, the field strength of the elec-
tromagnet is limited to 0.68 T. In most cases, this value suf-
fices to align M almost perfectly along H. In situations, how-
ever, where H approaches a hard magnetic axis, this might
no longer apply and the influence of the MA has to be taken
into account when deriving resistivity parameters from
angle-dependent resistivity curves. Therefore, we routinely
determined both resistivity and anisotropy parameters for all
samples under study. The corresponding procedure is exem-
plified in Sec. IV A by means of an almost unstrained
�Ga,Mn�As layer with �zz=−0.04%. In Sec. IV B, the strain
dependence of the resistivity parameters �i will be discussed.
An analogous study on the anisotropy parameters Bi goes
beyond the scope of this paper and will be presented else-
where. A brief survey, however, is given in Ref. 24.

A. Determination of the resistivity parameters

The longitudinal and transverse resistivities of the
�Ga,Mn�As layers were measured for both j � �100� and
j � �110� as a function of the magnetic field orientation at
fixed field strengths of �0H=0.11, 0.26, and 0.65 T. At each
field strength, H was rotated within three different crystallo-
graphic planes perpendicular to n, j, and t, respectively. The
corresponding configurations, labeled I, II, and III, are
shown in Fig. 5. In the case of M �H, they are identical to the
configurations used in Figs. 1–3 to illustrate the theoretical
angular dependences of �long and �trans by means of sche-
matic polar plots.

Prior to each angular scan, the magnetization M was put
into a clearly defined initial state by raising the field to its
maximum value of 0.68 T, where M is supposed to nearly
saturate and to align with the external field. The field was
then lowered to one of the above mentioned magnitudes and
the scan was started. Figures 6 and 7 show as an example the
angular dependences of �long and �trans for the almost un-
strained sample with �zz=−0.04%, measured for j along
�100� and �110�, respectively.

The experimental data are depicted by the red solid
circles. In the first case, H was rotated in the �001�, �100�,
and �010� planes, and in the second case, the planes of rota-

tion were the �001�, �110�, and �1̄10� planes, corresponding
to configurations I, II, and III, respectively. At 0.65 T, the
Zeeman energy dominates the free enthalpy. Consequently,

FIG. 4. Graphical illustration of the different contributions to the
normalized density of the free enthalpy GM, plotted as three-
dimensional functions of the magnetization orientation. The equi-
librium position of M is determined by the minimum of GM.

FIG. 5. The angular dependence of the resistivities was probed
by rotating an external magnetic field H within three different
planes �a� perpendicular to n, �b� perpendicular to j, and �c� perpen-
dicular to t. The corresponding configurations are referred to as I, II,
and III, respectively.
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M nearly aligns with H and continuously follows its motion.
In fact, the curves of �long and �trans at 0.65 T are smooth and
largely reflect the angular dependences of the resistivities
described by Eqs. �10� and �11� with m replaced by h. With
decreasing magnetic field the influence of the MA increases
and the orientation of M deviates more and more from the
field direction. Accordingly, jumps and kinks occur in the

curves at 0.26 and 0.11 T, arising from sudden movements of
M caused by discontinuous displacements of the minimum
of GM.

Values for the resistivity parameters �i and the anisotropy
parameters Bi were determined by an iterative fit procedure.
Starting with an initial guess for the anisotropy parameters,
the resistivity parameters were obtained by fitting Eqs. �10�
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FIG. 6. �Color online� Resistivities �long and �trans recorded from the nearly unstrained �Ga,Mn�As layer with �zz=−0.04% at 4.2 K and
j � �100� �red solid circles�. The measurements were carried out at fixed field strengths of �0H=0.11, 0.26, and 0.65 T with H rotated in �a�
the �001�, �b� the �100�, and �c� the �010� plane, corresponding to configurations I, II, and III, respectively. The black solid lines are fits to
the experimental data using Eqs. �10� and �11� and one single set of resistivity and anisotropy parameters. The dashed line in �b� at 0.65 T
represents an attempt to fit the measured curve considering only terms up to the second order.
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FIG. 7. �Color online� Continuation from Fig. 6. The current direction is now along �110� and the magnetic field H was rotated in �a� the

�001�, �b� the �110�, and �c� the �1̄10� plane, corresponding to configurations I, II, and III, respectively.
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and �11� to the experimental data recorded at 0.65 T. Then,
the anisotropy parameters were modified for an optimal
agreement at 0.26 and 0.11 T, and the whole procedure was
repeated until no further improvement of the fit could be
achieved. The unit vector m, whose components enter Eqs.
�10� and �11�, was calculated for any given magnetic field H
by numerically minimizing GM with respect to the direction
of m.

With the exception of �0, the resistivity parameters were
assumed to be field independent, which turned out to be a
good approximation within the accuracy of the fit. �0 was
found to decrease with increasing magnetic field, reflecting
the negative-magnetoresistance behavior of �long. The values
of the resistivity parameters for j � �100� and j � �110�, ob-
tained from the fits, are listed in Table I. The two sets of
parameters are related to each other according to Eqs. �B8�
and �B9�, in agreement with the theoretical model presented
in Sec. III. The parameter �9 is not immediately accessible
by measurements performed in configurations I, II, and III
since the corresponding term in Eq. �11� vanishes in all the
three cases. It can be determined, however, either directly by
orienting H in a way that mj, mt, and mn are all different
from zero or indirectly by using the relation �9�=�5−�3,
where the primed and unprimed parameters correspond to
j � �100� and j � �110�, respectively, and vice versa �see Appen-
dix B�. For the anisotropy parameters, we obtained the val-
ues B4� =B4�=−35 mT, B001=35 mT, and B1̄10=−5 mT.
The theoretical curves calculated with these parameters are
drawn as the solid lines in Figs. 6 and 7.

For �0H=0.26 and 0.65 T, an excellent agreement be-
tween the measured and simulated curves is achieved, while
for �0H=0.11 T, significant differences emerge. We inter-
pret these differences as clear evidence for the gradual break-
down of the single-domain model with constant magnetiza-
tion magnitude M at low magnetic fields. The experimental
curves recorded in configurations II and III at 0.11 T are
much smoother than the calculated ones, probably reflecting
the formation of a multitude of differently oriented ferromag-

netic domains. This interpretation is supported by a number
of investigations visualizing the domain structure of
�Ga,Mn�As layers at low magnetic fields37–41 as well as by
further magnetotransport measurements on the �Ga,Mn�As
samples under study, not presented in this paper. Remark-
ably, the theoretical curves in Figs. 6�a� and 7�a�, calculated
for configuration I where H is rotated in the �001� layer
plane, almost perfectly describe the measured curves even at
0.11 T. This may be explained by the fact that due to shape
anisotropy the �001� axis perpendicular to the surface is a
hard axis even in the unstrained layer and that, as a conse-
quence, ferromagnetic domains with in-plane magnetization
remain more stable at low magnetic fields than domains with
out-of-plane magnetization. Accordingly, the jumps and
kinks in Figs. 6�a� and 7�a� at 0.11 T are extremely well
pronounced, reflecting nearly perfect coherent switching of
the whole spin system.

Whereas the measured resistivity curves presented in Ref.
25 for two �Ga,Mn�As layers, grown on GaAs�001� and
GaAs�113� substrates, could be satisfactorily well fitted by
the analytical expressions containing only terms up to the
second order in the components of m, it is now compulsory
to take into account higher-order terms. In order to illustrate
the importance of the fourth-order terms for a correct de-
scription of the experimental traces of �long, simulations are
depicted as the dashed lines in Figs. 6�b� and 7�b� where
only the terms up to the second order in mi were considered.
No matter which values for �2 in Eq. �10� were chosen, the
model curves completely failed to reproduce the measured
angular dependence of �long.

B. Strain dependence of the resistivity parameters

It is well known that a distortion of the �Ga,Mn�As crystal
lattice leads to a significant change of the MA. Microscopi-
cally, this can be explained by a strain-induced warping of
the valence bands in addition to that caused by spin-orbit
coupling.14 The warping, however, affects not only the MA
but also the AMR and thus the resistivity parameters �i.

In order to examine the influence of the vertical strain �zz
on �long and �trans, angle-dependent magnetotransport mea-
surements analogous to those presented in Figs. 6 and 7 were
performed on all �Ga,Mn�As samples under study. Using the
procedure described in Sec. IV A, the resistivity parameters
�0 , . . . ,�8 for j � �100� and j � �110� were determined indepen-
dently of each other without taking into account their mutual
relations theoretically predicted by Eqs. �B8� and �B9�.
Whereas the values obtained for �0 randomly scatter in the
range from 5.0�10−3 to 8.8�10−3 � cm, presumably due
to variations in the hole concentration and mobility, a distinct
correlation with the strain is found for the other resistivity
parameters. This correlation is seen most clearly by consid-
ering the normalized quantities �i /�0 instead of �i. In Fig. 8,
the values of �i /�0 �i=1, . . . ,8� are plotted against �zz in the
range −0.46%��zz�0.22% for j � �100� and j � �110�. The
parameter �9 �not shown� was determined by the indirect
method described above and turned out to be nearly indepen-
dent of the strain with �9 /�0�0.015 for j � �100� and �9 /�0
�0 for j � �110�.

TABLE I. Values of the resistivity parameters in units of
10−4 � cm determined for the nearly unstrained �Ga,Mn�As layer
with �zz=−0.04%.

�i

�10−4 � cm�
j � �100� j � �110�

�0 �0.65 T� 103.9 103.8

�0 �0.26 T� 104.8 104.7

�0 �0.11 T� 105.2 105.1

�1 −5.3 −2.3

�2 −2.2 −1.9

�3 1.7 −1.7

�4 2.2 2.2

�5 2.2 −0.4

�6 9.8 9.8

�7 −4.0 −3.6

�8 0.0 0.0

�9 1.3 0.5
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According to our theoretical model, the resistivity param-
eters for j � �100� and j � �110� should be linearly related to
each other by Eqs. �B8� and �B9�, yielding, for instance, the
symmetrical relations

�1� = �3 + �7, �8� = �8,

�3� = − �3, �7� = �1 + �3, �6� = �6, �28�

The primed and unprimed parameters correspond to the cur-
rent directions �110� and �100�, respectively, and vice versa.
Inspection of Fig. 8 reveals that the measured data comply
with the above relations supporting the validity of the theo-
retical model.

In contrast to the resistivity parameters �i, the expansion
parameters B ,C1 , . . . ,e4 do not depend on the current direc-
tion and have thus a more fundamental meaning. They can
be unambiguously calculated from the resistivity parameters
using Eqs. �B4� and �B5�. If �9 is measured directly, only one
set of resistivity parameters is needed; otherwise, the �i have
to be known for both current directions, j � �100� and j � �110�.
In this work, the second case applies. Figure 9 shows the

values of the expansion parameters normalized to A in de-
pendence on the vertical strain �zz. The smoothing spline
curves suggest that the parameters related to the cubic part
�̄cubic of the resistivity tensor �capital letters� as well as the
parameters appearing in the strain-induced difference term
��̄ �small letters� almost linearly vary with �zz in agreement
with Eq. �7�.

The variation of the resistivity parameters with the strain
manifests itself in a pronounced change of the angular de-
pendences of �long and �trans. This is exemplarily demon-
strated in Figs. 10 and 11, where the normalized resistivities
��long−�0� /�0 and �trans /�0, respectively, at �0H=0.65 T
are plotted as a function of the magnetic field orientation
and the strain for some of the configurations presented in
Figs. 6 and 7.

The experimental data are again depicted by the red solid
circles and the calculated curves by the black solid lines. In
Fig. 10�a�, the longitudinal resistivity measured in configu-
ration I is shown for j � �110�. Provided that M and H are
approximately parallel to each other at 0.65 T, the angle-
dependent oscillations of �long reflect the longitudinal in-
plane AMR illustrated in Fig. 1. The amplitude of the oscil-
lations is given by �1+�3 and increases with decreasing
compressive and increasing tensile strain. It is depicted by
the dash-dotted line in Fig. 8�b�. The specific shape of the
oscillations is determined by the ratio of �1 and �3 represent-
ing the mj

2 and mj
4 terms, respectively. As shown in Fig. 8�b�,

�1 strongly varies with �zz, whereas �3 remains nearly con-
stant. Figure 8�a� reveals that for j � �100�, �1, �3, and �1
+�3 are almost independent of the strain. Accordingly, the
longitudinal in-plane AMR is almost constant and the corre-
sponding curves of �long are nearly identical �not shown�. It
should be noted again that for all samples under study, the
condition 
�3
� 
�1
 does not apply and thus Eq. �20� fails to
correctly describe the angular dependence of �long.
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Whereas for configuration I �see above� and configuration
III �not shown�, the overall angular dependence of �long is
basically the same in the whole range of �zz under investiga-
tion, an essential variation with the strain occurs when H and
thus M is rotated perpendicular to j �configuration II�. In
Figs. 10�b� and 10�c�, this variation is shown for j � �100� and
j � �110�, respectively. The complex angular dependences
emerging for �zz�−0.46%, i.e., the appearance of more than
two maxima, qualitatively agree with the polar plot depicted
in Fig. 2. They result from a competition between the
second-order term �2mn

2 and the fourth-order term �4mn
4 and

occur whenever �2 and �4 are of comparable magnitude and
opposite sign, or briefly, whenever �2+�4 is close to zero. As

shown by the dashed curves in Figs. 8�a� and 8�b�, this ap-
plies for �zz�−0.46%, in agreement with Figs. 10�b� and
10�c�. For both j � �100� and j � �110�, �2+�4 monotonously
increases with �zz and changes sign at the transition from
tensile to compressive strain. In the case of j � �100�, symme-
try demands that �2+�4 exactly equals zero at �zz=0. The
corresponding polar plot is schematically illustrated by the
dash-dotted line in Fig. 2.

The evolution of the transverse resistivity with �zz is ex-
emplarily discussed in Fig. 11, where the angular depen-
dence of �trans /�0 is depicted for j � �110� and m� j �configu-
ration II�. For magnetization orientation along �001�, i.e.,
perpendicular to the layer plane, �trans equals �6+�8. As dem-
onstrated in Fig. 8�c�, the sum �6+�8 is identical for both
current directions and linearly decreases with increasing �zz.
In Fig. 9�a�, the dependences of �6=−�B+b� and �8=−�D
+d1� on �zz are displayed as separate curves. They reveal that
the values of �6 and �8 have opposite sign and differ by more
than 1 order of magnitude. The dominant parameter �6 cor-
responds to the linear term mn in Eq. �11�, which is usually
associated with the AHE. The increasing deviation of the
curves in Fig. 11 from a cosinusoidal oscillation for increas-
ing compressive and tensile strain is primarily due to the
influence of the magnetic anisotropy even at 0.65 T. For
comparison, the resistivity curve calculated for vanishing
MA and �zz=0.22% is drawn as a dashed line.

V. SUMMARY

Based on the expansion of the resistivity tensor with re-
spect to the direction cosines of the magnetization up to the
fourth order, we have presented a macroscopic analytical
model for the longitudinal and transverse resistivities of
single-crystalline cubic and tetragonal ferromagnets. The
model applies to arbitrary magnetization orientations and
current directions. It correctly describes the results of angle-
dependent magnetotransport measurements performed on a
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series of �Ga,Mn�As layers with a vertical strain gradually
varied from tensile to compressive. The resistivity param-
eters, obtained by fitting Eqs. �10� and �11� to the experimen-
tal data, were found to systematically vary with the strain.
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APPENDIX A: GENERATING SYMMETRY MATRICES
AND EXPANSION PARAMETERS

Neumann’s principle requires that a tensor representing a
macroscopic physical property of a crystal must be invariant
under all symmetry operations S of the corresponding point
group. The mathematical formulation of this requirement
leads to conditional equations for the expansion coefficients
aij ,akij , . . . of the resistivity tensor in Eq. �2� reading as

aij = SioSjpaop, akij = 
S̄
SkqSioSjpaqop,

aklij = 
S̄
2SkqSlrSioSjpaqrop,

aklmij = 
S̄
3SkqSlrSmtSioSjpaqrtop,

aklmnij = 
S̄
4SkqSlrSmtSnuSioSjpaqrtuop, �A1�

where Sij denotes the ij component and 
S̄
 denotes the de-

terminant of the symmetry matrix S̄. The determinant ap-
pears in the formula of Eqs. �A1� since M is an axial vector,
whereas E and J are polar vectors. In order to derive a com-
plete set of conditional equations for the expansion coeffi-
cients, it is sufficient to apply Eq. �A1� to a small set of
generating symmetry matrices. In the cases of cubic symme-
try Td and tetragonal symmetry D2d, this set consists of only

two matrices, namely, S̄8 and S̄9 and S̄2 and S̄8, respectively.
The matrices are given by28

S̄2 = �− 1 0 0

0 1 0

0 0 − 1
	, S̄8 = �0 − 1 0

1 0 0

0 0 − 1
	 ,

S̄9 = �0 1 0

0 0 1

1 0 0
	 . �A2�

Solving Eqs. �A1� for these generating matrices leads to the
resistivity tensors given in Eqs. �4� and �5�. The expansion
parameters A , . . . ,E3 and a , . . . ,e7 are related to the expan-
sion coefficients aij ,akij , . . . by

A = a11 + a1122 + a111122, B = a123 + 3a12223,

C1 = a1111 − a1122 + 6a112211 − 2a111122,

C2 = 2a1212 + 4a111212, D = a11123 − 3a12223,

E1 = a111111 − 6a112211 + a111122,

E2 = 6a112233 − 2a111122, E3 = 12a112323 − 4a111212.

�A3�

a = a33 − a11 + a1133 − a1122 + a111133 − a111122,

b = a312 − a123 + 3a11312 − 3a12223,

c1 = a3333 − a1111 + a1122 − a1133 + 6a113333

− 6a112211 + 2a111122 − 2a111133,

c2 = 2a2323 − 2a1212 + 4a111313 − 4a111212,

c3 = a3311 − a1122 + 6a113311 − 6a112211,

d1 = 3a12223 − 3a11312 + a33312 − a11123,

d2 = 3a13323 − 3a12223,

e1 = a333333 − a111111 + 6a112211 − 6a113333 + a111133 − a111122,

e2 = 6a113322 − 6a112233 + 6a112211 − 6a113311,

e3 = 12a123312 − 12a112323,

e4 = a333311 − a111122 + 6a112211 − 6a113311,

e5 = 2a111122 − 2a111133, e6 = 4a111212 − 4a111313,

e7 = 4a133313 − 4a111313. �A4�

APPENDIX B: RESISTIVITY PARAMETERS

To cover the general case of a current flowing along an
arbitrary direction within the �001� plane, we write j, t, and n
as

j = �cos �

sin �

0
	, t = �− sin �

cos �

0
	, n = �0

0

1
	 , �B1�

where � denotes the angle between the current direction and
the �100� crystal axis. Using Eqs. �1�, �4�, �5�, and �8�, the
resistivities �long and �trans for tetragonal symmetry can be
written as polynomials of fourth order in the variables mj, mt,
and mn,
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�long = A + C1 − C2 +
1

2
E1�1 − cos 4�

4

+ �C1 − �C1 − C2 − E1�
1 − cos 4�

2
�mj

2

+ �c3 + Ẽ2 − �C1 − C2 + E1 + Ẽ2 + Ẽ3�
1 − cos 4�

4
�mn

2

+ E1 cos 4�mj
4 + �− Ẽ2 + e4

+ 1

2
E1 + Ẽ2 + Ẽ3�1 − cos 4�

4
�mn

4

− �Ẽ2 + �E1 − Ẽ2 − Ẽ3�
1 − cos 4�

2
�mj

2mn
2

−
1

2
�C1 − C2�sin 4�mjmt

− E1 sin 4�mj
3mt +

1

2
�Ẽ2 + Ẽ3�sin 4�mjmtmn

2, �B2�

�trans = − B̃mn + �C2 + �C1 − C2 + E1�
1 − cos 4�

2
�mjmt

− D̃mn
3 + �Ẽ3 − �E1 + Ẽ2 + Ẽ3�

1 − cos 4�

2
�mjmtmn

2

+
1

4
�C1 − C2 + E1�sin 4��mt

2 − mj
2�

+
1

4
�E1 + Ẽ2 + Ẽ3�sin 4��mj

2 − mt
2�mn2, �B3�

with the abbreviations B̃=B+b, D̃=D+d1, Ẽ2=E2+e2, and

Ẽ3=E3+e3.
For j � �100� and t � �010�, i.e., �=0°, the resistivity param-

eters �i are given by

�0 = A , �1 = C1, �2 = Ẽ2 + c3, �3 = E1,

�4 = − Ẽ2 + e4, �5 = − Ẽ2, �6 = − B̃ , �7 = C2,

�8 = − D̃ , �9 = Ẽ3, �B4�

and for j � �110� and t � �1̄10�, i.e., �=45°, we obtain

�0 = A +
1

2
�C1 − C2� +

1

4
E1, �1 = C2 + E1,

�2 =
1

2
�− C1 + C2 + 2c3 − E1 + Ẽ2 − Ẽ3� , �3 = − E1,

�4 =
1

2
�1

2
E1 − Ẽ2 + Ẽ3 + 2e4� , �5 = − E1 + Ẽ3,

�6 = − B̃ , �7 = C1 + E1, �8 = − D̃ , �9 = − E1 − Ẽ2.

�B5�

For unstrained layers with perfect cubic crystal symmetry,
the expansion parameters represented by small letters vanish.
Then, in the case of j � �100�, the relation

�4 = �5 = − �2 �B6�

holds, and for j � �110�, the constraints

2�2 = �1 + 3�3 − �5 − �7 − �9,

4�4 = − 5�3 + 2�5 + 2�9 �B7�

apply.
The parameters �i �i=0, . . . ,9� may be thought of as the

components of ten-dimensional vectors �, which for j � �100�
and j � �110� are related to each other by the linear transfor-
mation,

��110� = T̄ · ��100�. �B8�

The matrix T, satisfying the equation T̄−1= T̄, is given by

T̄ =�
1

1

2
.

1

4
. . . −

1

2
. .

. . . 1 . . . 1 . .

. −
1

2
1 −

1

2
.

1

2
.

1

2
. −

1

2

. . . − 1 . . . . . .

. . .
1

4
1 −

1

2
. . .

1

2

. . . − 1 . . . . . 1

. . . . . . 1 . . .

. 1 . 1 . . . . . .

. . . . . . . . 1 .

. . . − 1 . 1 . . . .

	 .

�B9�
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