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The electronic structure of the oxygen vacancy in ZnO has been found to be sensitive to the corrections
applied to the local �spin� density approximation �LSDA� band gap underestimate. Here, the “LSDA+U”
approach, in which Hubbard-U corrections are added to the local density approximation, is applied to both
Zn d and Zn s orbitals. The justification of this approach is discussed. Transition state energies are calculated
self-consistently instead of applying a posteriori corrections. The supercell size dependence and applicability
of Makov–Payne corrections is investigated and an extrapolation approach inversely proportional to the cell
volume is used. The 0 /2+ transition level is found at 0.80 eV above the valence-band maximum and a small
negative U behavior is obtained with U=−0.05 eV. The Kohn–Sham one-electron levels in the different charge
states are also presented and relevant experimental results are discussed.
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I. INTRODUCTION

ZnO is an important wide-band-gap semiconductor, with
many attractive features for optoelectronic applications com-
pared to GaN: it has a higher exciton binding energy of about
50 meV �Refs. 1 and 2� and bulk single crystals can be
grown, which could be useful as substrates. The defect phys-
ics has already received considerable theoretical attention of
which we here quote only the most relevant papers.3–11 Pho-
toluminescence often shows a broad band green lumines-
cence, which by some authors was attributed to oxygen
vacancies,5,12–15 although alternative origins, for example, a
Zn vacancy4 or Cu impurities for this luminescence have also
been proposed.16

However, the electronic structure of the oxygen vacancy
is not yet firmly established. In p-type material, i.e., with the
Fermi level at or near the valence-band maximum, the sys-
tem is in the 2+ charge state. Previous calculations5–10 all
found a negative-U behavior, which means that the system
has lower energy in the neutral state than in the single posi-
tive � state, owing to a much more efficient structural relax-
ation in the neutral state. They differ, however, in their pre-
dictions of the transition energy 2+ /0, i.e., the Fermi level
position where the crossover to a new ground state occurs.
While Lany and Zunger7 �LZ� proposed this transition level
to lie in the lower half of the band gap, Janotti and Van de
Walle6 �JV� proposed it to lie in the upper half of the band
gap. Although both used very similar pseudopotential plane
wave ab initio calculations, they differ in the way band-gap
corrections are applied. Previously, Zhang et al.5 discussed
various ways in which gap corrections can be applied. More
recently, Erhart et al.10 also found a position of the defect
level in the upper half of the gap using the same extrapola-
tion approach as JV but using the generalized gradient ap-
proximation �GGA� rather than local density approximation
�LDA�. Their results, however, differ in other respects, nota-
bly on the actual energies of formation. Patterson11 found the
2+ /0 state to lie close to the valence band edge at about
0.3 eV using all-electron B3LYP hybrid-functional17,18 cal-
culations.

On the experimental side, Vlasenko and Watkins19 �VW�
showed that either of these two results could be reconciled

with the experimental data. The experimental analysis is
based on optically detected electron paramagnetic resonance
�ODEPR� signals in irradiated samples. The EPR signal
comes from the single positive charge state, which according
to the above theories is actually a metastable state. The op-
tical luminescence associated with the ODEPR signal occurs
by capture of an electron and hence turning it into the non-
EPR active neutral state. If the luminescence associated with
that capture involves a transition directly from a shallow
donor, the level position would be deep �supporting the LZ
model�.7 However, if it involves a two step process, captur-
ing an electron from the shallow donor first, and subse-
quently capture of a hole from the valence band, it would
indicate a much higher position of the + /0 level in the gap,
in agreement with the JV model.6 They argued in favor of the
JV model on the basis of the excitation energies required for
the process which did not show a sharp cutoff but stayed
uniform down to 2.4 eV. A recent EPR study by Evans et
al.,20 however, found that the optical excitation from the VO

0

state to the conduction band, required to produce the EPR
signal, only occurred above 2.1 eV, thus suggesting a defect
level for the neutral state in the lower half of the gap at less
than 1.3 eV above the VBM. Also, Vlasenko and Watkins19

showed that another EPR line labeled X2 and potentially as-
sociated by them with a close �effective-mass-donor, VO�
complex would be in better agreement with the assumption
of a deep + /0 level in the lower half of the gap.

Since the theoretical interpretation is based on a some-
what debatable a posteriori correction, it is important to fur-
ther scrutinize these results. Besides the gap correction pro-
cedure, another possible source of uncertainty in the results
in the finite size of the supercell. This aspect was already
considered by Erhart et al.10 but is also reconsidered here.

The position of the Zn d levels is important for states near
or in the gap.2 The hybridization of Zn 3d with O 3p levels
pushes up the valence band level. In LDA, the position of the
Zn 3d levels is too high and thus the effect is overestimated.
Both LZ and JV used the LDA+U approach for the Zn d
orbitals. This corrects the gap partially, but not entirely.
Whereas LZ simply shifted the VBM down in giving the
defect level position relative to the VBM, and subsequently,
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shift the conduction band minimum up without changes to
the defect level, JV reasoned that it shows to what extent the
defect level is conduction-band-like and thus they extrapo-
lated the shift in defect level according to the full required
gap correction even if the latter is not related to the Zn d
shift. Either of the two arguments seems to have its merits. It
is thus important to obtain an independent calculation in
which the full gap correction is actually included. Further-
more, LZ remark that the transition energies themselves did
not differ much between LDA and LDA+U and thus used
the LDA transition energies but applied the LDA+U correc-
tion only a posteriori to the host band edge. On the other
hand, JV use the LDA+U transition energies but a posteriori
extrapolates them.

In this paper, we show that the LSDA+U approach can be
applied not only to the Zn d but also to the Zn s orbitals. This
then allows us to fully correct the gap. Furthermore, in the
LSDA+U approach, we are not limited to considering one-
electron levels. The method provides total energies which are
consistently linked with the one-electron level shifts. Thus,
we can actually obtain the defect transition levels using the
usual �SCF approach from the LSDA+U Hamiltonian
rather than applying a posteriori corrections. An alternative
internally self-consistent total energy approach which also
gives accurate band gaps can be found in Patterson’s study.11

II. COMPUTATION DETAILS

We used the full-potential linearized muffin-tin orbital
�FP-LMTO� method21 in conjunction with the density func-
tional theory22,23 in the local �spin� density approximation
�L�S�DA� including Hubbard-U corrections �LSDA+U� and
a supercell approach. Here, we discuss the various aspects of
this approach in turn.

The key feature of the present paper concerns the so-
called “LSDA+U” approach, i.e., local spin density approxi-
mation � Hubbard-U corrections. As is well known, this
approach was first introduced by Anisimov et al.24,25 to deal
with open shell narrow d bands. It essentially recognizes the
fact that Coulomb interactions are orbital dependent and
adds them explicitly for the narrow-band as in a Hubbard
model. They are then treated in a Hartree–Fock-type mean
field approximation. The fact that they are already partially
accounted for in the LDA is corrected by a double-counting
term. One can also apply it of course to a full shell semicore-
like band such as the Zn 3d band in ZnO.

In a spherically averaged version26 of the general theory27

there is an additional term in the total energy functional
given by

ELSDA+U = ELSDA +
�U − J�

2 �
�

�Tr �� − Tr��� · ���� , �1�

in which �� is the density matrix of the orbitals treated by
LSDA+U. Minimization versus the density matrix, then
leads to a shift in one-electron potential, given by

Vmm�
� = �U − J��1

2
�mm� − �mm�

� 	 . �2�

In the appropriate basis, the density matrix becomes diagonal
�mm�=nm�mm� and the corresponding elements are just the
occupation numbers. Now, it is clear that if one applies this
to an empty orbital nm=0 for all m, we obtain an upward
shift by �U−J� /2 and if we apply it to a filled orbital, we
obtain a downward shift by −�U−J� /2. In practice, we set
J=0 here because we have a closed shell and adjust U only.

The underlying physics for justifying our d and s shifts is
quite different. The gap underestimate in a typical semicon-
ductor such as ZnO arises in part from the position of the
Zn d level but mostly from the long-range Coulomb effects
in the screened exchange term. The best starting point for
analyzing the gap underestimate is the GW theory.28,29 Mak-
simov et al.30 showed that the statically screened exchange is
the most nonlocal term in the GW self-energy, schematically
�= iG�W. In the static approximation, this becomes �
=−��W, i.e., the Green’s function is replaced by the density
matrix. The theory then looks exactly like Hartree–Fock but
with a screened instead of bare Coulomb interaction. Now, in
a semiconductor, the latter is long-ranged because even when
the dielectric response becomes the macroscopic dielectric
constant, the behavior is as 1 /�r. This is what LDA is miss-
ing because it is based on an exponential metalliclike screen-
ing of the electron gas. In a GW calculation, one would even-
tually take matrix elements of the �−vxc between conduction
band states. Now, if the conduction band states primarily
consist of cation s-like states, as is the case in ZnO, then the
correction will manifest itself as a shift in the on-site
s-diagonal elements of the Hamiltonian in a basis set of
LMTO orbitals. Thus, we can mimic its effect by a simple
shift projection operator 
	s��s�	s
. This, as we have shown
above is also what would happen in LSDA+U if we apply a
Us to the s orbitals. Thus, although the underlying physics is
different for d and s shifts they can in practice be treated in
the same manner, as long as we are willing to include some
empirical parameter like the effective shift. For d shifts, the
origin is intra-atomic differences in the Coulomb terms ow-
ing to the more localized nature of the d orbitals compared to
diffuse sp orbitals. For the s shift, the reason is that the
conduction band minimum is primarily Zn-s-like and hence
the gap shift owing to the quasiparticle self-energy of a GW
theory appears in a muffin-tin-orbital basis through a shift in
the s-partial waves.

As far as the convergence of the FP-LMTO method is
concerned, we used a double basis set of spds2p2d2 with
different 
 and smoothing radii for each orbital, a 20�20
�32 real space mesh for the smooth part of the wave func-
tions, charge density and potential, and shifted 4�4�4 re-
ciprocal space mesh for the Brillouin zone integrations in the
wurtzite case and correspondingly scaled versions for the
supercells. The supercell size convergence is discussed in
Sec. III. The charged defects are treated by including a ho-
mogeneous background charge density. The calculations are
performed at the experimental lattice parameters.

The energies of formation for different charge states q,
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� f�VO,q,EF� = Esc�ZnO:VO�

− Esc�ZnO� + �O + q�Evbm + EF� , �3�

and transition energies,


�q,q�� =
� f�VO,q,0� − � f�VO,q�,0�

q� − q
, �4�

are defined as usual. Here, Esc are the supercell total energies
�minus the energies of the free atom� for the system with and
without the defect, Evbm is the bulk valence band maximum
energy with respect to the electrostatic potential reference
energy in the supercell, and EF is the Fermi level measured
from the valence band maximum. To determine Evbm, the
usual procedure is to determine Evbm in the bulk material
relative to some local potential reference, e.g., the potential
at the muffin-tin radius. We can then use the same local
reference at an atom far away from the defect in the defect
cell where presumably the potential has become bulklike to
obtain Evbm in the supercell. All one-electron energies, how-
ever, must be measured with respect to the volume averaged
electrostatic potential, in order to be compatible with the
total energy differences in Eq. �3�. This is automatically the
case in plane-wave pseudopotential calculations but not nec-
essarily in all-electron methods, where special care must be
taken to calculate the average electrostatic potential sepa-
rately. Alternatively, we can plot the energy bands for the
supercell and identify the valence band maxima and defect
levels directly. Both procedures give the same value. It is

important to note however that it changes from LDA to
LSDA+Ud to LSDA+Ud+Us. The chemical potential for
oxygen depends on whether the system is oxygen or Zn rich.
In this paper, we take the chemical potential of the oxygen as
the half the chemical potential of molecular oxygen
�−3.76 eV� corresponding to the oxygen-rich limit. To obtain
the Zn-rich limit �O=�ZnO−�Zn

0 , one has to add −3.1 eV,
which is the energy of formation of ZnO from bulk Zn and
molecular oxygen.5

III. RESULTS

We first discuss the effects of the LSDA+U on the band
structure of ZnO. In our present calculations, we add both Ud
and Us within the LSDA+U approach. The results are shown
in Fig. 1. If we add only the Ud=3.40 eV, the center of the
Zn d orbital �−5.37 eV� with respect to the valence band
maximum is shifted down by using the Hubbard parameter
Ud to �−6.37 eV� which is similar to its position in the GWA
�−6.0 eV�.31 Compared to the LDA, where the gap is only
0.81 eV, the gap now becomes 1.30 eV. By adding Us
=43.54 eV, the gap is adjusted to 3.3 eV, close to the experi-
mental value of 3.4 eV. At the same time, we see that this
also shifts the Zn d bands further down to −7.41 eV, which is
much closer to experimental position of −7.5 eV reported by
Powell et al.32 Such “side effects” are not so easy to predict
but result from adjustments of the self-consistent potential to
the added Hubbard-U terms. Another effect of adding Ud and
Us not seen in the figure in which we aligned the VBM is

−12
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4

8

K Γ M K Γ M K Γ M

FIG. 1. �Color online� From left to right, LDA and LDA+Ud and LDA+Ud+Us band structures of ZnO. In the color version, the
contribution of the Zn d orbitals to the bands is highlighted by its degree of redness against a blue counter color, with purple indicating strong
hybridization. Because this information is not visible in the printed gray scale, we point out that the �red� d bands occur just above −8 eV
in the right panel, centered around −6 eV in the middle panel and at −4 eV in the left panel. In the left panel, strong hybridization �reddish
purple� takes place with the bottom of the O p bands at −6 eV and moderate hybridization �bluish purple� with the higher valence bands. In
the LDA+U cases, the O p bands show little hybridization with the Zn d and appear almost purely blue. The conduction bands contain
negligible Zn d and are thus purely blue.
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that the Evbm relative to the electrostatic reference potential
changes. It is 8.607 eV in LDA, 8.165 eV in LDA+Ud, and
8.727 in LDA+Ud+Us. As expected, Ud has the effect of
shifting the VBM down by about 0.4 eV. However, Us not
only shifted the conduction band up but also shifted the
VBM back up. It is not entirely clear if this absolute position
would agree with GW calculations which rarely discuss the
absolute position of the bands. We attribute it tentatively here
to the fact that in wurtzite, the VBM has by symmetry a
small s component allowed in it and hence may shift up
slightly in view of our high Us value required to obtain the
experimental gap. The value of Us needed may seem exces-
sively high. This is because in practice the occupation of
Zn s in the conduction band is not actually zero but of order
0.05. The O 2s-like band is really a Zn s-Os bonding state
and the conduction band is the corresponding antibonding
state. As long as the occupation nZns�0.5, we will get an
upward shift of the corresponding orbital energies. Further-
more, the shift in our model is applied only to the Zn s-like
partial wave inside the muffin-tin radius. In reality the cor-
responding muffin-tin orbital basis function has a significant
contribution from the interstitial region. Finally, the resulting
band shifts do not equal the orbital energy shifts in the
Hamiltonian because of the hybridizations of the bands.
Thus, we should not attach too much physical interpretation
to the Us needed but only the final band structure that is
produced by our effective Hamiltonian. That same Hamil-
tonian which gives an accurate band structure close to the
experimental gap can now be applied to the defect system.

Next, we discuss the supercell size effect. The total en-
ergy calculations were performed for supercells with 72, 108,
and 192 atoms in LDA and 72, 108, 128, and 192 atoms in
LDA+U with a regular k-point mesh of 2�2�2 for the cell
sizes of 72–128 and a �-point calculation 192-atom cell.

Makov and Payne33 proposed that the total energy of the
defect containing supercell should scale as 1 /L with L the
linear length scale of the supercell because of the dominance
of the spurious monopole electrostatic term representing the
interaction of the net charge of the point defect with the
neutralizing background charge density. In fact, this mono-
pole correction was already proposed ten years earlier by
Leslie and Gillan34 and Makov and Payne33 proposed a fur-
ther quadrupole correction varying as 1 /L3 should be added.
However, this model rests on the assumption of a well-
defined multipole expansion and was shown by Segev and
Wei35 to be an overestimate if the defect charge density is
delocalized. This is manifestly the case here, with the charge
density distributed beyond the nearest neighbor Zn atoms.
They proposed instead a scaling with number of atoms or
equivalently inverse scaling with volume. A more detailed
approach to these corrections was proposed by Blöchl.36 Us-
ing a simple model for the Madelung term, proposed by Car-
loni et al.,37 one would expect the energy of formation �at
EF=0� to vary as

�� f�R� = � f�R = �� −
9q2

10�R
, �5�

where R is the radius of a sphere with volume equal to that of
the supercell. The dielectric constant � in this equation can in

principle be obtained by fitting this equation to the supercell
results of different size and � f�R=�� is the desired limit for
an infinite cell size. The sign of the correction and scaling
with the charge state are important. The model predicts that
the cell would have a spurious over-binding by the electro-
static interaction of the defect charges with the background
and should be four times as large for a 2+ than for a �
charge state. If we plot the supercell energies of formation as
function of 1 /R, as shown in Fig. 2, however, we find posi-
tive slopes for the LDA case and for q=0 for the LDA+U
case. This might indicate that there is another type of 1 /R
dependence, perhaps resulting from elastic terms or other
long-range effects in the total energy, as was also found by
Castleton et al.38 We might then attempt to fit an equation
� f�R�=� f�R=��+� /R−9q2 / �10
R� with an additional un-
known coefficient � representing the effects independent of
charge. Even this is found to be impossible because the
slopes do not follow the expected dependence on q. We also
tried fitting the initial unrelaxed formation energies versus
1 /R and this gives indeed correct signs of the slopes, indi-
cating indeed that other 1 /R dependences not electrostatic in
nature may occur as a result of the relaxation. This is a
pronounced effect here because of the strong relaxations for
this defect. One might then attempt to correct the unrelaxed
results for the electrostatic 1 /R effects and afterward include
the size dependence of the relaxation energy separately.
However, even the unrelaxed formation energies cannot be
fit with a single effective dielectric constant, again pointing
to the problems with the validity of the multipole expansion.
In any case, the relaxation and electrostatic effects appear to
compensate each other to some extent and the results them-
selves do not really support a dominant 1 /R behavior.

From the data itself, it is not clear whether a 1 /R or 1 /R3

scaling or some combination of the two as suggested by
Castleton et al.38 provide a better fit because the range of
supercell sizes treatable is too small. In the absence of a clear
physical motivation for a 1 /R behavior and considering that
the latter gives an extrapolated value quite far from the ac-
tually calculated results, it appears safer to use an inverse

2

3

4

5

0
+
2+

0 0.02 0.04 0.06 0.08
1/R (a

0

-1
)

3

4

5

6

E
ne

rg
y

of
fo

rm
at

io
n

(e
V

)

FIG. 2. Energy of formation plotted versus 1 /R with R defining
the linear length scale 4�R3 /3=V in units of the Bohr radius a0.
Top: LDA and bottom: LDA+U.
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volume scaling. The plot assuming an inverse volume depen-
dence, shown in Fig. 3, appears to be better behaved in the
sense that it leads to a well defined �Ef�R=�� extrapolation
which is not too different from the values for the large cells.
In the interest of not introducing extra fitting parameters in
the extrapolation we prefer this over a fit to both types of
terms.

The above defined 1/volume finite size scaling approach
allows us to extract the energies of formation for the oxygen
vacancy in the dilute limit �Fig. 4�. In practice, they agree
with those of our largest cells to within an uncertainty of
about 0.1 eV. In LDA, the lowest energy of the vacancy for
EF=0 is for the 2+ charge state. For a slightly higher Fermi
energy, it goes into the � charge state before going finally to
the neutral charge state. The 2+ /+ transition is lower than
the + /0 transition; hence, the system does not show negative
U behavior. These results differ from previous results in lit-
erature, mainly as a result of our different extrapolation to
the dilute limit. In fact, if we had used the finite cell results
directly, we would still have found a negative U. Here, U
refers to the overall Coulomb � relaxation energy for adding

a second electron to the defect level, i.e., 
�+,0�−
�2+ , + �.
The latter should obviously not be confused with our Ud and
Us energies of the LDA+U method which refer to Coulomb
energies of particular orbitals.

In LDA+U, the system also starts out in the 2+ state but
now it goes directly to the neutral state and hence shows
negative U behavior but U is rather small. Furthermore, we
see that all the energy crossings �i.e., transition states� occur
somewhat closer to the valence band maximum. The LDA
+U2+ /0 level lies at 0.80 eV. This is somewhat surprising.
One would have expected the direct effect of the Ud to be to
shift the VBM down and of the Us to shift the defect level as
well as the conduction band up. However, as mentioned ear-
lier, we find that in the LDA+Ud+Us calculation, the Evbm in
Eq. �3� actually shifts up relative to the electrostatic refer-
ence potential compared to LDA and this tends to make the
energies of formation of the � and 2+ states closer to the
energy of the 0 state, which leads to a lowering of the tran-
sition energies.

The atomic relaxations are crucial to obtain the negative
U behavior. Relaxation effects are important to determine the
energy of formation and hence the transition levels. Both in
LDA and LDA+U, the Zn atoms surrounding the neutral
vacancy relax inward while for the charged vacancy they
relax outward. However, the extent of relaxation is quite dif-
ferent. In LDA the neutral vacancy relaxes inward by 3%
while the � and 2+ charged vacancies relax outward on
average 23% and 22%. These are percentages in distance of
the Zn atom to the position of the vacancy. This indicates
that for the charged vacancies, the atoms relax by forming
stronger back bonds while the neutral vacancy relaxes by
attempting to rebond within the vacancy. It is this strong
inward relaxation of the neutral vacancy which is responsible
for the negative U behavior. In LDA+U, the neutral vacancy
relaxes inward by 8%, i.e., more than in the LDA case, while
the � and 2+ charged vacancies relax outward by 3% and
18%, which is smaller than in LDA, in particular, for the �
charge state. Apparently, the Zn dangling bonds can more
effectively rebond when filled or get less repelled from each
other when empty when they include less of the Zn d contri-
bution. The amounts of relaxation found here are similar to
those given by JV, which are 12% inward, 2% outward, and
23% outward for 0, �, and 2+ respectively.

Because this system has been controversial for a while, it
is instructive to provide a comprehensive comparison. In
Table I, we compare our results to those of other groups and
also show in detail how the final results depend on the size of
the superlattice and on the use of the LDA or LDA+U ap-
proach. We can see that in LDA a negative U would have
been obtained for smaller cell sizes than our extrapolated
value but the transition energies lie around 1.00–1.5 eV,
which is already beyond the LDA gap.

Comparing with the other LDA+U calculations, there are
several important differences. First, the other calculations
only included a Ud which only partially corrects the gap.
Secondly, LZ simply looked at how Ud shifts the one-
electron levels and then correspondingly introduce an a pos-
teriori shift of the transition levels. Some authors, JV6 and
Erhart et al.10 extrapolate the defect level shift in proportion
to the gap shift to the experimental gap, while LZ7 did not do
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this extrapolation. In contrast, we use both Ud and Us which
fully corrects the gap and consistently calculate total energies
and hence transition energies within this approach. Besides
these differences, the size of the cells also plays a crucial role
and obviously larger cells or a systematic way of extrapolat-
ing is to be preferred. Our way of extrapolating differs from
that of Erhart et al.10 They did include a monopole Leslie–
Gillan correction first and then extrapolated versus 1/volume
whereas we directly extrapolate versus 1/volume because the
results were found not to scale as expected from the Leslie–
Gillan electrostatic model at all. Also, while all other calcu-
lations assumed a fixed perfect crystal volume and only al-
lowed the atomic positions to relax, Erhart et al.10 allowed
the volume of the cells containing the defects to relax to their
optimum value. This means the results really apply to the
high concentration of vacancies considered in the supercell
whereas keeping the volume of the cell fixed better repre-
sents the dilute limit. Finally, Zhang et al.5 discussed various
ways of correcting for the band gap but used fairly small
cells. Other differences in the methodology, pseudopotential
versus projector-augmented wave �PAW� or all-electron FP-

LMTO and k-point convergence may also play a minor role
but are harder to trace back. The B3LYP results of
Patterson11 give a band gap of 3.34 eV close to the experi-
mental gap and place the defect transition levels very close
to the valence band edge. Interestingly, their approach which
is a hybrid density-functional-theory Hartree–Fock-type ap-
proach as one could say is our LSDA+U also place the
defect levels closer to the VBM instead of farther away as
obtained in the Ud only approaches. In our case, however,
this is ultimately due to the shift in Evbm relative to the elec-
trostatic potential.

Our results give a much less negative U than previous
work. This is related to the degree of relaxation. For the �
charge states, our results on the degree of relaxation agree
fairly closely. However, JV for example obtain a larger dif-
ference between the 2+ and neutral states and correspond-
ingly a more negative U value.

We note that there is also some controversy on the forma-
tion energies themselves. While we as well as LZ7 and Erhart
et al.10 find relatively low energies of formation of the oxy-
gen vacancy in the neutral state, JV find a much higher

TABLE I. Comparison of energies of formation and transition levels between different calculations.
Unless otherwise indicated, the results are obtained here. � means extrapolated to the dilute limit.

Method Supercell

Energy of formation at EF=0
�eV�

Transition energy
�eV�

U0 � 2+ + /0 2+ /0 2+ /+

LDA 72 4.55 3.57 2.07 0.97 1.24 1.50 −0.53

108 4.57 3.48 2.11 1.09 1.23 1.37 −0.28

192 4.58 3.38 2.09 1.20 1.24 1.29 −0.09

� 4.59 3.26 2.11 1.33 1.24 1.15 0.18

36a 4.6 3.9 2.6 0.7 1.0 1.3 −0.6

72b 0.17 0.83 1.49 −1.32

96c 0.16 0.73 1.30 −1.14

GGA �d 4.46 3.72 2.98 0.74 0.74 0.74 0

LDA+Ud+Us 72 5.12 4.19 3.16 0.93 0.98 1.03 −0.05

108 5.13 4.24 3.34 0.89 0.89 0.89 −0.004

128 5.06 4.23 3.18 0.83 0.94 1.05 −0.11

192 5.09 4.26 3.36 0.83 0.86 0.90 −0.04

� 5.05 4.30 3.44 0.75 0.80 0.85 −0.05

LDA+corr. 36a 5.5 4.6 0.1 0.9 2.7 4.5 −3.6

LDA+Ud 72b 0.94 1.60 2.24 −1.32

LDA+Ud 96c 0.64 1.18 1.73 −1.09

LDA+Ud extrapol 96c 1.94 2.42 2.90 −0.96

GGA+Ud �d 5.17 4.17 2.73 1.0 1.22 1.44 −0.44

GGA+Ud extrapol �d 5.49 4.37 1.85 1.12 1.82 2.52 −1.40

B3LYP 72e 0.04 0.34 0.64 −0.60

aZhang et al. �Ref. 5� pseudopotential calculations with plane-wave cutoff gap correction.
bLany and Zunger �Ref. 7� LDA and LDA+U calculations using the projector augmented-wave method
�PAW� �Ref. 39�.
cJanotti and Van de Walle �Ref. 6� pseudopotential LDA, LDA+U, and LDA+U extrapolated to full gap.
dErhart et al. �Ref. 10� PAW �Ref. 39� GGA, GGA+U, and GGA+U extrapolated to full gap correction.
ePatterson et al. �Ref. 11�, B3LYP all-electron, Gaussian orbitals.
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value. This has implications for the question whether the
oxygen vacancy can be expected to exist in as-grown
samples. We wish not to delve into this controversy here but
merely note that most experimental studies on the vacancy
were done with samples in which the vacancy is introduced
by radiation.

Next, we turn to a comparison with the experimental stud-
ies. According to Vlasenko and Watson,19 the optically de-
tected EPR signal corresponds to a spin-dependent process

EM0 + VO
+ → EM+ + VO

0 . �6�

The corresponding energy difference is Eg+� f�+�−� f�0�,
which evaluates to 2.53 eV, using our calculated gap of
3.28 eV. Strictly speaking, we should here use the energy of
the neutral state in the structure of the initial � state which
might be somewhat higher, perhaps of order 0.1 eV. In the
simplest interpretation, this electron transfer leads to the lu-
minescence band centered at 600 nm and for which VW es-
timate the onset to be at 500 nm corresponding to 2.47 eV.
To within 0.1 eV, there appears to be good agreement.

In the study of Evans et al.,20 the reverse process is stud-
ied. Namely, the activation of the VO

+ by exciting an electron
from the neutral vacancy to the conduction band. They find
that a minimum excitation energy of 2.1 eV is required. One
might have expected on the basis of the Frank-Condon prin-
ciple that this energy would have been slightly higher, rather
than lower than the value given by VW. These authors notice
that at the same time the Fe3+ EPR signal present in their
sample is quenched. Fe-impurity traps are thus preventing
the backflow of the electron to the VO

+ state resulting from the
optical excitation. The possibility must be considered that the
electrons in this case are directly transferred to the Fe defect
without the intermediate of the conduction band The position
of the defect level for Fe3+ is not known experimentally but
in a calculation by Wardle et al.,40 it occurs at about 2.5 eV
above the VBM or about 0.9 eV below the conduction band.
This would then lead to an estimate of 1.7 eV for the activa-
tion energy of the VO

+ . This seems too low to be in agreement
with the data and is furthermore implausible because this
would require that both defects are in close proximity of
each other. On the other hand, the value obtained by VW is
possibly somewhat high because they base it on the onset of
the luminescence band located at 500 nm instead of on its
maximum occurring at 600 nm. To within the uncertainties
of a few 0.1 eV, these two experiments agree on a position
of the defect level in the lower half of the gap. If we then
settle on a most plausible energy value of 2.2�0.1 eV for
this energy transition from the conduction band to + /0 tran-
sition level based on the experiments, it would mean that our
calculation positions the defect levels a little bit too close to
the VBM. As mentioned earlier, this derives in part from the
upward shift of Evbm due to our Us parameter, which may be
slightly overestimated.

It is also of interest to consider the Kohn–Sham one-
electron eigenvalues of the defect in its different charge
states. In Fig. 5, we show the bands of the 192 atom super-
cell in the different charge states in the LSDA+Ud+Us
model, while in Fig. 6, we show them for the LDA case. In
the LDA+U case, defect bands can easily be recognized in

the gap as almost dispersionless bands. We can see that the
empty level of the 2+ state lies quite high in the gap at
1.79 eV. This is consistent with the fact that in this case the
defect relaxes outward and thus the defect level corresponds
to more or less unperturbed Zn dangling bonds. Upon catch-
ing a first electron, however, the occupied defect level moves
significantly down to 0.55 eV above the VBM. This happens
by rebonding the dangling bonds with the available electron
leading to a significant reduction of the outward relaxation.
An empty state of opposite spin occurs at 1.1 eV. Upon
catching a second electron, the system again becomes non-
spin-polarized and the now doubly filled level moves slightly
up to 0.9 eV. Thus, the optical transition from the ground
state of the VO

+ to the conduction band is predicted to be
about 2.4 eV, similar to the conclusions obtained from the
transition energies. Again, it is somewhat larger than in the
measurement of Evans et al.20 We can also try to interpret the
Vlasenko and Watkins19 results using the one-electron levels.
In this case, an electron is transferred from the effective mass
donor to the first empty level of the 1+ charge state vacancy,
which corresponds to an energy for the luminescence of
2.2 eV.

In the LDA case, the band in the gap occurs for the neu-
tral case and it lies at 0.2 eV at the � point, very close to the
VBM. Even this band has significantly more dispersion than
in the LDA+U case. In the 2+ state, a relatively flat band
different from the folded bulk bands is seen as the second
conduction band. This means the empty state of the defect
level is now a resonance instead of a gap level. In the 1+
state, this band is still above the conduction band minimum,
and thus the extra electron was added to the conduction band
minimum instead of in a localized level. This shows clearly
the failure of the LDA to correctly describe the electronic
structure of the defect. Because of the very strong underes-
timate of the gap, the filling of the levels is incorrect. This
also explains why in the LDA case, the relaxation of the 1
+ state is not very different from that in the 2+ state, in
contrast with the LDA+U. It also implies that the defect
level should not be moved up along with the conduction
band when applying gap corrections because it is essentially
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FIG. 5. Energy bands of the 192 atom supercell in LDA+Ud

+Us in the different charge states from left to right 0, �, and 2+.
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a different state. A much closer relation between the one-
electron levels and the transition levels is observed in the
LDA+U case. The occurrence of a defect level deep in the
gap even for the 2+ states in our LDA+U calculation invali-
dates Lany and Zunger’s proposed model7 for persistent con-
ductivity due to the oxygen vacancy because their model is
based on the occurrence of the level as a resonance above the
conduction band.

Our LDA+Ud+Us defect Kohn–Sham band structure has
close similarities to that of the B3LYP calculation of
Patterson,11 except that their levels lie even closer to the
valence band maximum and show a larger spin-splitting for
the 1+ state. This is consistent with the fact that Hartree–
Fock has stronger spin splittings. While in B3LYP, a mixture
of LDA and Hartree-Fock is used, we use in some sense a
screened Hartree–Fock.

IV. CONCLUSION

All-electron first-principles total energy calculations were
performed for the oxygen vacancy in ZnO using the LSDA
+U approach with both a shift of the Zn d and Zn s bands
which �almost� fully corrects the band gap. The corrections
were applied systematically to the total energy calculations
and hence transition energies instead of applied as a poste-
riori corrections. The supercell size effects were studied and
calculations for different sizes were extrapolated in a system-
atic way by assuming an inverse volume dependence. No
justification for the Leslie–Gillan or Makov–Payne mono-
pole correction was found since the predicted inverse linear
size behavior had the wrong signs expected from electrostat-
ics and did not scale with the square of the charge state q2.
We caution that this result may be specific to the type of
defect and the degree of localization of the defect charge. In
the present case of a vacancy, the extra charge resides on
neighboring dangling bonds and further atoms and is thus not
consistent with a point charge. Furthermore, relaxation is
strong and leads also to competing size effects. Using an

inverse volume dependence, however, we find results very
close to those of our largest cells, which are significantly
larger than in previous work. In the limit of infinite dilution
and LDA+U, we still found negative U behavior related to
the strongly different relaxations of the neutral and 2+ charge
states but our 
U
 value was significantly smaller than found
before, only −0.05 eV. We find the 2+ /0 transition level to
lie at 0.80 eV, i.e., in the lower half of the gap and in fact
lower than in LDA. This occurs because the Evbm actually
moves up relative to the electrostatic reference level within
our LDA+Ud+Us model. The correctness of this specific
prediction of the model is difficult to ascertain directly from
the bulk band structure, but agrees qualitatively though not
quantitatively with the only other calculation that uses sys-
tematically a Hamiltonian which gives the correct band gap,
namely the B3LYP calculation of Patterson,11 which like our
model builds in a certain degree of mixture of Hartree–Fock
and LDA. In any case, however, the inspection of the one-
electron bands shows a clear failure of LDA in populating
the wrong level when considering the single � charge state.
The results of our calculation are found to agree with the
experimental data of VW,19 when assuming the most
straightforward interpretation of their data, their model �a� in
which the luminescence observed to be correlated with the
ODEPR is assumed to be directly resulting from the capture
of an electron in the VO

+ state from an effective mass donor,
as well as with those of Evans et al.,20 which measure essen-
tially the inverse process. The quantitative agreement is to
the same degree of accuracy as the agreement between those
two experiments, i.e., a few 0.1 eV. When taken together,
these results all point to a defect level at about 1.0�0.2 eV.
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