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We consider topological order and dimer order in several frustrated spin ladder models, which are related to
higher-dimensional models of current interest; we also address the occurrence of fractionalized phases with
deconfined spinon excitations in these models. Combining results obtained with both analytic and numerical
methods, we discuss how the occurrence of dimerized or fractionalized phases is dictated by the system’s
geometry.
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I. INTRODUCTION

Frustrated spin systems give rise to a wealth of interesting
behavior; hence, they have attracted considerable attention.1

Typically, the low-lying excitations in spin systems are mag-
nons. However, there has been particular interest in identify-
ing fractionalized phases, where the magnon “breaks apart”
into more fundamental objects. When doped, such phases
would give rise to metallic states that do not fall within the
Fermi liquid paradigm—the elementary excitations in these
phases would not have the quantum numbers of an electron.
However, finding systems which exhibit fractionalized
phases has proven to be extremely challenging.

Motivated largely by Anderson’s original resonating
valence-bond2 �RVB� suggestions for the high-Tc cuprate su-
perconductors, substantial effort has focused on searching for
fractionalized phases in models having short-range RVB
ground states.3 A related approach has been to consider
dimer models, where only short-ranged valence bonds with
specified dynamics are considered.4 While lacking long-
range order in the conventional sense, i.e., lacking a local
order parameter, these short-range valence-bond ground
states have a subtle form of order, namely, topological order.5

It is now appreciated that a precise characterization of frac-
tionalized phases is via its topological order.6 However,
whether a fractionalized phase occurs actually strongly de-
pends on the system’s geometry. More specifically, the sys-
tem’s geometry must allow for “liquidity” in the spectrum of
states.7 Many systems with short-range RVB ground states
do not exhibit such liquidity—they would prefer to dimerize
rather than to exhibit a fractionalized phase.8

In this work, we address the occurrence of fractionalized
and dimerized phases in several frustrated spin ladder mod-
els. Ladder models provide a unique testing ground, as pow-
erful analytic and numerical techniques from one-
dimensional physics can be utilized. Indeed, ladder models
have allowed controlled calculations to investigate topologi-
cal order,9–11 the occurrence of dimer order,12 and the occur-
rence of fractionalized excitations13 in spin models. Further-
more, ladder models have allowed for controlled
calculations, which demonstrate that pairing and, in particu-
lar, dx2−y2 pairs could arise when these spin models are
doped.14 The models we consider are related to higher-
dimensional systems of current interest; investigations of the

one-dimensional analogs are particularly relevant, in light of
recent work which showed that the mechanism giving rise to
fractionalized excitations is the same in both one and two
dimensions.15 However, besides being a testing ground and
illustrating the types of possible behaviors, these ladder mod-
els are interesting in their own right, as there are a number of
materials that are well described by ladder models.16

In large regions of parameter space, the models we con-
sider have short-range RVB ground states. More specifically,
in large regions of parameter space, these models have
ground states that are continuously related to the ground
states of the so-called rung-singlet phase or the Haldane
phase. �Typical configurations in these ground states are
schematically shown in Figs. 2 and 4 in Sec. II.� While these
phases have nearly identical properties, their ground states
differ in a subtle way, namely, in their topological order.
With frustrating interactions, these states could be tuned to
become degenerate, and then one has the necessary liquidity
for the deconfinement of spinon excitations. However, as
will be seen below, depending on the model’s spatial sym-
metries, this liquidity and spinon deconfinement could be
preempted by dimerization.

The rest of the paper is organized as follows. In Sec. II,
we describe the ladder models considered in this work—the
cross-coupled, zigzag, and diagonal ladders—and we recall
some of their known properties. In Sec. III, the exact ground
states of the models are discussed �along certain lines in
parameter space�. Section IV contains a discussion of topo-
logical order in these models and some comments on the
low-energy excitations. In Sec. V, we analyze the models in
the limit of weak interchain couplings by using bosonization
and renormalization-group �RG� techniques. In Sec. VI, we
present numerical results obtained via the density-matrix
renormalization-group �DMRG� algorithm; we discuss these
numerical results in light of the results from the previous
sections. Finally, in Sec. VII, we summarize and present
some concluding remarks.

II. MODELS

We begin with two antiferromagnetic spin-1/2 Heisenberg
chains, each described by the Hamiltonian

PHYSICAL REVIEW B 77, 205121 �2008�

1098-0121/2008/77�20�/205121�16� ©2008 The American Physical Society205121-1

http://dx.doi.org/10.1103/PhysRevB.77.205121


H0
�i� = �

l

J�Sl
�i� · Sl+1

�i� , i = 1,2, �1�

where Sl
�i� is the spin operator at site l on chain i. We will be

interested in coupling the chains together in various ways,
such that the resulting models have different spatial symme-
tries. In this work, we will consider only antiferromagnetic
couplings. We start by coupling the chains together so that
the resulting models are not frustrated. We then include frus-
trating interactions and investigate their influence on the
properties of the models.

The simplest way to couple the chains together is by

H� = �
l

J�Sl
�1� · Sl

�2�, �2�

so that the full Hamiltonian is

HL = �
i=1

2

H0
�i� + H�, �3�

which is depicted in Fig. 1. We will refer to this as an ordi-
nary ladder. This model has received considerable attention.
Indeed, it can be thought of as a strip of a two-dimensional
square lattice; hence, its properties have been investigated to
give clues as to the physics occurring in the high-Tc cuprate
superconductors.17

When J� is large �J��J��, the ground state is essentially
a product of rung singlets with a gap to the excited states—
the gap is due to the energy necessary to break a singlet
bond. When J��J�, it has been shown that the energy gap
persists; the ground state is well described by a short-range
valence-bond state, a typical configuration of which is shown
in Fig. 2. It has been established that the entire region
0�J��� is, in fact, continuously related.18,19 As this entire
region of parameter space is related to the regime J��J�,
where the ground state is a product of rung singlets, it is
often referred to as the rung-singlet phase. Incidentally, the
dominance of rung-singlet bonds can be measured by deter-
mining their weight in the ground state,
�s= �1 /N��l=1

N ���SlSl
†���, where ��� is the ground-state

wave function and Sl= �1 /	2�
�↑ �l
�1��↓ �l

�2�− �↓ �l
�1��↑ �l

�2��. A
state belongs to the rung-singlet phase if �s�1 /4.20

We also consider coupling the spins to their next-nearest
neighbors on the opposite leg of the ladder. This coupling is
described by

HX = �
l

JX�Sl
�1� · Sl+1

�2� + Sl
�2� · Sl+1

�1� � , �4�

so that the full Hamiltonian is

HC = �
i=1

2

H0
�i� + HX, �5�

which the resulting model is shown in Fig. 3.
This system is known21,22 to have a gapped spectrum of

spin-1 magnons. Furthermore, the entire regime 0�JX�� is
continuously related to the Haldane phase23 of the spin-1
chain. This can be understood by considering the point
JX=J�—here, the low-energy spectrum of Eq. �5� is equiva-
lent to that of the S=1 Heisenberg spin chain.24,25 To see this,
we start with the Hamiltonian of a spin-1 chain
H=J��lSl ·Sl+1, which is known to be in the Haldane phase.
When the spin-1 operator on site l is represented as a sum of
two spin-1/2 operators, Sl=Sl

�1�+Sl
�2�, one obtains Eq. �5�

with JX=J�. Since the total spin of each rung commutes with
the Hamiltonian, the eigenstates can be classified by the total
spins on the rungs. It has been shown that in the low-energy
part of the spectrum, all rungs are in their triplet �S=1� state,
and hence the same Haldane gap appears in the ladder model
as well. In this representation, the Haldane state of the spin-1
chain can be described rather well by short-ranged valence
bonds between neighboring rungs, with a typical configura-
tion of which is shown in Fig. 4.

Finally, we consider the ladder model shown in Fig. 5�a�,
where the interchain coupling is given by

Hd = �
l

J2S2l
�1� · �S2l−1

�2� + S2l+1
�2� � . �6�

Previous work has established26 that this model is in the
same universality class as the model in Eq. �5�. Hence, re-
moving half of the cross couplings in an appropriate way
from Eq. �5� does not change the universality class. Part of
our motivation for considering this model is because it is a
representation of the “Np=2 diagonal ladder” shown in Fig.
5�b�; it is a minimal model to study diagonal stripes, which
have been observed in the high-Tc cuprate superconducting
material La2−xSrxCuO4 �Ref. 27� and the nickel oxides
La2NiO4.125 �Ref. 28� and La1−xSrxNiO4.29

As mentioned above, we are interested in the effect of
frustration on these models. In what follows, we analyze
three models obtained by introducing frustrating interactions

FIG. 4. A typical valence-bond configuration in the ground state
of the ladder model shown in Fig. 3.

||

J
J||

J

FIG. 1. The ordinary ladder.

FIG. 2. A typical valence-bond configuration in the rung-singlet
ground state of the two-leg ordinary Heisenberg ladder.

J||

J||

JX

FIG. 3. Ladder with diagonal couplings.
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to the models described above. �Again, we will consider only
antiferromagnetic interchain couplings in this work.� Our
motivation for doing so is because the resulting models have
different spatial symmetries. As will be discussed below,
these symmetries play a crucial role in determining the prop-
erties of the models.

A. Cross-coupled ladder

The first model we consider has both H� and HX simul-
taneously present. The resulting model with Hamiltonian

HCC = �
i=1

2

H0
�i� + H� + HX �7�

is shown in Fig. 6�a�. For the rest of this work, we will refer
to this model as a cross-coupled ladder. Notice that this spin
model is invariant under translation by a single site; it is also
invariant if the legs of the ladder are interchanged:
leg 1↔ leg 2. Part of our motivation for the study of this
model is its relationship to the two-dimensional model with
nearest-neighbor and next-nearest-neighbor exchange cou-
plings, which is often referred to as the J1−J2 model—Eq.
�7� is a one-dimensional strip of this model. Furthermore,
Eq. �7� is related to a chain of edge-sharing tetrahedra.30

Indeed, by taking every second rung and rotating it by 90°
about its midpoint, one obtains the structure shown in Fig.
6�b�; by adding a next-nearest-neighbor coupling �along the

chain� to Eq. �7�, a spin model on a chain of edge-sharing
tetrahedra is obtained. As there are a number of materials
described by spin models on corner-sharing tetrahedra, i.e.,
pyrochlores,31 it is not unreasonable that materials with
edge-sharing tetrahedra can be realized.

The model in Eq. �7� has been investigated in a number of
works, but its phase diagram and properties are still under
debate. When J� is the dominant interchain coupling, the
system is continuously related to the ordinary ladder �with
JX=0�; hence, the system is in the rung-singlet phase. On the
other hand, when JX is the dominant interchain coupling, the
system is continuously related to Eq. �5�, and the system is in
the Haldane phase. For weak interchain couplings, previous
analytic treatments10 suggested a first-order transition be-
tween the rung-singlet and Haldane phases when J��2JX.
Numerical results on the model11,32 were consistent with a
first-order transition for both weak and strong interchain cou-
plings. Recent numerical work, however, has suggested that
the transition is actually continuous when the interchain cou-
pling is weak, which becomes first-order only for stronger
interchain coupling.20,33 Furthermore, recent analytical
work12 has argued that there is a spontaneously dimerized
phase in between the rung-singlet and Haldane phases, rather
than a direct transition between the two phases as observed
in previous works.

B. Zigzag ladder

The second ladder model we consider contains again both
rung and diagonal couplings, but only half the diagonal cou-
plings of the cross-coupled ladder are present, as shown in
Fig. 7. This model is often referred to as a zigzag ladder; its
Hamiltonian is

HZ = �
i=1

2

H0
�i� + H� + Hz, �8�

where

Hz = �
l

J2Sl
�1� · Sl+1

�2� . �9�

This spin model is invariant under translation by a single
site. However, unlike the cross-coupled ladder that is invari-
ant under the interchange of the legs, this model lacks that
symmetry. Part of the motivation for considering this model
comes from the two-dimensional triangular lattice—Eq. �8�
is a one-dimensional strip of the triangular lattice. The spin-
1/2 Heisenberg model on a triangular lattice has been of
considerable recent interest, which is motivated largely in
part by the discovery of the triangular lattice material
Cs2CuCl4 and, in particular, to evidence that this material
exhibits a two-dimensional fractionalized phase with decon-

(b)

1 2 3 4 5 76 8 9

a b c d e f h ig
(a)

a c e ig

d f hb

2 4 6 8

1 3 5 7 9

FIG. 5. �a� Ladder with a diagonal coupling between every sec-
ond spin. �b� Np=2 diagonal ladder.

J||

J||

JXJ

(a)

(b)

J|| JX

J|| JXJ

J

FIG. 6. �a� The cross-coupled ladder. �b� The cross-coupled lad-
der as a chain of edge-sharing tetrahedra.

J||

J||
J J2

FIG. 7. The zigzag ladder model.
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fined spinons.34 However, besides being a toy model for un-
derstanding spin systems on a triangular lattice, this model is
relevant to the quasi-one-dimensional material SrCuO2.35

The properties of the zigzag ladder are well known when
J� or J2 vanishes and also along the line J�=J2. When J� or
J2 vanishes, the model reduces to the ordinary ladder. When
J�=J2, the zigzag ladder is equivalent to the spin-1/2 frus-
trated Heisenberg chain with nearest-neighbor coupling J�

and next-nearest-neighbor coupling J�. This chain model is
known to be critical for J��J�c �J�c=J� /0.241�,36,37 being
in the same universality class as the antiferromagnetic spin-
1/2 Heisenberg chain. The spinons of the spin-1/2 chain ac-
quire a gap �but they remain deconfined�, and the ground
state becomes doubly degenerate for J�=J2�J�c.

38 At the
Majumdar–Ghosh �MG� point39 J�=J2=2J�, the two degen-
erate ground states have a simple form in the thermodynamic
limit, each consisting of decoupled singlets, as shown in Fig.
8. It has been shown that these two ground states can be
continuously related to the rung-singlet and Haldane
phases.40 For even weaker interchain couplings J�=J2�2J�,
incommensurate oscillations appear in the short-range
correlations.41–45

C. Diagonal ladder

Finally, we consider the model obtained when the cou-
plings described both by Eqs. �2� and �6� are simultaneously
present. The model is shown in Fig. 9�a� and is described by
the Hamiltonian

HD = �
i=1

2

H0 + H� + Hd. �10�

For the rest of this work, we will refer to this ladder model as
a diagonal ladder. Unlike the previous two ladder models

that were invariant under translation by a single site, Eq. �10�
is invariant under translation by two sites. Furthermore, simi-
lar to the zigzag ladder, Eq. �10� is not invariant under the
interchange of the legs. However, it is invariant under the
combined operation of leg interchange followed by a trans-
lation by a single site. Interestingly, this ladder model can, in
fact, be transformed into one which is invariant under trans-
lation by a single site, but lacking inversion symmetry. This
is accomplished by interchanging the sites on every second
rung of the ladder, S2l

1 ↔S2l
2 ; the resulting model is shown in

Fig. 9. We are unaware of work which investigated the role
of frustrating interactions in this model.

III. EXACT GROUND STATES

An interesting feature of the models considered in this
work is that their exact ground states have a simple form for
a certain regime of parameters. The key to establishing this is
decomposing the system into a set of “triangles.”46 Here, we
review the argument and discuss the ground states that arise.

Consider three s=1 /2 spins arranged on a triangle. Sup-
pose the spins on sites 1 and 2 are coupled by an exchange
coupling J1, these two spins are coupled to the spin on site 3
by an exchange coupling J. The Hamiltonian for the triangle
is

Htriangle = J1S1 · S2 + J�S1 + S2� · S3. �11�

We are interested in the case where both J and J1 are anti-
ferromagnetic; hence, the ground state is a doublet. There are
two ways of achieving this: �a� a singlet across sites 1 and 2
with a free spin-1/2 on site 3 or �b� a triplet across sites 1 and
2 added to the spin-1/2 on site 3 to form a spin-1/2. Let 
i , j�
denote a singlet between sites i and j. Then, using

�Si + S j�
i, j� = 0, �12�

the energy of the state in �a� is found to be Ea=−3J1 /4; the
energy of state in �b� is Eb=−J+J1 /4. We see that the state in
�a�—the state with a singlet across sites 1 and 2—is the
lowest-energy state if J�J1.

Using information from the previous paragraph, we now
address the ground states of the ladder models considered in
this work. We begin by considering the cross-coupled ladder
model. In this model, four triangles can be assigned to each
rung; the Hamiltonian can be written as

HCC = �
l

�Hl+
�1� + Hl−

�1� + Hl+
�2� + Hl−

�2�� , �13�

with

Hl+
�1� = 1

4J�Sl
�1� · Sl

�2� + 1
2J�Sl

�1� · Sl+1
�1� + 1

2JXSl
�2� · Sl+1

�1� ,

Hl−
�1� = 1

4J�Sl
�1� · Sl

�2� + 1
2J�Sl

�1� · Sl−1
�1� + 1

2JXSl
�2� · Sl−1

�1� ,

Hl+
�2� = 1

4J�Sl
�1� · Sl

�2� + 1
2J�Sl

�2� · Sl+1
�2� + 1

2JXSl
�1� · Sl+1

�2� ,

Hl−
�2� = 1

4J�Sl
�1� · Sl

�2� + 1
2J�Sl

�2� · Sl−1
�2� + 1

2JXSl
�1� · Sl−1

�2� .

�14�

When J� =JX, the terms in Eq. �14� can be written in the form
of Eq. �11�. Then, by using Eq. �12�, it follows that the state

(b)

(a)

FIG. 8. The two degenerate ground states of the zigzag ladder at
the Majumdar–Ghosh point �Ref. 39�.

(b)

2J

J||

J||

(a)

J2
J J||

J

FIG. 9. �a� The diagonal ladder model. �b� Alternative represen-
tation of the diagonal ladder, which is obtained by interchanging
sites on every second rung.
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��� = �
l


l1,l2� , �15�

where the spins on each rung form a singlet, is an exact
eigenstate of the Hamiltonian in Eq. �13� with energy

E = − 3
4J�N . �16�

We would like to determine if and when Eq. �15� is the
ground state. To do so, consider each of the triangles in Eq.
�14� individually. If J� /2�J�, the lowest-energy state of
each triangle �when individually considered� has a singlet
between the spins on the same rung. It is known that if a
Hamiltonian can be written as the sum of terms, the ground-
state energy cannot be smaller than the sum of the lowest
energies of its constituents. For the ground state of Eq. �13�,
this gives the inequality

E0 � − 3
4J�N , �17�

where N is the number of rungs. Hence, we see that Eq. �16�
saturates the bound in Eq. �17� when J� /2�J�; Eq. �15� is
the ground state for J� =JX with J� /2�J�.30,47

We now consider the zigzag ladder. It can be decomposed
into two triangles per rung,

HZ = �
l

�Hl+
�2� + Hl−

�1�� , �18�

where

Hl+
�2� = 1

2J�Sl
�1� · Sl

�2� + J�Sl
�2� · Sl+1

�2� + 1
2J2Sl

�1� · Sl+1
�2� ,

Hl−
�1� = 1

2J�Sl
�1� · Sl

�2� + J�Sl
�1� · Sl−1

�1� + 1
2J2Sl

�2� · Sl−1
�1� . �19�

When J� =J2 /2, the terms in Eq. �19� can be written in the
form of Eq. �11�; the energy of the state in Eq. �15� saturates
the lower bound in Eq. �17� for J� /2�J�. Hence, Eq. �15� is
the exact ground state for J� =J2 /2 with J� /2�J�.46 Note
that another exact ground state of the zigzag ladder follows
by symmetry. When J� =J� /2 and J2 /2�J�, the ground state
is again a product of singlets, but this time, they are diago-
nally formed between neighboring rungs,46

��� = �
l


l1,�l − 1�2� . �20�

We now go on and consider the diagonal ladder. The di-
agonal ladder can be decomposed into two triangles per
rung, but the triangles have different orientations for even
and odd rungs,

HD = �
l

�H�2l�+
�2� + H�2l�−

�2� + H�2l+1�+
�1� + H�2l+1�−

�1� � , �21�

where now

H�2l�+
�2� = 1

2J�S2l
�1� · S2l

�2� + J�S2l
�2� · S2l+1

�2� + 1
2J2S2l

�1� · S2l+1
�2� ,

H�2l�−
�2� = 1

2J�S2l
�1� · S2l

�2� + J�S2l
�2� · S2l−1

�2� + 1
2J2S2l

�1� · S2l−1
�2� ,

H�2l+1�+
�1� = 1

2J�S2l+1
�1� · S2l+1

�2� + J�S2l+1
�1� · S2l+2

�1� + 1
2J2S2l+1

�1� · S2l+2
�2� ,

H�2l+1�−
�1� = 1

2J�S2l+1
�1� · S2l+1

�2� + J�S2l+1
�1� · S2l

�1� + 1
2J2S2l+1

�2� · S2l
�1�.

�22�

When J� =J2 /2, the terms in Eq. �22� can be written in the
form of Eq. �11�, and thus Eq. �15� is the exact ground state
for J� =J2 /2 with J� /2�J�.

IV. TOPOLOGICAL ORDER AND SPINONS IN LADDER
MODELS

From the discussion in Secs. II and III, the ladder models
considered in this work have similar ground-state properties
in extended regions of parameter space—their ground states
are described by a collection of short-ranged valence bonds,
which are separated by a gap to the excited states. However,
the ground states of these ladder models, in fact, differ in a
subtle way, namely, in their topological order. More specifi-
cally, the number of valence bonds crossing an arbitrary ver-
tical line is always even in the rung-singlet phase, while the
number is always odd in the Haldane phase. This can be
explicitly seen in the configurations shown in Figs. 2, 4, and
8. Hence, a topological number Q can be defined by the
parity of the number of short-range valence bonds crossing
an arbitrary vertical line.10 This Q, which is either even or
odd, is a good quantum number for short-range valence-bond
states since the Hamiltonian has finite matrix elements only
between configurations with the same Q. For long-range
valence-bond states, however, the Hamiltonian mixes the Q
=even and Q=odd configurations; hence, no such topologi-
cal distinction is possible.

It is worth noting that for open boundary conditions
�OBC�, Q=odd ground states have spin-1/2 localized at the
ends of the ladder, while Q=even states do not. As can be
seen from Figs. 8�b�, these end spins occur for topological
reasons. They are analogous to the edge states in the quan-
tum Hall effect; in general, the presence of such edge exci-
tations is a signal of nontrivial topological order.48

It has also been pointed out10 that the topological order of
the valence bonds is related to the “hidden order” present in
two-leg Heisenberg spin ladders, namely, string order, which
is analogous to the string order in antiferromagnetic spin-1
chains.49 This string order is detected by the two string order
parameters,9,10,50

Oodd
	 = − lim

�i−j�→�

�Si,1

	 + Si,2
	 �exp�i
 �

l=i+1

j−1

�Sl,1
	 + Sl,2

	 ��
��Sj,1

	 + Sj,2
	 �� ,

Oeven
	 = − lim

�i−j�→�

�Si+1,1

	 + Si,2
	 �exp�i
 �

l=i+1

j−1

�Sl+1,1
	 + Sl,2

	 ��
��Sj+1,1

	 + Sj,2
	 �� . �23�

In Refs. 10 and 11, it was observed that when Oodd�0 in
some region of a model’s parameter space, Oeven vanishes in
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that region and vice versa. This can, in fact, be rigorously
established by using a slightly modified version of these
quantities.19 Indeed, these modified string order parameters
can be written in terms of the order and disorder fields of two
Ising models—Oodd in terms of the order fields �1 and �2,
while Oeven in terms of the disorder fields 
1 and 
2.
Therefore, Oodd and Oeven are dual to each other and, hence,
cannot be simultaneously nonzero. Moreover, it has been
shown10 that models with Q=odd ground states have
Oodd�0, while models with Q=even ground states have
Oeven�0. Hence, the string order parameters detect the to-
pological order of the valence bonds.

This topological order has important consequences for the
excitation spectrum. In these models with short-range
valence-bond ground states, the simplest excitation is gener-
ated by breaking one of the valence bonds, which promotes it
to a triplet. An interesting and important question is how this
excited state propagates. More specifically, does the triplet
propagate coherently or does it break apart so that the indi-
vidual spins forming the triplet—referred to as spinons—
propagate independently. In both the rung-singlet and
Haldane phases, it is known that the triplet coherently propa-
gates. The reason for this can be understood by looking at
Fig. 10 and counting the number of valence bonds crossing a
vertical line. When a valence bond is broken in a state with
Q=even, if this triplet breaks apart, it leaves a string of va-
lence bonds with the “wrong” topology in the intermediate
region. This gives rise to an increase in the local energy,
which is proportional to the distance between the two
spinons; as a result, the spinons are confined into a �gapped�
spin-1 magnon. �A similar situation occurs in the Q=odd
Haldane phase.�

From Fig. 10, one also sees that if the two topologically
distinct ground states can be made degenerate, one can ex-
pect spinons to be deconfined. This is because the string of
wrong valence bonds between the two spinons would not
give an increase in energy. Thus, the degeneracy provides the
“liquidity” necessary for spinon deconfinement.7 Indeed, as
discussed in Sec. II, this is known to happen in the zigzag
ladder due to the frustrating interaction. It is reasonable to
expect that similar phenomena could generically occur—
frustrating interactions could tune the topologically distinct
rung-singlet and Haldane ground states to be degenerate, so
that spinons are deconfined and propagate as elementary ex-
citations. While this expectation is reasonable, as will be
discussed in detail below, there are other possible phases—
namely, dimerized phases—which could intervene. More-
over, we will see that the system’s geometry plays a crucial
role in determining whether the system may dimerize or not.

V. WEAK-COUPLING ANALYSIS

It is useful to consider the physics in the limit where the
interchain coupling is weak, as controlled analytical calcula-

tions are possible. More specifically, we start with two de-
coupled spin-1/2 chains and consider the interchain coupling
as a perturbation. Provided that there is no phase transition,
the low-energy Hamiltonian deduced in the weak-coupling
limit is valid even at strong coupling, although with renor-
malized parameters. This approach has been utilized in vari-
ous other works; besides providing a detailed understanding
of the properties of the two-leg ladder and its relation to the
spin-1 chain,19 it has been effective at uncovering and eluci-
dating the phenomena that can arise in these
systems.12,13,51–54

We begin Sec. V by briefly describing the formalism
mainly to establish our conventions. �More detailed accounts
can be found, e.g., in Ref. 55.� We go on to deduce the
effective low-energy Hamiltonians for the models considered
in this work and then discuss the physics contained in these
effective Hamiltonians. In particular, we discuss the role of
the various irrelevant operators that arise. These operators
were ignored in most previous works but were recently ar-
gued to affect the physics qualitatively in some situations.12

As will be elaborated on below, quantum fluctuations can
give rise to several different behaviors. To understand the
physics of these quantum fluctuations, we use the RG and
examine the behavior of the system under a change in scale.

A. Formalism

The low-energy properties of the spin-1/2 chain are de-
scribed by an SU�2�1 Wess-Zumino-Witten �WZW� model
with Hamiltonian

H =
v

2

� dx�JR · JR + JL · JL� , �24�

where the velocity v is related to J� and JR and JL are cur-
rents satisfying the SU�2�1 Kac–Moody operator product ex-
pansion �OPE�,

:JR
	�z�::JR

��w�: =
�	,�

2�z − w�2 +
i�	��

2�z − w�
JR

��w� ,

:JL
	�z̄�::JL

��w̄�: =
�	,�

2�z̄ − w̄�2 +
i�	��

2�z̄ − w̄�
JL

��w� , �25�

with z=v�+ ix and z̄=v�− ix. The SU�2�1 WZW model has a
single primary �matrix� field g�z , z̄� of dimension �1/4, 1/4�.
�g is the field appearing in the �-model representation.�
Physical operators of the spin-1/2 chain are given by combi-
nations of the components g—the staggered magnetization
n	�z , z̄� and the dimerization ��z , z̄�,

n	�z, z̄� = Tr
�	g�z, z̄��, ��z, z̄� = Tr
g�z, z̄�� , �26�

where the ��	� are the Pauli matrices. The n	 and � fields
have leading short-distance behavior,

:n	�z�::n��w�: =
�	�

�z − w�
,

:��z�::��w�: =
1

�z − w�
,

FIG. 10. Spinons topologically separating distinct regions.
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:n	�z�::��w�: = 0. �27�

Furthermore, being linear combinations of the components
of g, their OPEs with currents are

:JR
	�z�::n��w�: =

i

2�z − w�

�	��n��w� − �	���w�� ,

:JL
	�z�::n��w�: =

i

2�z̄ − w̄�

�	��n��w� + �	���w�� ,

:JR
	�z�::��w�: =

i

2�z − w�
n	�w� ,

:JL
	�z�::��w�: =

− i

2�z̄ − w̄�
n	�w� . �28�


In Eqs. �27� and �28�, n	�z��n	�z , z̄� and ��z����z , z̄�.�
At low energies, the spin operator on chain i, Sl

�i�, can be
written as

Sl
�i�

a
=

1

2


JiR�x� + JiL�x�� + �− 1�l M

2
a1/2ni�x� , �29�

where a is an ultraviolet regulator �a� the lattice spacing�
and M is a nonuniversal O�1� constant. In what follows, we
will need to know the behavior of the fields upon translation
by a single site. From the invariance of the spin operator Sl

�i�

under translation, we deduce how JiR�x�, JiL�x�, and ni�x�
transform. Then, as all of the terms on the right-hand side of
Eq. �28� must transform in the same way upon translation,
we deduce how �i�x� transforms. Hence, we arrive at

JiR/L�x� → JiR/L�x� ,

ni�x� → − ni�x�, �i�x� → − �i�x� . �30�

B. Operators and phases: Topological order, dimer order,
and deconfined spinons

As described above, starting from two spin-1/2 chains, we
are interested in the fate of the system upon turning on an
interchain coupling. In Sec. V B, we discuss the various op-
erators that can arise in the low-energy Hamiltonian�s�; we
discuss the physics that these operators give rise to.

The low-energy Hamiltonians are dictated by symmetry.
The models we are considering are all SU�2� symmetric;
hence, all operators appearing must transform as SU�2� sca-
lars. Therefore, if only relevant and marginal operators are
considered, the operators

�1 and �2, �1�2, n1 · n2, n1�xn2, �1�x�2,

�J1R + J1L� · n2, �J2R + J2L� · n1,

�J1R · J2L + J2R · J1L�, �J1R · J1L + J2L · J2R� �31�

have the potential of appearing in the low-energy Hamilto-
nians. Furthermore, we will not consider the terms J1R ·J2R

and J1L ·J2L. Even though these terms have two dimensions
�and, hence, are marginal�, they couple excitations moving in
the same direction on both chains and give rise only to small
quantitative corrections. As will be discussed below, other
symmetries of the various models will further restrict the
operators allowed in their low-energy Hamiltonians.

The physics is determined by the operator that flows to
strong coupling first under the RG. When the n1 ·n2 term
determines the physics, the resulting phases have gapped
magnons with spinons being confined.19 �The n1 ·n2 term, in
fact, gives rise to a strong confining potential that binds
spinons together from the two chains to form a gapped mag-
non.� Furthermore, these phases have topological order; in-
formation about this topological order is contained in the
sign of the n1 ·n2 term’s coefficient. Another possibility is if
the physics is determined by the �J1R ·J2L+J2R ·J1L� term.
When this occurs, it has been shown that the resulting phase
is a fractionalized phase with deconfined spinons.13 Finally,
if the physics is determined by the �1 and �2 or �1�2 term�s�,
the result is a spontaneously dimerized phase.

There are other operators in Eq. �31�. However, these op-
erators do not determine the phases that arise, although they
modify the properties within a particular phase. In particular,
�J1R ·J1L+J2L ·J2R� is the marginally irrelevant operator
present in the two spin-1/2 chains.56 Furthermore, n1 ·�xn2
and �1�x�2 are believed to give rise to incommensurate
correlations.13,54 Finally, as will be seen below, the �J1R
+J1L� ·n2 and �J2R+J2L� ·n1 are always subleading to n1 ·n2
and �1�2 and, hence, do not determine the phases that arise.

C. Effective low-energy Hamiltonians

Here, we deduce the effective low-energy Hamiltonians
for the frustrated ladder models considered in this work. We
then derive RG equations describing how the parameters in
the low-energy Hamiltonian evolve under a change in scale.
Finally, we derive the initial values of the parameters from
the microscopic models in the limit of weak interchain cou-
pling.

1. Cross-coupled ladder

Besides being SU�2� symmetric, the cross-coupled ladder
is invariant under translation by one site and also inversion
about the center of the ladder: leg 1↔ leg 2. Translation by
one site forbids �1 and �2 from appearing alone; it also for-
bids the operators �J1R+J1L� ·n2 and �J2R+J2L� ·n1. Inversion
about the center forces operators from leg 1 and leg 2 to
symmetrically appear; in particular, it forbids the operators
n1�xn2 and �1�x�2 from appearing. These symmetries con-
strain the effective low-energy Hamiltonian to have the form

H =� dx���J1R · J1L + J2L · J2R� + ��J1R · J2L + J1L · J2R�

+
g

a
n1 · n2 +

�

a
�1�2� . �32�

To understand the physics contained in Eq. �32�, we use
the RG and investigate the behavior under a transformation
of scale. By using the OPEs in Eqs. �25�, �27�, and �28�, we
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deduce the RG equations for the parameters to be57

d�

dl
= �2 −

1

2
g2 +

1

2
�2,

d�

dl
= �2 + g2 − g� ,

dg

dl
= g −

1

2
�g + �g −

1

2
�� ,

d�

dl
= � +

3

2
�� −

3

2
�g . �33�

From the structure of the RG equations, we see that if either
g or � is nonzero, both n1 ·n2 and �1�2 will be generated
upon renormalization. However, if both g=0 and �=0, these
operators will not appear. Hence, one would expect the rel-
evant n1 ·n2 or �1�2 terms to determine the physics under
most situations. If both of these terms are suppressed, the
physics would be determined by the marginally relevant
�J1R ·J2L+J1L ·J2R�.

To deduce the values of the parameters in Eq. �32�, we
insert Eq. �29� into Eqs. �2� and �4�; we obtain

H� + HX =� dx

�2
�2��J� − 2JX�
M2

a
n1 · n2

− 2JX
M2

a �
m=1

�
a2m

�2m�!
n1�x

2mn2 + �J� + 2JX�

��J1R · J2L + J1L · J2R�� . �34�

A lattice Hamiltonian gives rise to a continuum field theory
with an infinite number of operators.56 Here, besides n1 ·n2
and �J1R ·J2L+J1L ·J2R�, an infinite number of irrelevant op-
erators of the form n1 ·�x

2mn2 appear. From Eq. �34�, the rel-
evant operator n1 ·n2 determines the physics for generic val-
ues of J� and J�. When the n1 ·n2 term is suppressed, it
appears that the physics is determined by the �J1R ·J2L
+J1L ·J2R� term. However, things are more subtle—the irrel-
evant n1 ·�x

2mn2 can generate the relevant n1 ·n2 and �1�2
when integrated out.12 Indeed, focusing on the leading irrel-
evant operator n1 ·�x

2n2, the term

�J� + 2JX�� d2x1

�2
�2 �J1R · J2L + J1L · J2R�

� JXM2a� d2x2

�2
�2n1 · �x
2n2 �35�

appears in the partition function at second order. By using
the OPEs in Eq. �28�,

JX�J� + 2JX�M2

�2
�2a
�1

2
n1 · n2 −

3

4
�1�2� �36�

is generated in the low-energy Hamiltonian. Hence, to lead-
ing order, we deduce

� =
J� + 2JX

�2
�2 , � = −
3

8


�J� + 2JX�JXM2

�2
�2 ,

g =
�J� − 2JX�M2

�2
�2 +
JXM2

4


J� + 2JX

�2
�2 . �37�

As mentioned above, the relevant operator n1 ·n2 deter-
mines the physics for generic values of J� and J�. Now,
when g→0 in Eq. �37�, the relevant �1�2 is present �from
integrating out the irrelevant operators�; one may expect it to
determine the physics. However, its coefficient is signifi-
cantly smaller than the �J1R ·J2L+J1L ·J2R� term. Therefore, a
subtle competition between the two interactions should be
expected. This competition will be investigated in detail in
our numerical calculations.

2. Zigzag ladder

Like the cross-coupled ladder, the zigzag ladder is invari-
ant under translation by a single site. However, it lacks the
symmetry of inversion about the center of the ladder. Hence,
the operators from leg 1 and leg 2 do not have to appear
symmetrically—now, the operators n1�xn2 and �1�x�2 are al-
lowed. The effective low-energy Hamiltonian has the form

H =� dx���J1R · J1L + J2L · J2R� + ��J1R · J2L + J1L · J2R�

+
g

a
n1 · n2 +

�

a
�1�2 + g1n1 · �xn2 + �1�1�x�2� . �38�

As with the cross-coupled ladder, we investigate the phys-
ics of Eq. �38� by using the RG. By using the OPEs, we
deduce the RG equations for the parameters to be

d�

dl
= �2 −

1

2
g2 +

1

2
�2 +

1

4
g1

2 −
1

4
�1

2,

d�

dl
= �2 + g2 − g� +

1

2
g1

2 −
1

2
g1�1,

dg

dl
= g −

1

2
�g + �g −

1

2
�� ,

d�

dl
= � +

3

2
�� −

3

2
�g ,

dg1

dl
= −

1

2
�g1 + �g1 −

1

2
��1,

d�1

dl
=

3

2
��1 −

3

2
�g1. �39�

As with the cross-coupled ladder, n1 ·n2 and �1�2 will be
generated upon renormalization unless both g=0 and �=0.
Similarly, n1 ·�n2 and �1��2 will appear unless both g1=0
and �1=0. Hence, as with the cross-coupled ladder, one
would expect the n1 ·n2 or �1�2 terms to determine the phys-
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ics under most situations; if they are suppressed, the physics
would be determined by �J1R ·J2L+J1L ·J2R�.

To deduce the values of the parameters in Eq. �38�, we
insert Eq. �29� into Eqs. �2� and �8�; we obtain

H� + Hz =� dx

�2
�2��J� − J2�
M2

a
n1 · n2

+
M2

a
�
m=1

�
1

m!
�a

2
�m


J��− 1�m − J2�n1�x
mn2

+ �J� + J2��J1R · J1L + J2L · J2R�� . �40�

As we saw with the cross-coupled ladder, the lattice Hamil-
tonian gives rise to an infinite number of operators in the
field theory. Similar to the cross-coupled ladder, the relevant
n1 ·n2 determines the physics for generic values of J� and J�.
Furthermore, when the n1 ·n2 term is suppressed, the irrel-
evant operators may generate terms that determine the phys-
ics. Interestingly, for this model, all the terms of the form
n1 ·�x

2mn2 have their coefficient proportional to �J�−J2�.
Hence, all the operators of the form n1 ·�x

2mn2 are fine tuned
away along the line J�=J2; only terms of the form
n1 ·�x

2m+1n2 are present. As there are only derivatives of odd
power, they are unable to generate terms such as n1 ·n2 or
�1�2. Therefore, for this model, the irrelevant operators do
not change the physics �although they give rise to small
quantitative changes, e.g., in the size of energy gaps�; to
leading order, we deduce the parameters in Eq. �38� to be

� =
J� + J2

�2
�2 , g =
�J� − J2�M2

�2
�2 , � = 0,

g1 = −
�J� + J2�M2

2�2
�2 , �1 = 0. �41�

3. Diagonal ladder

Like the previous two models, the diagonal ladder has
translation invariance. However, unlike the cross-coupled
and zigzag ladders which are invariant under translation by a
single site, the diagonal ladder is invariant under translation
by two sites. Furthermore, while this model is not invariant
under inversion about the center of the ladder
�leg 1↔ leg 2�, it is invariant under inversion compounded
by translation by one site. Due to the invariance under trans-
lation by two sites, the operators �1, �2 and �J1R+J1L� ·n2,
�J2R+J2L� ·n1 are now allowed. However, the symmetry of
inversion compounded by translation by one site constrains
them to appear in the combination ��1−�2� and 
�J1R
+J1L� ·n2− �J2R+J2L� ·n1�. Hence, the effective low-energy
Hamiltonian has the form

H =� dx� 	

a3/2 ��1 − �2� + ��J1R · J1L + J2L · J2R� + ��J1R · J2L

+ J1L · J2R� +
g

a
n1 · n2 +

�

a
�1�2 +

�

a1/2 
�J1R + J1L� · n2

− �J2R + J2L� · n1�� . �42�

As before, we use the OPEs to deduce the RG equations for
the parameters; we find

d�

dl
= �2 −

1

2
g2 +

1

2
�2 +

1

2
	2,

d�

dl
= �2 + g2 − g� ,

dg

dl
= g −

1

2
�g + �g −

1

2
�� − �2,

d�

dl
= � +

3

2
�� −

3

2
�g + 	2 −

3

2
�2,

d	

dl
=

3

2
	 +

3

4
�	 + �	 ,

d�

dl
=

1

2
� −

1

4
�� +

1

4
�� − g� +

1

2
�� . �43�

For this ladder model, the operator ��1−�2� is allowed; if its
initial coefficient is zero, this term will never be generated.
Furthermore, we must have 	=0, g=0, �=0, and �=0 in
order for all the relevant operators to be vanished. In particu-
lar, if any of these are nonzero, the n1 ·n2 and �1�2 terms will
be generated.

To deduce the values of the parameters in Eq. �42�, we
insert Eq. �29� into Eq. �10�; we obtain

H� + Hd =� dx

�2
�2��J� − J2�
M2

a
n1 · n2

− J2
M2

a
�
m=1

�
a2m

�2m�!
n1 · �x

2mn2 + �J� + J2��J1R · J1L

+ J2L · J2R� +
J2M

a1/2 
�J1R + J1L� · n2 − �J2R

+ J2L� · n1� +
J2M

a1/2 �
m=1

�
a2m

�2m�!

�J1R + J1L� · �x

2mn2

− �J2R + J2L� · �x
2mn1�� . �44�

Interestingly, even though the term ��1−�2� is allowed, its
coefficient is zero. However, the relevant 
�J1R+J1L� ·n2
− �J2R+J2L� ·n1� is always present; as mentioned above, it
generates both the n1 ·n2 and �1�2 terms. Hence, for this
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model, the irrelevant operators give rise only to small quan-
titative corrections; the physics that can occur is already con-
tained in the relevant operators already present. Therefore, to
leading order, we deduce the values of the parameters in Eq.
�42� to be

� =
J� + J2

�2
�2 , g =
�J� − J2�M2

�2
�2 , � = 0,

� =
J2M

�2
�2 , 	 = 0. �45�

As mentioned above, the zigzag ladder is expected to
have a fractionalized phase when g→0; one can expect a
subtle competition between �1�2 and �J1R ·J2L+J1L ·J2R� in
the cross-coupled ladder. For this ladder model, as �1�2 is
generated by the relevant 
�J1R+J1L� ·n2− �J2R+J2L� ·n1�
term, it is reasonable to expect a regime of parameter space
where �1�2 flows to strong coupling first and the system
dimerizes.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present our numerical results for the
phase diagrams of the models introduced in Sec. II; we dis-
cuss them in light of the analytical results presented in Secs.
III–V.

A. Numerical method

The numerical calculations have been performed on finite
ladders with OBC using the DMRG algorithm58 with the
dynamic block-state selection �DBSS� approach.59,60 We
have set the threshold value of the quantum information loss
� to 10−8 and the minimum number of block states Mmin to
64. All relevant eigenstates have been independently targeted
by using four to six DMRG sweeps until the entropy sum
rule60 has been satisfied. The accuracy of the Davidson di-
agonalization routine has been set to 10−7.

Recently, it has been shown that quantum phase transi-
tions �QPTs� can be conveniently studied by calculating
some measure of entanglement.61–71 In particular, the von
Neumann entropy of a block containing a finite number of
neighboring sites often gives a clear indication of a QPT, as
anomalies appear in these quantities at the transition: the
entropy exhibits a jump at a first-order transition or develops
a cusp �with increasing N� at a continuous transition. Fur-
thermore, even if the entropy is analytic, its extrema are of-
ten indicative of changes in the system. Indeed, extrema in
the entropy are known to occur in the SU�n� Hubbard model
at 1 /n filling, where a Kosterlitz–Thouless transition
occurs;67,72,73 extrema are also known to occur at the
valence-bond-solid point of the spin-1 bilinear-biquadratic
chain,74 where the system’s wave function changes
character.45 Therefore, in what follows, besides looking for
discontinuities and cusps in the entropy, we will also scruti-
nize the regions where the entropies exhibit extrema �without
developing a cusp�.

It should be noted that, depending on how a first-order
transition is realized, one might have difficulty distinguish-

ing it from a continuous transition. More specifically, if the
two levels corresponding to the different ground states are
already orthogonal in a finite-sized system, the entropy of a
block will exhibit a jump when the two levels cross �in a
finite-sized system�. However, if the two levels are not or-
thogonal in a finite-sized system, the wave function, energy,
and consequently the entropy of a block will continuously
vary in any finite-sized system. In this case, the level cross-
ing develops only asymptotically, and the jump in the en-
tropy appears only in the N→� limit.

In this work, we consider �i� sl, the entropy of the lth
rung, �ii� sl,l+1, the two-rung entropy of the neighboring lth
and �l+1�st rungs, �iii� sl,l+1

�i� , the two-site entropy of the spins
Sl

�i� and Sl+1
�i� on chain i, and also �iv� sN�l�, the entropy of a

block formed by the left l rungs of a ladder with N rungs. To
avoid end effects, we compute sl, sl,l+1, and sl,l+1

�i� in the
middle of the ladder for l=N /2 or l=N /2+1. As discussed
above, one of our primary interests is to identify dimerized
phases that may arise and the concomitant breaking of trans-
lational symmetry. The appearance of a columnar dimerized
phase can be detected by considering the difference of two-
rung entropies,

Ds = sl+1,l+2 − sl,l+1, l = N/2. �46�

Alternatively, taking the block entropy sN�l� of the left l
rungs, one can consider

D̃s = s�l� − s�l + 1�, l = N/2, �47�

which tells how the block entropy of the left half changes
when an extra rung is added. The appearance of staggered
dimerization can be detected by considering the difference of
two-site entropies on the two chains,

Ps = �sl+1,l+2
�1� − sl,l+1

�1� � − �sl+1,l+2
�2� − sl,l+1

�2� �, l = N/2. �48�

Further information about the phases that arise can be
deduced by studying the length dependence of sN�l�.75–79 For
noncritical, gapped models, this quantity saturates to a finite
value when l is far from the boundaries, while for critical
systems,

sN�l� =
c

6
ln�2N



sin�
l

N
�� + g , �49�

where c is the central charge.75,80 Moreover, if the system’s
ground state is spatially inhomogeneous, oscillations appear
in sN�l�.45 Hence, the Fourier spectrum

s̃�k� =
1

N
�
l=0

N

e−iklsN�l� �50�

carries information45 about the spatial inhomogeneity: if the
amplitude of a peak at a nonzero wave number k� remains
finite in the thermodynamic limit, this indicates a periodic
spatial modulation of the ground state with wavelength
�=2
 /k�.

In what follows, we will often need to know the large-N
behavior of various quantities. For any quantity A, the finite-
size scaling ansatz
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A�N� = A0 + a/N� �51�

has been used, where A0, a, and � are free parameters deter-
mined by a least-squares fitting procedure.

B. Results and discussion

1. Zigzag ladder

We first present results for the zigzag ladder. Since the
phase diagram and properties of this model are well known,
it serves as a test case for the other models. The J�, J2
parameter space was explored by calculating various entropy
functions for J� and J2 satisfying

J� + J2 = CJ� �52�

for several values of C. In the numerical calculations, the
energy scale was set by taking J� to be unity.

We first show results obtained for C=2. As seen in
Fig. 11, sl in the middle of the ladder is discontinuous at
J�=J2=J�, which indicates a first-order transition. Besides
the discontinuity, the inset of Fig. 11 shows a minimum in
the entropy at J2�1.36J�. Moreover, there is also a minimum
in s̃�k� at an incommensurate k� in the region 0.5�J2 /J�

�1.36. On physical grounds, there is no reason to expect
another transition in the zigzag ladder since any deviation
from the J�=J2 line drives the system into the rung-singlet
or Haldane phase. Indeed, this minimum is a finite-size
effect—it originates from the two end spins of the Haldane
phase. To substantiate this, notice that there is no sign of this
minimum in the rung-singlet phase, while we know that the
phase boundaries must be symmetric under the interchange
of J� and J2. Furthermore, by attaching spin 1/2 to the ends
of the ladder with a strong anitferromagnetic coupling, the
end spins can be eliminated.81 When the calculations are re-
peated with these extra spin 1/2 attached to the ends, the
minimum in s̃�k� at an incommensurate k� disappears.

Performing the calculations for couplings satisfying Eq.
�52� with other values of C, a behavior similar to Fig. 11
was observed whenever the line J�=J2 was crossed at
J��J� /0.241. That indicates that the system undergoes a
first-order transition �along the line J�=J2� for

J��J� /0.241. Different behaviors in the entropies were ob-
served, however, for stronger interchain couplings. Figure 12
shows sl �top panel� and sl,l+1 �bottom panel� in the middle of
the ladder for J�+J2=10J�. In the rung-singlet phase, sl is
small, as the spins on a rung are predominantly in a singlet
state; in the Haldane-type phase, sl is close to ln 4�1.386,
since the valence bonds are predominantly formed between
neighboring rungs. Notice, however, that sl has no longer a
jump at J�=J2=CJ� /2 �as it did in Fig. 11�; rather, sl and
sl,l+1 have a discontinuity in their slope. When sN�l� was
computed at the point J�=J2, it was found that it could fit
well with the form given in Eq. �49� with c=1. These results
are consistent with a continuous transition between the rung-
singlet and Haldane-type phases in this regime. They are
consistent with the fact that if the zigzag ladder is written as
a single chain with nearest- and next-nearest-neighbor cou-
plings, the chain is critical in this regime with the low-energy
physics being described by Eq. �24�.

The insets of Fig. 12 show sl and sl,l+1 in a region about
J2=2J�; we see that the entropy functions vanish at J2=2J�

for any length of the ladder. This is because the exact ground
state is a product of rung singlets 
see Eq. �15�� for J2=2J�.
In fact, the entropies vanish along the entire line J2=2J�

when J��2J�, as Eq. �15� is the exact ground state. Further-
more, computing the entropy of the two spins coupled along
the diagonal by J2, Sl

�1� and Sl+1
�2� , this entropy was found to

vanish for J�=2J� when J2�2J�. This is because Eq. �20� is
the exact ground state along this line. More generally, due to
the symmetry of the model, one obtains the same results
presented in Figs. 11 and 12 if J� and J2 are interchanged;
instead of considering rung entropies, one must consider the
entropies of diagonally coupled spins.

Setting together these results, we arrive at the phase dia-
gram in Fig. 13. The transition line at J�=J2 is of first order
in the weak-coupling limit, which becomes of second order
at strong couplings. The entire region above �below� the line
J�=J2 is continuously related to the exactly solvable line
J2=2J� �J�=2J�� and, hence, is in the rung-singlet �Haldane�
phase. In terms of the effective low-energy Hamiltonian dis-
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cussed in Sec. V C 2, the physics in these phases is deter-
mined by the n1 ·n2 term; in the rung-singlet �Haldane�
phase, its coefficient is positive �negative�. As discussed in
Sec. IV, the rung-singlet �Haldane� phase has Q=even �Q
=odd� topological order, and the elementary excitations are
gapped magnons with spinons being confined. Along the
J�=J2 line, the two topologically distinct ground states be-
come degenerate and spinons are deconfined, with domain
walls between the two topologically distinct �and energeti-
cally degenerate� ground states. As mentioned in Sec. VII, at
weak coupling, the physics is determined by the �J1R ·J2L
+J2R ·J1L� term �with the n1 ·�xn2 and �1�x�2 terms giving
rise to incommensuration�. Looking at Eq. �40�, this fraction-
alized phase occurs because the geometry of the zigzag lad-
der fine tunes away an infinite number of operators which
could cause dimerization.

2. Cross-coupled ladder

As with the zigzag ladder, we calculated sl and sl,l+1 for
J� and JX satisfying Eq. �52� with various values of C. Fig-
ure 14 shows results obtained for intermediate values of the
interchain couplings, C=2 and C=3. Here, we see that the
entropy functions display a finite jump, indicating a first-
order transition. The inset shows that sl vanishes �indepen-
dent of the ladder’s length� at JX=J�. This occurs because Eq.
�15� is the exact ground state for JX=J� with J��2J�. It was
shown in Ref. 32 that Eq. �15� is, in fact, the ground state for
JX=J� and J��1.401J�. Our numerical results are in agree-
ment with this prediction.

Besides the finite jump at JX=0.8, Fig. 14 also shows that
the two-site entropy possesses a minimum around JX�1;
furthermore, weak incommensurate oscillations were found
to appear in sN�l�. Similar to the zigzag ladder, these are
finite-size effects due to the end spins in the Haldane phase.
Indeed, when calculations are repeated for a system in which

spin 1/2’s are attached to the ends of the ladder �to freeze the
end spins�, the block entropy sN�l� saturates for shorter
chains and the minimum in s̃�k� at an incommensurate k�

disappears. The amplitude of the remaining negative peak in
s̃�k� at k�=
 was found to vanish in the thermodynamic
limit. Hence, no spatial inhomogeneity develops along the
transition line.

The numerical results show a different behavior when
C�1.3. sl as a function of JX is shown in Fig. 15 for C=1.
The ground-state wave function continuously evolves in
the weak-coupling regime; as longer and longer ladders are
considered, sl exhibits a sharper and sharper maximum
�bounded from above by ln 4�, developing into a cusp at
JXc /J� =0.355�3�. Such behavior is suggestive of a continu-
ous transition. Recent numerical works reported a continuous
transition in the weak-coupling regime,20,33 which is in dis-
agreement with analytic results10 as well as previous numeri-
cal calculations.11 However, the analytic results are expected
to be reliable in the weak-coupling regime. As was checked
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by the DBSS procedure, a reliable extrapolation of the gap
requires calculations on longer ladders and keeping a signifi-
cantly larger number of block states than was available in
Ref. 20. The same holds for the entropy. Moreover, as was
shown above, spurious effects can arise due to end spins.
Indeed, when the calculations were repeated by attaching
spin 1/2 to the ends of the ladder, sl behaves somewhat dif-
ferently. As shown in Fig. 16, instead of an abrupt change in
slope, a jump now seems to develop; its position scales to the
same value of JXc obtained in Fig. 15. This behavior suggests
that the transition is of first order. Based on these consider-
ations, we believe that the transition is, in fact, first order.
Although the singlet ground-state wave function continu-
ously evolves in the weak-coupling regime for finite-sized
systems, a crossing with the next singlet level is expected to
develop in the N→8 limit �as per the discussion in Sec.
VI A�; the asymmetric cusp in Fig. 15 is expected to develop
into a jump.

A further interesting feature of the model for weak inter-
chain coupling is shown in Fig. 17. More specifically, the
two-rung entropy sl,l+1 measured for l=N /2 exhibits two
well separated peaks at JXc1

�N� and JXc2
�N�, but it exhibits a

single peak for l=N /2+1. The difference Ds�N� is also finite
in the region between JXc1

and JXc2
. This could suggests the

existence of a columnar dimer phase in a narrow range of
couplings, as predicted in Ref. 12. However, the two peaks
merge in the N→� limit and the width of the putative dimer
phase shrinks to zero. As shown in the inset of Fig. 17, a
finite-size scaling analysis gives the same critical value as
the one-rung entropy. The same behavior was observed in the
calculation along the line JX=0.2J� confirming the findings
of Ref. 33.

We have also computed sN�l� and its Fourier transform
s̃�k�. �s̃�k�� was found to have an extra peak at k�=
, besides
the one at k=0. However, �s̃�k�=
�� was found to vanish in
the large-N limit, which indicates that the ground state is
always spatially homogeneous. Similar behavior was found
for other values of J� and JX in the weak-coupling regime.
Furthermore, we computed the staggered dimerization 
see
Eq. �48�� and we found that it also vanishes in the N→0

limit. This provides strong evidence that, at least for weak
interchain coupling, there is no intermediate columnar or
staggered dimer phase between the rung-singlet and Haldane
phases.

Setting together these results, we obtain the phase dia-
gram for the cross-coupled ladder, as shown in Fig. 18. The
entire region above the transition line is continuously related
to the exactly solvable line JX /J� =1 and, hence, is in the
rung-singlet phase. The entire region below the transition
line is continuously related the point JX=1 and J�=0 and,
hence, is in the Haldane phase. As with the zigzag ladder, the
physics in these phases is determined by the n1 ·n2 term in
the low-energy Hamiltonian—these phases have topological
order and confined spinons. As discussed in Sec. V C 1, at
the transition, there is a subtle competition between the
�J1R ·J2L+J1L ·J2R� and �1�2 terms, which give rise to a frac-
tionalized and dimerized phase, respectively. However, the
entire transition line appears to be of first order, with no
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evidence for an intermediate dimerized phase being found.
Hence, our results suggest that a dimerized phase does not
appear in this model. In constructing the phase diagram, we
made use of a duality relationship of the model. Similar to
what was described for the diagonal ladder in Sec. II, one
can interchange the spins on every second rung: S2l

1 ↔S2l
2 .

When this is done for this ladder model, another cross-
coupled ladder is obtained but with J� and JX interchanged.
This implies that energies and, in particular, energy gaps sat-
isfy

E�J�,J�,JX� = E�JX,J�,J�� . �53�

Scaling by J�, one obtains

E�J�/J�,JX/J�� = �JX/J��E�J�/JX,J�/JX� . �54�

3. Diagonal ladder

As with the other models, we computed sl and sl,l+1 for J�

and J2 which satisfy Eq. �52� with various values of C. Here,
in contrast to the other two models, we find a dimerized
phase intervening between the rung-singlet and Haldane
phases.

Figure 19 shows sl,l+1 for J�+J2=J�. While the behavior
appears similar to Fig. 17, the N→� limit is drastically dif-
ferent. Indeed, while a single transition was found for the
cross-coupled ladder, the inset of Fig. 19 shows that the two
peaks do not collapse in this model. Hence, Fig. 19 suggests
the system undergoes two distinct transitions at J2c1

/J�

=0.459 and J2c2
/J� =0.563, with a columnar dimerized phase

between the two transition lines. To substantiate this, we
have computed sN�l� and subsequently �s̃�k�=
��, with the
entropy difference between neighboring plaquettes Ds
�shown in Fig. 20� and also the energy difference between
neighboring plaquettes. All of these quantities were found to
scale to a finite value in the region between J2c1

and J2c2
.

Similar behavior was found for other values of the param-
eters in the weak-coupling limit. Hence, we conclude that a
columnar dimerized phase does, in fact, exist between the

rung-singlet and Haldane phases in this model.
When the calculations were repeated for J�+J2�2J�, a

single first-order transition was obtained. It is worth noting
that due to the rather small values of the gap, the asymptotic
behavior can be seen only for long ladders. As before, con-
vergence can be accelerated in the Haldane phase by attach-
ing spin 1/2 to the ends of the ladder �to pin the end spins�.

Figure 21 summarizes our finding for the phase diagram
of the diagonal ladder. The entire region above the transition
line is continuously related to the exactly solvable line
J2 /J� =2 and, hence, is in the rung-singlet phase. The entire
region below the transition line is in the Haldane phase. As
with the previous two ladder models, these phases have to-
pological order with confined spinons; the physics in these
phases is determined by the n1 ·n2 term in the low-energy
Hamiltonian. However, contrary to what was found for the
cross-coupled and zigzag ladders, from the discussion in Sec.
V C 3, it is reasonable to expect a regime in between the
rung-singlet and Haldane phases where the diagonal ladder
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dimerizes �i.e., where the physics is determined by the �1�2
term�. This is, indeed, found to be the case—a narrow but
extended region is found where the ground state is dimer-
ized. The first-order transition is replaced in the weak-
coupling regime by two second-order transitions.

VII. CONCLUDING REMARKS

In this work, we considered several frustrated spin ladder
models, which are related to higher-dimensional models of
current interest. In large regions of parameter space, these
models have short-range RVB ground states with topological
order; they are adiabatically related to the ground states of
the rung-singlet or Haldane phase. We investigated the role
of frustrating interactions on the models, addressing, in par-
ticular, how the transition between phases with different to-
pological orders occurs. In the simplest case, a direct transi-
tion takes place along the line where the even- and odd-
topology phases become degenerate. While the elementary
excitations of the topologically ordered phases are gapped
magnons, spinons become deconfined along the transition
line and a fractionalized phase is obtained. Alternatively, the
transition may occur in two steps, with an intermediate phase
having broken translational symmetry. In this case, spinons
always remain confined.

An important observation from our analysis is the strong
“desire” for broken-symmetry phases to arise at the transition
between the rung-singlet and Haldane phases. Indeed, we
saw that spin models typically give rise to an infinite number
of operators that could cause dimerization.12 These operators
arose in the diagonal ladder, and a dimerized phase was seen
to appear in the phase diagram. These operators also arose in
the cross-coupled ladder; nevertheless, in agreement with

Ref. 33, we found no evidence for dimerized phases in our
numerics. The RG equations suggest that this occurs due to a
subtle interplay and/or competition of quantum fluctuations.
Although no dimerized phase appears in the cross-coupled
ladder studied in this paper, in this delicate situation even
small perturbations are likely to drive the cross-coupled
model into dimerized phases, as shown in Ref. 82. The zig-
zag ladder was an exception—the model’s geometry fine
tunes away the infinite number of operators which could
cause dimerization.

We believe these results give an outlook into the physics
of higher-dimensional systems. In particular, our results
show the importance of a system’s geometry in achieving the
necessary liquidity for fractionalized excitations to occur.
Hence, our results illustrate why fractionalized phases are
hard to come by—fractionalized phases are delicate objects,
which require some level of fine tuning. Even on lattices
where the necessary fine tuning occurs �such as the triangular
lattice�, small perturbations due to, e.g., spin-phonon
coupling51 or ring exchanges, are likely to drive the system
into a dimerized phase.
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