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We apply dynamical mean field theory to study a prototypical model that describes charge ordering in the
presence of both electron-lattice interactions and intersite electrostatic repulsion between electrons. We calcu-
late the optical and dc conductivity and derive approximate formulas valid in the limiting electron-lattice
coupling regimes. In the weak-coupling regime, we recover the usual behavior of charge density waves,
characterized by a transfer of spectral weight due to the opening of a gap in the excitation spectrum. In the
opposite limit of very strong electron-lattice coupling, instead, the charge ordering transition is signaled by a
global enhancement of the optical absorption, with no appreciable spectral weight transfer. Such behavior is
related to the progressive suppression of thermally activated charge defects taking place below the critical
temperature. At intermediate values of the coupling within the polaronic regime, a complex behavior is
obtained where both mechanisms of transfer and enhancement of spectral weight coexist.
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I. INTRODUCTION

As opposed to conventional charge density waves,1 which
are well understood in terms of lattice-driven instabilities of
the Fermi surface in metallic systems, there is no unified
description of the charge ordering �CO� transitions observed
in strongly interacting systems or “bad metals.” Typical ex-
amples of such systems are transition-metal oxides, which
are invariably characterized by a complex interplay between
several microscopic interactions, involving the charge, spin,
orbital, and lattice degrees of freedom. This complexity
seems to preclude the identification of a simple, common,
charge ordering mechanism. Still, electron-lattice interac-
tions are always present to some extent and often play a
dominant role in driving the CO transition in these systems.
Charge ordering phenomena involving a strong electron-
lattice coupling have been found in manganites,2–4

nickelates,5,6 layered cobaltates,7,8 magnetite,9–11

vanadates,12,13 and oxoborates,14 as well as in other inorganic
low-dimensional systems.15,16 The lattice degrees of freedom
could also be relevant in the charge ordered phases of the
so-called “telephone-number” ladder compounds,17 as well
as in two-dimensional organic salts,18 although in those
cases, most theoretical interpretations up to now have fo-
cused on models with purely electronic interactions.

In this work, we focus on a minimal model that describes
charge ordering in the presence of electron-lattice interac-
tions, with particular attention to the polaronic regime ob-
tained at strong coupling. The model consists of electrons on
a bipartite lattice at a commensurate concentration of one
electron on every two sites, interacting locally with disper-
sionless lattice vibrations. The electrons also interact mutu-
ally via an intersite electrostatic repulsion, which can be
thought of as the screened part of the long-ranged Coulomb
potential. While this oversimplified model only retains part

of the complex physics involved in real systems, its solution
can be helpful to clarify certain aspects of the charge order-
ing phenomena that are common to systems with strong
electron-lattice interactions and that can, in principle, be
identified experimentally. To be specific, we solve the model
by performing the following approximations.

�i� The magnetic degrees of freedom are taken out of the
game by resorting to spinless electrons. This enforces locally
the constraint of no double occupancy characteristic of the
limit of strong “Hubbard” �on-site� repulsion. It is appropri-
ate for our purposes as long as we do not aim at describing
the effects of electronic correlations on the low-energy phys-
ics, such as the existence of a quasiparticle peak or the in-
duced magnetic exchange. In principle, this approximation is
viable as long as the magnetic and charge degrees of freedom
are governed by different energy scales. In such case, the
magnetic interactions are not expected to have a strong in-
fluence on the charge ordering pattern �although exceptions
do exist19–21�. This separation of energy scales is realized, for
instance, in magnetite �Fe3O4�,22 where the CO transition
occurs within a ferromagnetic phase that preexists at a much
higher temperature. More examples can be found in systems
�such as V3O5 �Ref. 13�� where the CO transition takes place
within a paramagnetic phase, the magnetic order setting in at
a much lower temperature. The spinless approximation is
also relevant to half-metals, such as the colossal magnetore-
sistance manganites.

�ii� We consider a single electronic band, which rules out
the orbital degrees of freedom and their possible ordering,
which is known to play an important role in specific com-
pounds.

�iii� The lattice vibrations are assumed adiabatic, i.e.,
their characteristic energy is much smaller than the electronic
bandwidth, which is typically the case in transition-metal
oxides. The adiabatic approximation is enforced here by
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treating the lattice degrees of freedom as static variables with
a given �thermal� statistical distribution. As a consequence,
the low-energy spectral features that derive from the quan-
tum nature of the phonons are lost. These would appear at
energies comparable to or below the phonon energies. Such
features are anyhow of minor quantitative importance in the
polaronic regime of interest here, where most of the spectral
weight is moved to higher energies, of the order of the po-
laron binding energy. The same argument justifies the neglect
of low-energy phenomena originating from electronic corre-
lations, as discussed at point �i� above, in all cases where the
polarons set the dominant energy scale.

�iv� We apply single-site dynamical mean field theory
�DMFT�, appropriately adapted19,23–25 to account for the
charge unbalance between neighboring sites in the charge
ordered state. This approach is known to deal very effec-
tively with local interaction mechanisms, regardless of their
strength. It is therefore expected to give an accurate descrip-
tion of the electron-lattice physics. As was shown in Ref. 23,
this approach correctly describes the crossover between the
weak-coupling charge density wave regime and strong-
coupling polaronic regime and allows us to shed light on the
role played by defects of the lattice polarization at the order-
ing transition. A lesser accuracy is achieved in treating the
intersite Coulomb repulsion since nonlocal interactions re-
duce to the mean field �Hartree� level in single-site DMFT.
This is, however, not a primary limitation19,20 in the regime
we are mainly interested in, where the physics is dominated
by the electron-lattice interaction.

The main result of this work is the identification of quali-
tatively different behaviors of the electrodynamic response in
the two fundamentally distinct regimes of charge ordering,
governed by the strength of the electron-lattice interaction. In
the weak-coupling regime, the electrodynamic response is
dominated by the opening of an energy gap in the excitation
spectrum of an otherwise metallic system. At the ordering
transition, the optical spectral weight is transferred from the
Drude peak to the region above the gap, and the dc conduc-
tivity acquires a semiconducting character. On the contrary,
in the strong-coupling limit, charge localization is already
present in the normal phase due to the formation of self-
localized polarons. Correspondingly, the low-energy spec-
trum is already strongly depleted by a polaronic
“pseudogap,” and the genuine gap opening occurring at the
transition does not give rise to any appreciable depletion or
shift of the low-frequency spectral weight. Instead, the order-
ing of polarons results in a global enhancement of the optical
spectral weight, which is opposite to what is expected from a
conventional charge density wave. The two scenarios de-
scribed above coexist in the polaronic regime at moderate
values of the electron-lattice coupling. This leads to a com-
plex behavior presenting both a transfer and an enhancement
of the spectral weight, resulting in a nonmonotonic tempera-
ture dependence of the total optical weight within the CO
phase. The inclusion of a direct intersite Coulomb interaction
extends this complex intermediate region to larger electron-
lattice interaction strengths.

The solution for the one-particle spectral function has al-
ready been published in Ref. 23 in a model with electron-

lattice interactions alone. Here, we extend that treatment to
calculate the optical and dc conductivity throughout the pa-
rameter space, including an intersite Coulomb repulsion be-
tween electrons. We also derive analytical expressions for
these quantities that are valid in the polaronic regime, eluci-
dating the role played by charge defects in both optical ab-
sorption and charge transports. It can be noted that an analo-
gous model, without the Coulomb interaction term, was
studied variationally in Ref. 26. There, however, the physics
of defects was not addressed.

The paper is organized as follows. The general formalism
for treating the charge ordered broken-symmetry phase
within the DMFT is presented in Sec. II. The equations are
solved numerically in Sec. III. The optical and dc conductiv-
ity are calculated in Secs. IV and V, respectively, making use
of the Kubo formula. The results are discussed in Sec. VI.

II. MODEL AND SELF-CONSISTENT SOLUTION

We consider the following Holstein–Coulomb Hamil-
tonian:

H = −
t

�z
�
�ij�

�ci
†cj + H.c.� +

1

2
kXi

2 + g�
i

�ci
†ci − n�Xi

+
V

2z
�
�ij�

�ni − n��nj − n� . �1�

where the operator ci
† �ci� creates �destroys� a spinless elec-

tron at site i, n is the average electron density per site, and Xi
are the displacements of local oscillator modes, which are
coupled to the local electron density via the parameter g. In
addition to this electron-phonon interaction à la Holstein, the
electrons interact mutually via a nearest neighbor repulsion
term V of Coulomb origin. The scaling of the repulsive term
is chosen in such a way that the energy cost for a deviation
from perfect charge ordering �i.e., flipping an occupied and
an empty site� equals V. The scaling of the kinetic term t /�z
yields a finite free-electron bandwidth in the limit of infinite
connectivity �number of nearest neighbors z→��. We shall
consider for simplicity a semi-elliptical density of states
�DOS� of half-width D=2t, corresponding to a Bethe lattice
of infinite connectivity. Nevertheless, the present calculation
scheme can be easily generalized to other model DOS to
include more realistic band structures, as obtained, for ex-
ample, from ab initio calculations of specific systems. We
shall specialize to the commensurate concentration n=1 /2,
which is equivalent to a quarter-filled band in the case of
electrons with spin. In the present spinless case, the chemical
potential is fixed at �=0 from particle-hole symmetry.

An order parameter for the CO transition can be defined
as the charge disproportionation,

�n = nA − nB, �2�

which varies between 0 and 1, the average density being
given by n= �nA+nB� /2=1 /2 �here, A and B label, respec-
tively, the charge-rich and charge-poor sublattices�. The for-
malism needed to treat the electron-phonon interaction was
set up in Ref. 23 by mapping the original lattice problem
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onto a pair of coupled impurity models. In the limit of infi-
nite connectivity, any additional nonlocal interaction term
self-averages to its mean field �Hartree� value. Therefore, the
extra Coulomb term can be straightforwardly included via a
site dependent chemical potential shift in the Weiss fields,
i.e., the local fields that take into account the effects of the
electron itinerancy. On the Bethe lattice, the new Weiss fields
read

�G0
−1�A = i�n +

V

2
�n −

D2

4
GBB, �3�

�G0
−1�B = i�n −

V

2
�n −

D2

4
GAA. �4�

It can be observed by direct inspection of Eqs. �3� and �4�
that the Coulomb interaction does not affect the properties of
the system in the normal phase �where �n=0�, which is a
drawback of the present approximation.

The above system of equations is closed self-consistently
by expressing the site-diagonal propagators GAA and GBB in
terms of the self-energy arising from the local interaction
with the static phonon field,

GAA =	 dX
PA�X�

�G0
−1�A − gX

, �5�

and similarly for GBB. Here, PA�X� and PB�X� are the prob-
ability distribution functions �PDFs� for the phonon displace-
ments on the A and B sublattices, which can be obtained by
tracing out the electronic degrees of freedom as23

PA�X� � e−�kX2/2

n

��G0
−1�A − gX�ei�n0+

. �6�

The numerical solution is achieved by successive iterations
of the above equations, starting from a given ansatz for the
sublattice propagators GAA and GBB. In the following, we
shall take the half-bandwidth D as the unit of energy.

We now briefly analyze the phase diagram obtained from
the DMFT solution of the model �Eq. �1��. Figure 1 shows

the critical temperature for the charge ordering transition as a
function of the electron-phonon coupling parameter �
=g2 /2kD, defined as the polaron energy EP=g2 /2k in units
of the half-bandwidth. At V=0, we recover the bell-shaped
result obtained in Ref. 23. Such bell shape originates from
the different mechanisms that drive the charge ordering in
the two limiting regimes of small and large �. At weak cou-
pling, the critical temperature monotonically increases with
the electron-phonon coupling, i.e., the same qualitative trend
predicted by the usual BCS theory.27 In this regime, the
charge disproportionation and the long-range order take
place simultaneously at Tc. At strong coupling instead, due to
polaron formation, a local charge segregation corresponding
to the localization of the electrons on randomly distributed
sites occurs at a temperature T�EP, much larger than order-
ing temperature Tc itself. The actual critical temperature Tc
marks the onset of spatial ordering of such randomly distrib-
uted polarons. It is proportional to the “charge superex-
change” J=D / �4�� and therefore decreases as the electron-
phonon coupling increases. The asymptotic strong-coupling
expression for the critical temperature is Tc=D / �16��. From
the above discussion, we see that the maximum of Tc, ob-
tained at ��1 for V=0, signals the crossover between the
weak coupling and the polaronic behavior.

The ordered phase below Tc is also qualitatively different
depending on the value of the electron-phonon coupling. In
particular, in the strong-coupling regime, the preexisting po-
larons progressively order upon lowering the temperature
and only attain a perfect alternate order at T=0. At any finite
temperature, a certain number of defects exist within the CO
phase in the form of charges localized on the “wrong” sub-
lattice. The existence of such thermally induced defects is
intimately related to the existence of local lattice distortions
in the normal phase, i.e., polaron formation.23 We can there-
fore identify the existence of a polaronic CO phase, as op-
posed to the weak-coupling charge density wave, as the
phase in which these defects are present.

The defect phase can be quantitatively characterized by
analyzing the sublattice PDFs, which acquire a bimodal
structure for sufficiently large �. More efficiently, one can
look for the existence of two nondegenerate minima in the
sublattice adiabatic potentials defined as VA,B=−T log PA,B.
The result of this procedure is illustrated by the shaded areas
in the phase diagram of Fig. 1. We see that the defect phase
emerges right at the polaron crossover, i.e., in the region
below the maximum of Tc vs �.

Including a direct intersite repulsion clearly favors both
types of charge ordering, as it increases Tc for all values of �
�compare the different curves in Fig. 1�. Still, the evolution
of the phase diagram with V suggests a nontrivial interplay
between the direct Coulomb repulsion and the polaronic
physics, as a finite V shifts the polaron crossover �as well as
the boundary of the defect phase� toward larger values of �.
It can be argued that, by treating the intersite Coulomb inter-
action beyond mean field, charge fluctuations of the same
nature of the lattice defects evidenced above could start play-
ing a role.28 For this reason, in the following, we shall re-
strict to the regime of small to moderate V, where the domi-
nant physics is set by the electron-phonon interactions,
therefore suppressing the fluctuations of the Coulomb inter-
action term.

FIG. 1. �Color online� Critical temperature delimiting the CO
phase as a function of �=g2 /2kD for different values of V /D. The
shaded areas below Tc mark polaronic regions where defects are
present. The existence of defects is tracked by looking at metastable
minima of the adiabatic potentials VA,B=−T log�PA,B�.
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The sublattice PDF PA�X� evaluated at �=2, well inside
the polaronic regime, is shown in Fig. 2. Defects in the A
sublattice give rise to a minority peak of the opposite “po-
larization” with respect to the preferred one. The area of the
minority peak can be used to define the number of defects
�nd� in the CO phase. In the strong-coupling regime, it tends
to 1/2 at T=Tc, where the two peaks become equivalent �po-
larons are randomly distributed over the two sublattices�,
while it vanishes exponentially at T=0, when perfect charge
ordering is achieved. This occurs because as the temperature
is reduced, the population of the metastable minimum of the
potentials VA,B is progressively depleted, leading to an expo-
nential reduction in nd. It should be noted that the possibility
of strictly nd=0 is related to our classical treatment of the
lattice degrees of freedom, which breaks down at tempera-
tures much smaller than the characteristic phonon energies.
Properly including phonon quantum fluctuations29 would
lead to the appearance of charge defects even in the zero
temperature limit.

In the limit �→�, the number of defects is related to the
order parameter through

�n = 1 − 2nd. �7�

At finite � in the polaronic phase ��	1�, Eq. �7� above has
to be replaced by �n= �1−2nd��1−1 / �8�2�+¯�, which
properly accounts for the fact that the charge disproportion-
ation �n does not strictly tend to 1 even when the polarons
are perfectly ordered �nd=0�. This is because at finite �, the
electronic wave function is not fully localized and acquires a
finite extension on the neighboring sites, which necessarily
pertain to the minority sublattice.

The evolution of the charge disproportionation with T in
different regions of the phase diagram is reported in Fig. 3.
In the polaronic regime, �n is a universal function of T /Tc,
independent of V, as shown in Fig. 3�b�. This means, in
particular, that the number of defects nd is a function of T /Tc
alone, and V only enters implicitly through the determination
of Tc. Interestingly, the gap ratio �T=0 /Tc can become very
large in the polaronic regime due to the pre-existing

pseudogap ��EP
Tc.
23 In the opposite weak electron-

phonon coupling limit, we recover a BCS-like behavior for
�n. In that case, the gap is given by �= ��D+V /2��n. Its
value at T=0 satisfies the mean field ratio �T=0 /Tc=3.54. It
is worth noting that this limit is only reached asymptotically
as �→0. For small but finite �, Tc is dramatically reduced by
thermally induced lattice fluctuations,23,30 while �T=0 is not.
Therefore, the gap/Tc ratio rapidly increases with � even well
outside the polaronic region.

III. OPTICAL CONDUCTIVITY

A. Dynamical mean field theory formulation

We now derive the Kubo formula for the optical conduc-
tivity in the CO phase. To this aim, we develop a general
formalism which makes explicit use of translational invari-
ance as in the hypercubic lattice, following the lines of Ref.
31. In this framework, it is possible to write the expressions
for the electron propagators in k space. This is achieved
through a canonical transformation that defines new electron
creation operators ck

A,B= �ck�ck+Q� /�2, where Q
= �� ,� , . . .� is the instability wave vector in any dimensions
and k spans the reduced Brillouin zone �RBZ�. With the
above transformation, the tight binding term becomes
�k

RBZk�ck
†Ack

B+ck
†Bck

A�, where k is the original noninteracting
band dispersion. The fully interacting fermion propagators
on the bipartite lattice can be defined as the matrix elements,

Gk
�� = − i�Tck

��t�ck
��0�� ��,� = A,B� , �8�

of the 2�2 matrix Ĝk. The corresponding spectral functions

are given by �̂�k ,��=−Im Ĝk��� /�. Once the local self-
energies on the two sublattices are known from the solution
outlined in Sec. II, the Green’s functions of Eq. �8� are ob-
tained by inverting the matrix,

Ĝk
−1 = � zA − k

− k zB  , �9�

with zA=�+ i�+�−�A���, and similarly for zB.
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FIG. 2. �Color online� Sublattice phonon PDF at �=2. The dif-
ferent curves are for V=0 �T /Tc=0.3 and 0.9� and V=1 �T /Tc

=0.9�. The points correspond to the DMFT self-consistent solution
and the lines represent the strong-coupling theory �Eq. �B5��. The
locus and shape of the peaks do not depend explicitly on V.
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In the tight binding model of Eq. �1�, the current operator
along a given �say, x� direction reads

Jx = − i
t

�z
�
i,�̂

�xci+�̂

†
ci, �10�

where the sum extends over all sites i of the lattice and their

z nearest neighbors, identified by the vectors �̂. Transforming
to the sublattice operators, the current operator can be ex-
pressed as

Jx = − i �
k�RBZ

vk�ck
†Ack

B + ck
†Bck

A� . �11�

In a hypercubic lattice, only the two neighbors along the x
direction contribute to the above sum, and the corresponding
current vertex is vk=2 t

�z
sin kx.

In the context of DMFT, due to the vanishing of vertex
corrections,32–34 the current-current correlation function can
be expressed exactly in terms of single particle Green’s func-
tions. This simplification still holds in the broken-symmetry
phase because the k→−k symmetry is preserved even in the
reduced Brillouin zone. Reminding the definitions in Eq. �8�,
we can write the current-current correlation function as

�TJx�t�Jx�0�� = �
k�RBZ

vk
2 Tr��xĜk�t��xĜk�− t�� , �12�

where we have made use of the Pauli matrix �x to obtain a
compact expression. The trace is performed in the sublattice
indices A ,B.

The optical conductivity follows from the Kubo formula,
upon transforming the current-current correlation function to
the frequency domain,

���� = �0	
RBZ

dN�����	
−�

�

d� Tr��x�̂�,� + ���x�̂�,���

�
f��� − f�� + ��

�
. �13�

In the above equation, the constant �0=�e2a2 /�v carries the
dimensions of conductivity, with a as the lattice spacing, v as
the volume of the unit cell, f���= �1+e���−���−1 as the Fermi
function, and �̂ as the spectral functions associated with sub-

lattice propagators Ĝ. Taking advantage of the local nature �k
independence� of the self-energy, the sum over momenta in
Eq. �12� has been replaced by an integration over energies,
weighted by the DOS N�� and the current vertex ��� of the
noninteracting lattice. Use has also been made of the fact that
vk

2 is invariant under the transformation k→k+Q. The inte-
gration over the band dispersion  in the current-current cor-
relation function can be performed analytically, leading to

���� = �0	
−�

�

d�B�� + �,��
f�� + �� − f���

�
. �14�

The function B is defined as

B�� + �,�� = −
1

4�
Re���z1

A,z1
B;z2

A,z2
B� − ��z1

A,z1
B;z2

A�,z2
B��� ,

�15�

where

��z1
A,z1

B;z2
A,z2

B� =
2

�1
2 − �2

2�K��2�
�2

�z1
Bz2

A + z1
Az2

B + 2�2
2�

−
K��1�

�1
�z1

Bz2
A + z1

Az2
B + 2�1

2�� , �16�

and

z1
� = � + � + i� − ���� + �� , �17�

z2
� = � + i� − ����� , �18�

�1 = �z1
Az1

B, �19�

�2 = �z2
Az2

B, �20�

with �=A ,B the sublattice index. The function K is the Hil-
bert transform of the product N�����, which can be evalu-
ated analytically in the case of a semi-elliptical DOS. For
this, we take the following form of the current vertex ���
= �D2−2� /3. This is chosen in such a way as to fulfill the
f-sum rule,35–37 which relates the total optical spectral
weight,

W = 	
0

�

d����� , �21�

to the kinetic energy K of the interacting system. The dem-
onstration of the f-sum rule in the broken-symmetry phase is
explicitly carried out in Appendix C.

In Secs. III B and III E, we shall analyze separately the
results in the weak electron-phonon coupling regime ��1,
in the extreme strong-coupling limit �
1, and in the most
interesting polaronic regime �	1.

B. Weak coupling regime: �›1

In Fig. 4, we report the results for the optical conductivity
at �=0.4 for different values of the intersite Coulomb inter-
action V. At such a moderate value of the electron-lattice
coupling, although the overall behavior qualitatively agrees
with what is expected in the conventional mean field sce-
nario �see Appendix A, and the dashed lines in Fig. 4�, the
spectral features are appreciably smoothened by the presence
of lattice fluctuations. A measure of such broadening is pro-
vided by the variance s=�2EPT of the energy fluctuations of
the phonon field,38,39 which is of the order of 0.1D in the
example of Fig. 4. This is a sizable fraction of the electronic
bandwidth, which is, however, sufficiently small that the
overall band picture remains qualitatively valid at tempera-
tures comparable or below Tc, which are the ones of interest
here.

Due to the classical approximation for the phonons, the
Drude peak in the normal phase is replaced by an incoherent
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Gaussian peak around �=0,40 whose width is proportional to
s. Below the critical temperature, a finite charge dispropor-
tionation develops �cf. Fig. 3�, which is reflected in the op-
tical spectra through a progressive gap opening. Correspond-
ingly, the low-frequency spectral weight is transferred to
frequencies above the optical gap located at �opt��2�D
+V��n. The sharp square-root divergence at �=�opt ex-
pected from the standard mean field treatment �dashed line,
corresponding to Eq. �A2�� is also smoothened due to the
presence of thermal lattice fluctuations. These are also re-
sponsible for the subgap absorption tail observed in Fig. 4,
which is absent in the mean field result. As shown in Ref. 26,
a similar broadening can also arise at T=0 due to quantum
lattice fluctuations.

The effect of a finite V is to strengthen the CO phase,
without modifying the broadening of the spectral features.
The optical gap increases both due to the increased value of
the charge disproportionation �n �see Fig. 3� and to the ex-
plicit contribution V�n, which represents the extra electro-
static cost to move one particle from one sublattice to the
other.

C. Strong coupling limit: �š1

The results for the optical absorption in the strong-
coupling limit are shown in Fig. 5 for �=2. The behavior is
very different from the weak-coupling regime analyzed pre-
viously. This is seen already in the normal phase, where the
Drude peak is replaced by a broad peak at finite frequency.
This peak arises due to the formation of small polarons and
reflects the optical transitions within the polaron internal
structure. The peak position scales with the polaron energy
roughly as ��2EP, and its width is again proportional to the
spread s of the lattice fluctuations.

Because the low-frequency spectral weight is already
strongly suppressed in the normal phase, no clear gap open-
ing is visible at Tc. Indeed, in Fig. 5�a� ��=2 and V=0�, there
is no visible depletion of the optical conductivity at low fre-

quency �apart from the natural evolution of the peak width
governed by s� and no clear shift of the position of the po-
laron peak as the temperature is reduced below Tc. Rather,
the ordering transition leads to a sharp increase of the spec-
tral weight associated with the polaronic peak. As we dem-
onstrate hereafter, this increase is a direct consequence of the
suppression of charge defects and constitutes a distinctive
signature of the polaronic charge ordering.

The observed behavior can be understood by noting that
in the normal phase, only half of the sites neighboring a
given polaron are unoccupied and therefore available for an
optical transition, as induced by the current operator Eq.
�10�. The number of available empty neighbors increases as
charge defects are progressively removed below Tc and so
does the weight of the polaronic absorption peak until each
polaron becomes exclusively surrounded by unoccupied sites
at T=0. The above analysis can be carried out, in general, to
show that the probability for polaronic optical transitions is
proportional to nA�1−nB� �for polarons in sublattice A� and
nB�1−nA� �for polarons in sublattice B�. The sum scales as
�1+�n2�, leading to an increase of up to a factor of 2 of the
optical spectral weight in the CO phase.

A more detailed discussion of the spectral weight en-
hancement is provided in Appendix B, where we derive the
analytical expressions for the optical conductivity valid at
large �. We report here the formula appropriate in the CO
phase at V=0, which is simply expressed in terms of the
normal state polaron absorption �norm��� as

���� = 2�1 − 2nd�1 − nd���norm��� . �22�

This equation directly relates the observed enhancement of
the polaron peak with the suppression of the number of de-
fects, in agreement with the qualitative argument given
above, as can be easily shown using Eq. �7� above. Both this
expression and its analog �Eq. �B8�� valid at V�0 describe
quite accurately the full DMFT results at �=2, as illustrated
in Fig. 5.
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FIG. 4. �Color online� Optical conductivity at �a� �=0.4, V=0
and �b� V=0.2D. The curves in panel �a� are at equally spaced
temperatures in the range T /Tc=0.4–2.9 �Tc=0.026D� and in panel
�b� T /Tc=0.2–1.5 �Tc=0.052D�. The thin �red� curves correspond
to the disordered phase at T�Tc. The dashed line is the mean field
result �Eq. �A2�� at the lowest temperature.
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D. Spectral weight analysis

The increase in spectral weight associated with the order-
ing of polarons is best visualized by analyzing the integrated
optical conductivity W defined in Eq. �21�. The evolution of
W vs temperature is reported in Fig. 6 and exhibits a mark-
edly different behavior at weak and strong electron-phonon
couplings. In Fig. 6�c�, corresponding to �=2 and V=0, we
see that upon lowering the temperature W first decreases �in
the normal phase� and then exhibits a sharp increase �in the
ordered phase�, saturating at T�Tc, to a value that is about
twice the normal phase value. Therefore, at large �, the criti-
cal temperature corresponds to a minimum of W. This re-
mains true in all the polaronic regime, down to the polaron
crossover at ��1. This is opposite to the usual behavior of
charge density waves, where upon lowering the temperature
the optical weight first increases and then decreases, reaching
a maximum at the critical temperature. Such conventional
behavior is recovered at small �, as illustrated in Fig. 6�a� for
�=0.4.

These opposite behaviors can be understood in virtue of
the optical sum rule demonstrated in Appendix C, which re-
lates the total spectral weight to �minus� the total kinetic
energy K of the system. The latter is usually expressed as
K=�kknk

, where nk
is the momentum distribution function

of the interacting electrons. As shown in Appendix C, an
equivalent expression holds true even in the broken-
symmetry phase �see Eq. �C7�� if one properly introduces the

occupation number for the generalized propagator Ḡ
=1 / ��zAzB−k�. Plots of this quantity are shown in Fig. 7.

As pointed out in Ref. 41, any broadening of the step
feature in nk

around the Fermi energy, by populating states
with higher energy, leads to an increase in K and therefore to
a decrease of the spectral weight W. In the case of a conven-
tional charge density wave, illustrated in Fig. 7�a�, the distri-
bution nk

broadens both upon increasing the temperature
above Tc and upon opening a gap below Tc. As a result, the
critical temperature identifies a minimum of K, i.e., a maxi-
mum of W.

The situation is different in the strong electron-phonon
coupling regime �Figs. 7�b� and 7�c��, where the formation of
small �local� polarons involves all the states in the Brillouin
zone. Correspondingly, the distribution nk

becomes ex-
tremely flat. In this case, increasing the temperature above Tc
progressively destroys the local correlations that build up the
polaron, and the momentum distribution eventually recovers
some structure at the Fermi level, leading to a decrease in K
�the effect is small because Tc in this regime is much smaller
than the energy scale EP that governs the polaron dissocia-
tion�. The polaron ordering below Tc also decreases K be-
cause the emergence of two distinct sublattices effectively
restores some momentum-space structure. In the polaronic
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FIG. 6. �Color online� Total optical weight W as defined in Eq.
�21� for �a� �=0.4, �b� �=1, and �c� �=2 at different values of V
�the legend is indicated in panel b�. The lines in panels �a� and �b�
are guides to the eye, while in panel �c�, they correspond to the
analytical strong-coupling approximation obtained by integrating
Eqs. �B7� and �B8� down to a cutoff frequency equal to T.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

n ε

λ=0.4a)

T/Tc=0.2
T/Tc=1.0
T/Tc=1.4

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

n ε

λ=1b)

T/Tc=0.2
T/Tc=1.0
T/Tc=1.4

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

n ε

ε

λ=2c)

T/Tc=0.2
T/Tc=1.0
T/Tc=1.4

FIG. 7. �Color online� Momentum distribution function vs band
energy =k at temperatures at, below, and above Tc. The coupling
strengths are the same as in Fig. 6, and we have set V=0.

SIGNATURES OF POLARONIC CHARGE ORDERING IN… PHYSICAL REVIEW B 77, 205127 �2008�

205127-7



regime, the critical temperature therefore defines a maximum
of K, i.e., a minimum of W.

E. Polaronic regime: �œ1

By following the evolution of the spectral weight from
Figs. 6�a�–6�c�, it is interesting to see that at intermediate
values of the electron-lattice coupling �but still in the po-
laronic regime�, the two competing trends evidenced above
lead to a nonmonotonic temperature dependence of the ki-
netic energy �and of the spectral weight� within the CO
phase. This can be seen, in particular, the curve labeled V
=0 at �=1 in Fig. 6�b�. Note that a nonmonotonic behavior
of the kinetic energy analogous to the one described here was
recently observed in the ordered phase of the Falicov–
Kimball model at intermediate U.25

The spectral weight analysis presented above suggests
that both features characteristic of the weak- and strong-
coupling limits coexist in the polaronic regime at intermedi-
ate coupling strengths �	1. We can check in Fig. 8�a� ��
=1 and V=0� that such coexistence also naturally manifests
in the optical spectra. Here, as in the strong-coupling limit of
Fig. 5�a�, the polaronic nature of the carriers is testified by
the presence of a broad finite-frequency peak already in the
normal phase. In this case, however, where the polaron en-
ergy EP is comparable to the free electronic bandwidth D,
the peak position lies well below the strong-coupling esti-
mate 2EP. Also, the shape and width of the peak deviate
from the strong-coupling estimate, being both controlled by
the ratio s /D �the usual symmetric Gaussian shape is recov-
ered as s
D, see Ref. 37�. Most interesting, however, is the
evolution of the optical absorption below Tc, which shares
similarities with both behaviors shown in Figs. 4�a� and 5�a�.
Indeed, at intermediate values of the electron-phonon cou-
pling, the optical absorption in the ordered phase exhibits
both a marked enhancement and an appreciable transfer of
spectral weight to higher frequencies. This composite behav-
ior gives rise to an “isosbestic” region at frequencies below

the polaron peak, where the optical absorption is almost in-
dependent of temperature.

It was observed by analyzing the phase diagram in Sec. II
that the intersite repulsion V effectively pushes the system
toward the weak electron-lattice coupling regime. This con-
clusion is also supported by the behavior of the optical con-
ductivity spectra. For example, we see from Fig. 1 that at
�=1, a repulsion V=1 is sufficient to move the system out-
side the polaronic phase. Accordingly, the polaron peak that
was present at high temperature in Fig. 8�a� has disappeared
in the V=1 spectrum of Fig. 8�b�, and a more conventional
gap opening is restored below Tc. If instead one starts from
the strong-coupling value �=2, an appreciable transfer spec-
tral of spectral weight below the transition is recovered for
V=1, as well as a nonmonotonic behavior of the total spec-
tral weight W �see Figs. 5�b� and 6�c��.

IV. dc CONDUCTIVITY

In this section, we briefly describe the dc conductivity,
which is obtained from the previously derived Kubo formula
�Eq. �13�� by taking the limit �→0. The numerical results
for �dc across the CO transition are shown in Fig. 9 for
different values of V at �a� �=0.4, �b� �=1, and �c� �=2.
These values are the same as analyzed in Sec. III E and cor-
respond, respectively, to the weak, to the intermediate, and to
the strong electron-lattice coupling regime. The CO transi-
tion can be clearly identified as a knee in all the conductivity
curves, except for �=2 and V=0 �in that case, Tc falls out-
side the range of Fig. 9�c��. In the weak-coupling regime
�Fig. 9�a��, the opening of a gap changes the mobility from
metalliclike to insulatinglike, i.e., the slope of �dc�T�
changes sign. The changes in the transport properties at the
CO transition become less marked in the polaronic regime.
In this case, the mobility is already thermally activated in the
normal phase, and the CO transition only causes an increase
of the activation barrier, which is reflected in a change in
slope in the Arrhenius plots of Figs. 9�b� and 9�c�.

An expression for the dc conductivity valid in the strong-
coupling limit is derived in Appendix B. In the normal phase,
one recovers the usual formula for the polaronic activated
behavior,

�dc
norm�T� =

�0

32�2�EPT3/2e−EP/2T. �23�

At temperatures below Tc, this generalizes to

�dc�T� = 4nd�1 − nd��dc
norm�T� . �24�

We see that the ordering transition reduces the conductivity
in a way that is once again related to the suppression of
defects, being proportional to the product of the occupations
in the two sublattices, namely, 4nd�1−nd��1−�n2.

It should be stressed that standard approaches that incor-
porate Coulomb interactions into the polaronic conductivity
would predict an additive contribution V�n /2 to the activa-
tion barrier at the CO transition,42 which naturally arises
from the extra energy cost that a polaron in the majority
sublattice has to overcome to hop to a neighboring unoccu-
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FIG. 8. �Color online� Optical conductivity at �a� �=1, V=0 and
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coupling result �Eq. �B7�� at the lowest temperature.
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pied site. While such contribution is indeed recovered in our
treatment �see Eq. �B13��, we see here that the dominant
conduction mechanism at finite temperatures is related to the
presence of charge defects. Being already thermally excited
onto the minority sublattice, such defects do not pay an extra
cost in Coulomb energy when hopping from site to site, and
their motion is therefore more advantageous than ordinary
hopping across the gap �remind that at large � the number of
defects nd does not depend explicitly on V, as was shown in
Fig. 3�.

Equation �24� is compared with the full DMFT results for
�=1, V=1 and �=2, V=1 in Figs. 9�b� and 9�c�, respec-
tively. It should be stressed that the strong-coupling analysis
underlying Eqs. �23� and �24� above is strictly valid only at
�→�, as it neglects corrections proportional to D in the
activation barrier. As a result, the above formulas widely
underestimate the electrical conductivity,43 and the agree-
ment with the DMFT data at finite � and V=0 is not as good
as the one obtained for ���� in Sec. III E. This is particularly
evident when comparing Eq. �23� to the �=1 data of Fig.
9�b�, where large deviations arise especially at low tempera-

tures T�EP. Increasing V shifts the ordering transition to
higher temperatures, apparently improving the accuracy of
the approximation.

V. DISCUSSION AND CONCLUSIONS

We have calculated the optical and electrical transport
properties in a model describing charge ordering in systems
with strong electron-lattice interactions. The DMFT treat-
ment used here properly accounts for fluctuations of the lat-
tice polarization. This allows us to understand the role played
by charge defects in the electrodynamic response of the po-
laronic ordered phase. The effects of a moderate intersite
Coulomb repulsion term, which is often present in interact-
ing narrow-band systems, have also been incorporated.

In the weak electron-phonon coupling regime, we have
seen in Sec. II that lattice fluctuations play an important role
as soon as ��0, as they strongly reduce the critical tempera-
ture compared to the mean field BCS-like expectation.23,30

Our results show that these fluctuations also manifest in the
spectral properties, as they provide a disordered effective
medium that scatters the electron motion, leading to an ap-
preciable broadening of the sharp spectral features predicted
by mean field theory.

The effects of lattice fluctuations are, however, much
more dramatic in the strong-coupling regime, where the
charge ordering transition occurs in a polaronic phase with a
pre-existing charge localization. In that case, polaron forma-
tion moves most of the spectral weight to a finite frequency
absorption peak, whose position hardly changes at the order-
ing transition. Instead, the distinctive signature of charge or-
dering in the strong-coupling limit is a marked enhancement
of the polaronic absorption peak, which is directly related to
the suppression of charge defects, i.e., charges promoted to
the “wrong” sublattice by the thermal fluctuations. In the
polaronic ordered phase, such defects also govern the trans-
port properties, as their motion dominates over the usual
hopping mechanism across the disproportionation gap. The
competing scenarios described above appear to coexist at
intermediate electron-lattice interactions ��	1�, i.e., pre-
cisely in the region of the phase diagram where the critical
temperature is maximum. In this region, polaronic charge
ordering reveals in the optical spectra through both a transfer
of spectral weight to high frequencies and a global spectral
weight enhancement as the temperature is lowered below Tc.

It should be noted that a model very similar to the one
studied here was developed in a series of papers of Ihle and
Lorenz42,44,45 and was applied to the long-standing problem
of the Verwey transition in Fe3O4—a prototypical example
of polaron ordering �see also the review paper �Ref. 22��. In
these works, the model �Eq. �1�� was solved relying on the
antiadiabatic approximation for the lattice degrees of free-
dom, where the phonon dynamics is assumed to be faster
than the electrons. Our adiabatic treatment can therefore be
considered as complementary to the one of Refs. 44 and 45.
While the present approach clearly gives more insight into
the physics of charge defects, our classical treatment of
phonons has an important limitation that one should keep in
mind when attempting a comparison to actual experiments.
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The results obtained here are expected to apply at tempera-
tures and frequencies larger than the frequency scale of the
phonons involved in the CO transition. Properly accounting
for the quantum nature of the phonons would restore the
possibility of a coherent transport regime at low
temperatures43 and allow for the presence of charge defects
even at zero temperature.29
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APPENDIX A: MEAN FIELD TREATMENT OF THE
OPTICAL CONDUCTIVITY

We evaluate here the optical absorption in the CO state at
mean field level, which applies to the weak electron-lattice
coupling limit. This treatment also describes accurately the
numerical data at any finite V at nonzero temperature when
�=0, due to the intrinsic mean field treatment of nonlocal
interactions in DMFT. The mean field solution for the elec-
tron propagators is obtained by inverting the matrix,

Ĝk
−1 = �� + � − k

− k � − �
 , �A1�

where � is the CO gap, which is determined
self-consistently.23 It is related to the charge disproportion-
ation by �= ��D+V /2��n.

The corresponding spectral functions are delta functions,
which allow for a direct evaluation of Eq. �13� for a generic
DOS. The finite-frequency part, corresponding to interband
transitions �across the gap�, reads

���� =
�0

2

N�� 1
2
��2 − �2��2�

��2 − �2��2

�2��2

�2 tanh� �

4T
 , �A2�

which has a square-root singularity at �=2� �the optical
gap� followed by a power-law decay at higher frequencies.
At finite temperature, states are thermally excited across the
gap, which enables the possibility of intraband absorption. In
the absence of additional inelastic scattering mechanisms,
this gives rise to a zero-frequency peak,

�D��� = �0����	
RBZ

dN�����
22

2 + �2 �− f��2 + �2�� .

�A3�

APPENDIX B: STRONG COUPLING APPROXIMATION
TO �(�)

We derive here analytical approximations to Eqs. �5�,
�14�, and �21� that are valid in the strong-coupling limit �

1.

1. Normal state

Let us first note that the usual strong-coupling formula of
Reik46 for the optical conductivity is recovered in the normal
phase if we take the atomic limit �t=0� in the propagators
appearing in Eq. �13�. Indeed, by setting G0

−1=�+ i�, it can
be shown that the lattice PDF is a sum of two Gaussians
centered at �g /2k, each one carrying a weight nA=nB=1 /2
�Ref. 23� �as was mentioned above, the Coulomb interaction
term does not affect the properties of the normal phase at
mean field level�. This can be cast in the form

Pnorm�X� = g
cosh��gX/2�

�4�EPT
e−�gX�2+EP

2 /4EPT, �B1�

with the polaron energy defined as EP=g2 /2k=�D. The
spectral function is obtained straightforwardly from Eq. �B1�
through the relation �norm���= Pnorm�� /g� /g �cf. Eq. �5��.

Since in this limit the electron Green’s function is site
diagonal and momentum independent, the  integration can
be factored out from Eq. �13�, yielding a prefactor
�dN�����=1 /4 on the Bethe lattice. The remaining fre-
quency integral can be performed using the relation

�f�� + �� − f���� =
sinh���

2 �
2 cosh����+��

2 �cosh���
2 � , �B2�

which leads to the desired result

���� =
�0

�2�EPT

sinh���/2�
16�

e−��2+4EP
2 /8EPT�. �B3�

Focusing on the finite frequency part �
T, this can be fur-
ther simplified to

�norm��� =
�0

32��2�EPT
e−�� − 2EP�2/8EPT. �B4�

This formula represents a modified Gaussian absorption band
having its maximum at �=2EP and a width �2s=2�EPT,
which reflects the thermal fluctuations of the phonon field
that couples to the electron motion. Note that if the phonon
quantum fluctuations are correctly taken into account, the
width of the absorption band does not shrink indefinitely at
low temperatures but rather saturates to a finite value s2

=2EP�0.37 One can observe that the numerical factor 1/32 in
Eq. �B4� implicitly includes the density dependent factor
n�1−n� expected from theories of independent polarons.

2. Charge ordered state

In the charge ordered state ��n�0�, the two contributions
to the lattice PDF are unbalanced by a factor which takes
into account the different fillings nA�nB on nonequivalent
sublattices. As a result, Eq. �B1� becomes

PA,B�X� = Pnorm�X��1 � �1 − 2nd�tanh��gX/2�� , �B5�

where the + and − signs correspond to the A and B sublat-
tices, respectively. The lattice PDF is again the sum of two
Gaussian peaks, centered at the minima �X0 of the adiabatic
potentials VA,B, whose weights are now, respectively, nd and
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1−nd. At �=2, this approximation compares very well with
the full DMFT result illustrated in Fig. 2. That figure also
shows that for moderate V�1, the shape of the Gaussian
peaks in the PDF is unaffected by the electrostatic repulsion,
which only enters implicitly through the self-consistent de-
termination of nd.

From Eq. �B5�, we obtain the spectral function for the two
sublattices,

�A��� = �1 − nd�g+�� +
V�n

2
 + ndg−�� +

V�n

2
 ,

�B��� = ndg+�� −
V�n

2
 + �1 − nd�g−�� −

V�n

2
 ,

where

g���� =
1

�2�s2
exp�−

� − �EP

2s2  , �B6�

and �= �1.
Taking the low temperature limit �T��EPT ,D� in Eq.

�13� and using the spectral functions above, it is possible to
obtain an expression for the finite frequency conductivity
��
T�. At V=0, it takes the simple form

���� = 2�1 − 2nd�1 − nd���norm��� , �B7�

which directly relates the observed enhancement of the opti-
cal absorption in the CO phase to the number of charge de-
fects, in agreement with the general arguments presented in
Sec. III C. In the presence of intersite repulsion, the above
formula generalizes to

���� =
�0

16��2�EPT
�e−�� − 2EP − V�n�2/8EPT�1 − nd�2�

+ �e−�� − 2EP + V�n�2/8EPT�nd�2� , �B8�

which clearly reduces to Eq. �B7� when V=0. Both expres-
sions compare well with the numerical data of Fig. 5 at �
=2. Moreover, the total optical spectral weight obtained by
integrating Eq. �B8� down to a cutoff frequency �=T cor-
rectly reproduces the nonmonotonic temperature dependence
of the DMFT results shown in Fig. 6�c�. Note that at ex-
tremely large V, this expression predicts a double-peak struc-
ture, which is not observed in the numerical data at moderate
V.

The results presented in this appendix, derived under the
assumption of a vanishing bandwidth, are strictly valid as
long as s
D.37 From the asymptotic strong-coupling expres-
sion Tc=D / �16��+V /4, we can estimate

� s

D
�

Tc

�
1

23/2�1 + 4�
V

D
. �B9�

We see that at V=0, the condition s
D is never realized in
the relevant region around Tc, and some finite bandwidth
corrections to the polaronic line shapes can be expected.37

Examination of Figs. 5 and 8 shows that the accuracy of the
strong-coupling formula �Eq. �B7�� improves when an ex-
plicit Coulomb term V is included.

3. dc conductivity

The dc conductivity is obtained by taking the limit �
→0 in Eq. �13�. Some care must be taken in integrating the
Gaussian spectral functions in the presence of the factor
1 / �4T cosh�� /2T��, originating from the Fermi functions.
For T�EP, one obtains

�dc�T� =
�0

16�EPT
e−�EP/2T�−�V�n�2/8EPT�2nd�1 − nd���EP

2T

+ �1 − nd�2e−�V�n/2T� + nd
2eV�n/2T� . �B10�

which reduces in the normal phase to the usual formula for
the polaronic conductivity,

�dc
norm�T� =

�0

32�2�EPT3/2e−�EP/2T�. �B11�

In the CO state at temperatures T�Tc, the leading contribu-
tion to Eq. �B10� is

�dc�T� = 4nd�1 − nd�e−�V�n�2/8EPT�dc
norm�T� , �B12�

which shows that the dominant conduction mechanism in the
polaronic ordered phase involves thermally activated defects.
The exponential term is close to 1 at moderate values of V
such as the ones studied here and can be dropped. This ex-
pression breaks down as T�Tc, when the number of defects
nd vanishes. In this case, a more conventional result is recov-
ered

�dc�T� =
�0

16�EPT
e−�EP + V�n/2�2/2EPT. �B13�

This formula predicts an additive contribution V�n /2 to the
activation barrier, corresponding to the extra energy cost that
a polaron has to overcome when hopping to its neighboring
sites.42

APPENDIX C: F-SUM RULE IN THE BROKEN-
SYMMETRY PHASE

In this section, we demonstrate the f-sum rule for the
optical conductivity evaluated through the DMFT formula
�Eq. �13��, generalizing the demonstration of Ref. 47 to the
broken-symmetry phase. We first rewrite the integral of the
optical conductivity in the form

	
0

�

���� =
�0

2
	

RBZ

dN�����I�� , �C1�

with

I�� =
1

�2	
−�

�

d�	
−�

�

d��
f��� − f����

�� − �

�Tr��x Im Ĝ�����x Im Ĝ���� . �C2�

This expression can be transformed to
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I�� =
1

�
	

−�

�

d�f���Tr�2�x Im Ĝ����x Re Ĝ����

=
Tr

�
	

−�

�

d�f���Im��xĜ����xĜ����

=
Tr

�
	

−�

�

d�f���Im��x
dĜ���

d
� .

The latter equality is obtained using the fact that

d�Ĝ
−1Ĝ� /d=d�1� /d=0 and observing that from Eq. �9�,

one has dĜ
−1 /d=−�x. Going back to Eq. �C1� and integrat-

ing by parts yield

	
0

�

���� = �0	
RBZ

d
d�N��

d
	 d�f���2�

AB��� . �C3�

With the present choice of the current vertex ��� for the
Bethe lattice, one has dN�

d =−N�� so that the above expres-
sion reduces to

	
0

�

���� = −
�0

2
K , �C4�

where K is the total kinetic energy defined as

K = 	
RBZ

dN��	 d�f���2�
AB��� . �C5�

Introducing the following spectral density, �̄k
���=

−Im��zAzB−k�−1 /�, with zA and zB defined after Eq. �9�, and
the corresponding momentum distribution function,

nk
=	 d�f����̄k

��� , �C6�

which is the appropriate generalization of the usual nk to the
broken-symmetry phase, the total kinetic energy Eq. �C5�
can be rewritten as

K = 2	
RBZ

dN��n = 2 �
k�RBZ

knk
. �C7�
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