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The entanglement entropy of a gapless fermion subsystem coupled to a gapless bulk by a “weak link” is
considered. It is numerically demonstrated that each independent weak link contributes an entropy proportional
to ln L, where L is linear dimension of the subsystem.
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I. INTRODUCTION

Striking connections have recently emerged between
quantum entanglement and several distinct fields of physics:
black hole quantum mechanics, quantum phase transitions in
condensed matter, topologically ordered phases in quantum
field theories �QFT�, and conformal field theory �CFT�. The
central quantity common to these studies is the entanglement
entropy, which is computed for a finite subregion of a QFT
or many body system. If, in a QFT in d spatial dimensions, a
distinguished region A of volume Ld is formed, it follows
that the degrees of freedom that exclusively reside in region
A will appear to be in a mixed state. The degree of mixing
may be characterized by the von Neumann entropy, S=
−tr � ln �, where the reduced density matrix �=tr�A�0��0�
has been formed by tracing over the degrees of freedom of
the ground state �0� exterior to region A.

Entanglement entropy was first investigated in the context
of black hole quantum mechanics and Hawking–Bekenstein
entropy,1,2 where it was found that entanglement entropy is
not a conventional extensive quantity but, rather, is propor-
tional to the area of the bounding surface of the distinguished
region A, and thus, S�Ld−1.2 This highly suggestive result
�known as the area law� is believed to bear some relation to
holographic principle proposals.3 It has also recently been
discovered that the subleading term in the entanglement en-
tropy carries information about topologically ordered phases
occurring in topologic QFTs.4 As pointed out in Refs. 5–8,
the divergence of entanglement entropy at quantum critical
points may also be exploited to identify quantum critical
phenomena and quantum phase transitions. In connection
with entanglement entropy, 1+1-dimensional CFTs have re-
ceived special attention in the past several years. CFTs—
which describe critical spin chains, Luttinger liquids, and
other massless theories—have pointlike bounding surfaces;
remarkably, the entanglement entropy was shown to univer-
sally depend on the central charge of the theory and to loga-
rithmically diverge with the length of the distinguished
region.5,9 Specifically, the entropy is given by S= c

3 ln L /�,
where c is the central charge and � is a spatial cutoff.

So far, studies have concentrated on entanglement entro-
pies computed in a homogeneous system; specifically,
the bipartite entropy of a d-dimensional distinguished
region separated from the d-dimensional bulk by a
�d−1�-dimensional boundary. For gapless fermions, it has
been proven10–13 that the area law is anomalous and, in con-
trast to the area law above,

S = �L

�
�d−1

ln
L

�
. �1�

One might consider a generalization in which a
�d−k�-dimensional boundary separates the distinguished re-
gion from the bulk, where the codimension of the boundary k
is something other than k=1. To maintain the appropriate
extensivity of the entanglement entropy, one might expect
S�Ld−k ln L, although such a property has not been estab-
lished. In this paper, we study the simplest interesting sub-
case: a zero-dimensional boundary—or “weak link”—
connecting two d-dimensional regions �see Fig. 1�. For
d-dimensional gapless fermions, this geometry may be
treated by bosonization and mapped to the problem of en-
tanglement in a one-dimensional �1D� subsystem where the
entropy is known. The treatment of the weak link is similar
to the x-ray edge or Kondo problem, where the impurity
interacts with the s-wave sector of the bulk fermion system.14

The weak link leads to the entanglement of effectively two
�length L� 1D systems and the entropy is thus proportional to
ln L. Each independent weak link contributes an entropy pro-
portional to ln L, which is consistent with the bulk area law
	Eq. �1�
 if one considers a large number of weak links pro-
portional to Ld−1. In a sense, the area law 	Eq. �1�
 may be
anticipated by the fusion of two d-dimensional regions in this
fashion.

II. MODEL HAMILTONIAN AND BOSONIZATION

In this paper, we study the entanglement entropy of a
two-dimensional �2D� or three-dimensional �3D� noninter-

FIG. 1. �Color online� Two d-dimensional regions connected by
a weak link.
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acting fermion system �A� connected by a weak link to a
second identical system �B�. The model Hamiltonian is

H = − t �
�i,j��=A,B

�ci,�
† cj,� + �cj,�

† ci,�� − y�c0,A
† c0,B + c0,B

† c0,A��

�2�

where i and j are the two-dimensional site indices and A and
B denote the two identical systems coupled through a hop-
ping amplitude y. For the numerical part of this study, each
subsystem is taken to be a periodic square or cubic lattice of
linear size L. Figure 2 shows a sample calculation of the
energy eigenvalues of Hamiltonian �2�. Unlike the compa-
rable coupled 1D systems for which entanglement entropy
has been studied in Refs. 15–17, the coupled 2D systems
have extensive �in L� degeneracies. Moreover, the weak link
only partially lifts these degeneracies in each shell to form
two localized states. These features will give rise to a special
dependence of the entanglement entropy upon the filling
fraction of the lattice. The role of the critical points in the
Fermi surface in connection with the anomalous fermion
area law was closely studied in Refs. 10–13.

We anticipate the central numerical results of Sec. III
showing S� ln L by appealing to bosonization of Hamil-
tonian �2�. This model, as well as its d-dimensional counter-
parts, may be bosonized in a standard way, which is analo-
gous to the Kondo impurity model and x-ray edge problem.14

Referring to Fig. 1, the s-wave in/out fermion modes �de-
noted R and L� may be combined into a single spinor as

���x� = ��R
��x� x � 0

− �L
��− x� x 	 0

 ,

where � refers to subsystem A or B. Since the fermion spinor
now obeys periodic boundary conditions, ���L�=���−L�,
the model may be bosonized in the standard way,

���x� � ei�4
���x�, �3�

where ���x� is a right-moving boson field on the whole in-
terval 	−L ,L
. The Hamiltonian written in chiral form is now

H = �
−L

L

�	�x�
A�x�
2 + 	�x�

B�x�
2�dx − y cos�4
	�A�0�

− �B�0�
 , �4�

This model is equivalent to the model analytically studied at

weak coupling in Ref. 15 and numerically for arbitrary cou-
pling in Ref. 16. Although these studies reach similar con-
clusions, Peschel16 definitively showed that when an impu-
rity is introduced into a 1D system of gapless fermions, the
entanglement entropy of a subsystem of length L, in which
the impurity lies on the boundary, is proportional to ln L with
a nonuniversal prefactor depending on the impurity coupling.
From the above reduction to a 1D problem, it is plausible
that each sufficiently separated weak link connecting the two
2D subsystems would contribute an entropy proportional to
ln L. We expect entanglement to behave as

S = a�y�N ln L + b , �5�

where the prefactor a�y� depends on the weak link coupling
constant y, N is the number of independent weak links, and b
is a constant.

III. COMPUTATION OF ENTROPY

We compute the entanglement entropy of subsystem A
following the method introduced by Peschel.18 The entropy
may be computed from the eigenvalues of the ground state
free fermion correlation matrix,

Cx,y � �cycx
†� , �6�

where x and y are the lattice points exclusively within sub-
system A. Denoting by �k the eigenvalues of Cx,y, the expres-
sion for the entanglement entropy is

Sent = − �
k

	�1 − �k�ln�1 − �k� + �k ln �k
 , �7�

Figure 3 shows an example of the correlation function
eigenvalues, which contribute appreciably to the entropy; al-
most all eigenvalues are essentially 0 or 1. As first pointed
out by Peschel,18 the set of �k, which may be thought of as an
“effective” single particle distribution function for subsystem
A, has the characteristics of a thermal Fermi distribution at a
fictitious temperature �depending on L and y in the present
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FIG. 2. �Color online� Eigenvalues of Hamiltonian �2� for an
L=13 2D lattice.
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FIG. 3. �Color online� Eigenvalues of correlation function ma-
trix 	Eq. �6�
 for an L=25 lattice with y=1. The eigenvalues are
seen to fall upon a finite temperature Fermi distribution �solid line�.
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case.� Figure 3 shows a fit to the Fermi function.
Figure 4 shows the entanglement entropy of a single 2D

subsystem with linear size L coupled to an identical sub-
system. The entire coupled system has a fermion filling frac-
tion set to =1 /2 �that is, the number of fermions is L2�; for
even L, this sets the Fermi level in the middle of a degenerate
shell �see Fig. 2�. Since the degeneracy at the Fermi surface
is proportional to L, the entanglement of these states generi-
cally leads to an entropy proportional to L, as seen for the
even L lattices in Fig. 4. For odd L lattices at =1 /2, this
extensive degeneracy is avoided and the system better ap-
proximates the continuum limit leading to the bosonized ac-
tion 	Eq. �4�
. Returning to Fig. 3, which shows the spectrum
of eigenvalues of the correlation function, typical for an odd
lattice where the extensive degeneracy is avoided, it is seen
that the quasi-Fermi level is at �L2+1� /2=313 and only a
few eigenvalues contribute significantly to the entropy. Now,
expanding the vertical scale of Fig. 4 and plotting only odd L
data versus ln L, Fig. 5 clearly shows the entanglement en-
tropy proportional to ln L, confirming Eq. �5� �for N=1� even
for relatively small lattices.

We have also investigated the entanglement entropy in a
three-dimensional geometry. Two 3D subsystems �obeying
periodic boundary conditions� were coupled together by a
single weak link as described by Hamiltonian �2�. The de-
generacies in this system are more complicated than in 2D;
as a result, the degenerate shell close to zero energy is rarely
completely filled for half-filled lattices �=1 /2� with differ-
ent linear sizes L. Instead of fixing the value =1 /2, the
closest filling fraction to =1 /2 was used, which filled the
degenerate zero energy shell. These filling fractions fell
within the range of =0.497−0.565 for the lattice sizes con-
sidered. Figure 6 shows the results for the 3D entanglement
entropy. Entropy S is monotonically increasing with linear
system size L and exhibits a periodic variation resulting from
the variation in , which is required to achieve the filled shell
condition �see inset�. Although it is impossible with our
present numerics to examine the entropy over an increase in
L by a factor of more than approximately 3, the behavior of
entropy looks approximately proportional to ln L for the lat-
tice sizes considered.

Lastly, we turn to the numerical estimate of the coefficient
a�y�, studied in two-dimensional geometries. The depen-
dence of the prefactor in Eq. �5�, a�y�, on the weak link
coupling constant y seems to be approximately quadratic for
small y and is shown in Fig. 7. Similar behavior was found
for 1D systems in Ref. 16.
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FIG. 4. �Color online� Dependence of entanglement entropy on
2D system linear size L for weak link hopping amplitude of y=1.
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FIG. 5. �Color online� Dependence of entanglement entropy on
2D system linear size for odd L and weak link hopping amplitude of
y=1. The linear system size in this figure ranges from L=11 to L
=57.
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FIG. 6. �Color online� Dependence of entanglement entropy on
3D system linear size for weak link hopping amplitude of y=1. The
filling factor, �0.5, is adjusted for each linear system size L to
completely fill the degenerate shell closest to zero energy. Inset:
entropies plotted without the logarithmic scale show periodic varia-
tion in entropy corresponding to the filled shell condition in 3D.
The linear system size in this figure ranges from L=6 to L=19.
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FIG. 7. �Color online� Dependence of prefactor a�y� in Eq. �5�
on coupling constant y for system sizes L=15 and 19. Small y
behavior is approximately quadratic.
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IV. MULTIPLE WEAK LINKS

We now consider the entanglement entropy of large lat-
tices coupled by more than one weak link. The Hamiltonian
is the same as Eq. �2� but modified by additional weak link
interaction terms at different sites. Since each weak link lifts
the degeneracy of two more states from the Fermi surface,
the number of fermions N must be set to be N=L2−W+1,
where W is the number of weak links �and L is odd� to
maintain the “closed shell” condition. The twofold lifted de-
generacy found for a single weak link may be seen in Fig. 2.

Figure 8 shows that the entropy continues to be propor-
tional to ln L for two weak links, consistent with Eq. �5�. The
entropies shown for two weak links in Fig. 8 were computed
with the weak links separated maximally at �x ,y� locations
on the lattice corresponding to �L /4,L /4� and �3L /4,3L /4�.
However, the same computation with two weak links on
nearest neighbor sites generates results that are virtually in-
distinguishable from those of Fig. 8. A linear least-squares fit
to the S versus ln L data in Fig. 8 yields a slope of 0.338 for
one weak link and double that value, 0.676, for two weak
links. We note that the intercepts b in Eq. �5� were deter-
mined to be 0.168 and 0.316 for one and two weak links,
respectively, possibly following a linear relationship b�N.
Such a behavior would not be surprising—reflecting a sub-
dominant O�L� contribution to the bulk area law 	Eq. �1�
.
Thus, the entropy accorded each weak link appears to be

additive, which is largely independent of the spacing of the
two weak links.

The separation of two weak links is further explored in
Fig. 9, where the entropy is computed for two weak links on
an L=15 lattice, with a separation that ranges from zero to
six lattice spacings. Other than a slight �not understood� odd
and/or even modulation, the entropy is independent of the
spacing, and its value, S�2.16–2.19, is approximately
double the entropy of a single weak link with identical cou-
pling, S�1.09.

To explore the additivity of the entanglement entropy for
multiple weak links, we computed entropy for up to four
weak links on an L=25 lattice, maintaining the maximum
possible separation between them. As shown in Fig. 10, each
additional identical weak link contributes an entropy of ap-
proximately S�1.26 until some saturation appears for four
weak links. In terms of the Fermi wavelength �F, saturation
begins to appear at a linear separation of approximately 12
lattice sites, corresponding to 6�F for a half-filled lattice. It is
interesting to note that although saturation effects are seen at
a spacing much larger than �F, two weak links separated by
only a single lattice spacing appear to be independent that
they contribute entropies additively, as shown in Fig. 9.
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FIG. 8. �Color online� Dependence of entanglement entropy for
one and two weak links on 2D system linear size for odd L. Con-
sistent with zero dimensional area law 	Eq. �5�
, the slope of the
graph for two weak links is double that of a single weak link. The
weak link hopping amplitude is y=1.
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FIG. 9. �Color online� Dependence of entanglement entropy
upon the separation between two weak links �with y=1� coupling
subsystems A and B. The zero separation data point corresponds to
the entropy of a single weak link �with y=1� for reference.
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FIG. 10. �Color online� Dependence of entanglement entropy
upon the number of weak links. The weak links were maximally
separated in an L=25 lattice.
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FIG. 11. �Color online� Two two-dimensional regions, A and B,
connected by several weak links �shown as short radial line seg-
ments�. Taking the boundary length to be L and choosing a number
of weak links, N= L

a� , are equivalent in the zero dimensional area
law 	Eq. �5�
 to choosing a cutoff � in the bulk area law 	Eq. �1�
.
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V. CONCLUSION

We have demonstrated that a weak link coupling two gap-
less fermion subsystems results in an entanglement entropy
between the subsystems proportional to ln L, where L is the
linear dimension of the subsystem 	Eq. �5�
. This result is
consistent with the bulk area law for fermions 	Eq. �1�
 that
the entropy in a geometry containing multiple, sufficiently
separated weak links is proportional to both ln L and the
number of weak links. The consistency may also be seen by
noting that the bulk area law depends on an arbitrary cutoff
�, as depicted in Fig. 11 as a spatial cutoff taken transverse to
the boundary. Choosing a cutoff in the bulk area law 	Eq.
�1�
, as shown in Fig. 11, is equivalent to choosing a number

of weak links N in the zero dimensional area law 	Eq. �5�

connecting the two regions, satisfying

N =
1

a�y�
�L

�
�d−1

. �8�
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