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Selective manipulation of stop-bands in multi-component photonic crystals: Opals as an example
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We report on a comprehensive theoretical and experimental study of stop-band switching in photonic
crystals. The suggested principles of light control are based on new Bragg diffraction effects discovered in
multi-component periodic structures. The described analytical approach allows a detailed study of selective
switching of (hkl) stop-bands by varying the permittivity of the components or the lattice parameters. For
two-component photonic crystals, we showed two possible switching-off regimes. In the first regime, all of the
stop-bands may only be simultaneously switched off if the certain matching conditions for permittivities are
satisfied. In contrast, in the second regime, one can selectively switch off a preferred stop-band by adjusting the
structural parameters irrespective of the permittivity values. For multi-component crystals, the on/off switching
of stop-bands has a quasiperiodic resonant character. In the absence of resonance conditions, an (/kl) stop-band
can be selectively switched by tuning the permittivity of the structural components, whereas at the resonance,
a photonic stop-band cannot be switched off by changing the permittivity. A proper choice of the structural and
dielectric parameters can create a resonance photonic band determining the Bragg wavelengths, to which a
photonic crystal can never be transparent. The theoretical results were experimentally tested on classical
photonic crystals, opals. Selective switching of stop-bands was studied by immersion-resolved and
polarization-resolved spectroscopy. We found that opals possess all predictable properties of multi-component
structures due to inhomogeneity of the constituent a-SiO, spheres.
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I. INTRODUCTION

Over the past two decades, the progress in fundamental
and applied studies of photonic crystals (PhCs) has been so
remarkable that there is little doubt that PhCs will become
basic structures for technologies in the coming age of opto-
electronics and telecommunications. The first light-
manipulating devices that employ photonic crystals as
waveguides to transport light, resonant cavities to trap light,
and mirrors to reduce spontaneous emission have already
been designed.'”

The unique properties of PhCs are defined by Bragg light
diffraction on various (kkl) crystal planes, which appears
when the lattice constant and the light wavelength match,
producing the so-called one-dimensional photonic stop-
bands in certain directions®’ of the light wave vector K. We
will call the stop-band resulting from the diffraction on the
(hkI) plane as the (hkl) band. References 8—10 demonstrated
that at a certain crystal symmetry and a bulk material to air
permittivity ratio, the formation of a completely three-
dimensional (3D) photonic band gap is possible. In this case,
the propagation of light of a specific frequency range be-
comes forbidden for all wave vectors K within the crystal.
Therefore, the dielectric contrast, i.e., the permittivity distri-
bution law through the unit cell, is a key factor that deter-
mines the opening of the stop-bands, their energy gap width,
and the formation of a complete band gap.

In the current paper, we performed theoretical and experi-
mental investigation of the principles of the selective switch-
ing of stop-bands in PhCs. We introduce the following clas-
sification of PhCs: crystals consisting of two components
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with homogeneous permittivity of each component will be
referred to as two-component PhCs, while we merge all other
PhCs into a global term, i.e., multi-component PhCs. Such
classification appears justified because all the multi-
component PhCs exhibit the same abilities to independently
switch stop-bands. Among the multi-component PhCs, we
will consider two subgroups: (i) PhCs with an inhomoge-
neous permittivity profile (r) and (ii) PhCs with the struc-
ture consisting of more than two homogeneous components.
Below, we will analyze the simplest example of the second
subgroup, the three-component PhCs, which will permit the
description of all the specific properties exhibited by multi-
component PhCs. Figure 1 illustrates the classification for
one-dimensional, two-dimensional (2D), and 3D PhCs with
various numbers of components.

Two-component photonic structures that are studied ear-
lier in detail become fully transparent to light when the per-
mittivity of one component matches that of the other. Thus,
two-component PhCs do not permit selective manipulation
of propagating light with different Bragg wavelengths. This
simplifies the manipulation in two-component PhCs but es-
sentially reduces their functional capabilities and applica-
tions since the dielectric contrast does not represent an inde-
pendent degree of freedom in on/off switching of different
(hkl) bands.

Therefore, it is very important to design novel PhCs that
do not have this limitation. To manipulate light, one should
have information about the general mechanisms of on/off
switching of single (hkl) stop-bands and the overall photonic
band structure. One possible way of extending the opera-
tional capabilities of PhCs is to make their band structure
more complex by employing multi-component PhCs that
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FIG. 1. Simple examples of two- and multi-component photonic
crystals for one, two, and three dimensions. The table describes nine
structures. The permittivity profile is shown for each of them. The
first row contains two-component PhCs, the second one, three-
component PhCs, and the third one, PhCs with an inhomogeneous
component.

possess a more complex space-periodic dependence of the
permittivity modulation. Surprisingly, no systematic attempts
have been made so far to understand the photonic behavior
of multi-component PhCs. We can mention only four publi-
cations: Ref. 11, in which the photonic band structure was
calculated along the directions I'—L and I'—X in coated
opals, Ref. 12 an experimental study on coated opals, and
Refs. 9 and 13.

In a recent letter,'* we reported novel properties of Bragg
light diffraction in multi-component periodic structures. In
contrast to two-component structures, the Bragg diffraction
there was found to possess some radically new characteris-
tics that were considered in terms of their application to
PhCs. In both Ref. 14 and the present paper, we discuss only
photonic band gap systems where the permittivity of only
one component is varied while the others remain constant,
which is relatively easy to technologically achieve. Employ-
ing a different analytical approach to the Bragg diffraction,
we found that multi-component PhCs exhibit a quasiperiodic
resonance behavior. With resonance, the disappearance of
specific (hkl) photonic stop-bands is impossible at any per-
mittivity of the variable component. In the absence of reso-
nance, one can perform a selective on/off switching of a
specific (hkl) stop-band by tuning the permittivity or the
structural parameters. Our conclusions were supported by the
comparison of the calculations and the spectroscopic data
obtained in experiments on synthetic opals.

Note that synthetic opals have long been regarded as very
convenient objects to test various theoretical models. It
would be appropriate to recall here that opals are made up of
a-Si0, (silica) spheres of several hundred nanometers in di-
ameter, which are arranged in a close-packed lattice. In natu-
ral opals, the interstices are generally filled with amorphous
silica mixed with other minerals.'>!'® Today, synthetic opals
are fabricated by using commercial technologies.!”!'® They
represent samples of ~1 cm? in size, and most well ordered
opals have a face-centered cubic (fcc) lattice.!” Synthetic
opals have voids between a-SiO, spheres, which could be
filled by liquid or solid fillers with controlled permittivity
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values.'>?0-26 After the opals were found to be 3D PhCs in
the visible spectral region’*?! and inverted opals were
synthesized?’~%° with a complete photonic band predicted in
Refs. 9 and 10, the intensive work on PhCs!>20-2630.31 pro_
moted active interest in their optical properties. The photonic
band structure of synthetic opals, i.e., the wave vector depen-
dence of the stop-band energy in all high-symmetry direc-
tions on the Brillouin zone (BZ), was first experimentally
investigated in Refs. 24 and 32. Opals also served as the
experimental material to study 3D light diffraction underly-
ing the formation of photonic stop-bands.?*33

Light scattering in opals was commonly described as the
Bragg diffraction from a two-component fcc structure com-
posed of homogeneous a-SiO, spheres and a filler.'? In this
case, all the (hkl) stop-bands must simultaneously disappear
when the permittivity of the spheres matches that of the
filler. We have found, however, that the {111}, {200}, and
{220} families of stop-bands show different behaviors,
depending on the permittivity of the filler, i.e., the variable
component,'* a fact that is inconsistent with the two-
component model. Therefore, the permittivity profile of
silica spheres plays a crucial role in defining the photonic
band structure of opals.

In addition to the results on selective manipulation of
photonic stop-bands by varying the filler permittivity,'*
should mention the studies demonstrating a strong polariza-
tion dependence of the Bragg diffraction and transmission
spectra of opals.”>?% Transmission and diffraction experi-
ments have shown that stop-bands disappear in p-polarized
light incident onto the (hklI) crystal planes at a quasi-
Brewster angle 8. The strong polarization dependence of
the stop-bands can be interpreted within the quasi-Brewster
model.”® It can provide another way to perform selective
manipulation of the (hkl) bands.

The major goal of the present work was to theoretically
and experimentally study the mechanism underlying the
switching of photonic stop-bands in multi-component PhCs.
We have shown that such PhCs allow a selective on/off
switching of a definite (hkl) band by varying (modulating)
the crystal parameters or by changing the light polarization
to provide a simultaneous control of the information trans-
mitted at different light frequencies. To theoretically solve
this problem, we employed the analytical approach devel-
oped in Ref. 14 and present here a detailed description of the
method to calculate the structure of PhCs with prescribed
parameters of stop-bands. We show that a proper choice of
structural and dielectric characteristics can always yield a
stop-band that cannot be switched off by changing the per-
mittivity of the variable component. This kind of photonic
stop-band will be termed a resonance band. The experiments
were aimed at obtaining the immersion, polarization, and
dispersion dependences of stop-bands from the transmission
spectra of white light propagating through oriented prese-
lected samples of high quality synthetic opals. Of special
interest were the (hkl) bands with high Miller indices, which
recently have been examined.'”

The paper is organized as follows. Section II discusses the
analytical approach and the calculation of the nondiffraction
regime for different (hkl) stop-bands in two- and multi-
component PhCs. In Sec. III, we briefly describe the crystal
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structure of synthetic opals and the parameters of the experi-
mental samples. Section IV describes the details of the ex-
perimental techniques. In addition, we present the calcula-
tions of the photonic band structure of opals made in the
Bragg approximation, namely, the gap energy E(K) versus
the light wave vector K passing through all high-symmetry
points on the Brillouin zone (BZ). Section V presents the
experimental data on the photonic band structure with a de-
tailed discussion of the immersion spectroscopic data on
single (hkl) stop-bands to show the possibility to manipulate
the stop-bands by varying the dielectric contrast to perform
on/off switching of separate (hkl) stop-bands. Possible appli-
cations of these effects are discussed in Sec. VI, and the
main conclusions are summed up in Sec. VIL

II. THEORETICAL BACKGROUND

The principal property of PhCs is the existence of fre-
quency (energy) stop-bands forbidding the propagation of
electromagnetic waves through the structure. The condition
for a stop-band to arise is the presence of a periodically
modulated permittivity e(r) or the permittivity contrast
Ae35 In a two-component structure, the stq&nd width
Aw is related to the contrast as Aw=(2/7m)wVAe/e (Refs. 1
and 34); hence, the condition for the stop-band disappear-
ance is fulfilled when the permittivity of one component
matches that of another, Ae=0. If we neglect the possible
difference in the dispersion dependences £(\) of the materi-
als composing the crystal, this condition will become inde-
pendent of the energy, the wave vector K, and the (hkl)
family of planes that form the stop-bands. In a multi-
component PhC, however, the conditions for the appearance
and/or disappearance of stop-bands (the on/off-switching
conditions) are more complicated.

Consider a 3D PhC with the fcc structure consisting of
nonoverlapping spheres with a spherically symmetrical arbi-
trary profile of the permittivity e,(r), the intersphere spaces
being filled with a homogeneous material having the permit-
tivity &, it is a variable component in our case. If the spheres
form a close-packed structure with a point contact between
them, their radius normalized to a constant distance between
the sphere centers is r,=0.5. Note that at r,<<0.5, we deal
with a structure consisting of noncontacting spheres fixed by
the filler at the fcc-lattice sites. The inverse permittivity of a
Wigner—Seitz cell of the crystal is defined as

! l+[ ! i}@(rs—r), (1)
;

%zs‘ %_Sf

where O(x) is the unit step function: ®(x)=1 at x=0 and
O(x)=0 at x<0.

We will make use of this generic example because many
classes of PhCs such as opals, opal-like polymers, and in-
verted opals have a lattice quite similar to a perfect fcc
lattice.'>!%21:30 The obtained conclusions can be easily gen-
eralized to many other structures. Note that the simple fcc
structure is capable to demonstrate many important features
of multi-component PhCs: the resonance behavior of photo-
nic stop-bands, the possibility to switch off some {hki} bands
by varying the filler permittivity and the failure to do so with
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other stop-bands, and many other interesting properties. The
effect of the disappearance of a dip in the transmission spec-
tra, linked to the variations of the filler permittivity, will be
called as “immersion disappearance effect” and the corre-
sponding dependences as “immersion dependences.” These
photonic properties will be considered below in terms of the
approach suggested in Ref. 14.

Note that switching off of a selected band is possible even
in two-component PhCs when their geometrical parameters
(e.g., sphere radius, see Sec. II B) are being manipulated.
However, a technologically more feasible way to selectively
switch a stop-band is to use the so-called immersion disap-
pearance effect, the main properties of which appear only in
multi-component PhCs. The simplicity of three-component
PhCs’ structure allows an analytical solution for all the main
dependencies of multi-component PhCs’ optical properties
(see Sec. IT C). The more general case of multi-component
PhCs with inhomogeneous permittivity profile (r) does not
allow such a simple analysis, and the immersion disappear-
ance effect in these PhCs could often be revealed only by
using numerical methods (see Ref. 14 and Sec. V C).

A. General approach

To analyze the photonic properties of multi-component
PhCs, let us consider the Fourier coefficient of the inverse of
the permittivity, i.e., the scattering form factor S(Gyy), as
follows:

1

1
S(th1)=7J dr———exp(= iGy - 1), (2)
oJv, € r)

which describes the intensity of Bragg diffraction from a
family of (hkl) crystal planes as a function of the reciprocal
lattice vector G;,,;=hb+kb,+/bs, which uniquely determine
the direction in the crystal and corresponding {hkl} family of
planes, where {b;;i=1,2,3} are the elementary reciprocal
lattice vectors and V|, is the volume of a PhC Wigner—Seitz
cell.

The term the nondiffraction regime will be further applied
to the {hkl} planes in the case of the vanishing a scattering
form factor S(Gy,;)=0 when a wave of the Bragg wavelength
Ny passes through the crystal without being scattered by
these planes. Note that electromagnetic radiation in a PhC
could be described by using Bloch waves of a given fre-
quency but not of a given wavelength. Therefore, under the
term “wavelength” in this paper, we imply the value corre-
sponding to the propagation of the waves in vacuum. If the
inverse permittivity 1/&(r) is described by Eq. (1), the con-
dition S(Gy)=0 at G=0 is

&y &,(r)

where £:477r§/3V0 is the volume fraction of a sphere: V|
=a(3)o/ V2, where a,, is the distance between thre sphere cen-
ters in the fcc lattice. Note that we have f=m\y2/6=0.74 for
the case of a point contact of close-packed spheres at a,,
=2r,.

At |G| # 0, the relation S(G;,)=0, to be discussed be-
low in detail, is rewritten as

S(O):l_f+VLj dr ! O(ry—r)=0, (3)
0Jv,
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1 1 1
S(Gp) = 7,[ dl'{ - _:|®(rs —r)exp(= iGy - 1) =0.
07V, Ss(r) Er

(4)

By integrating over the angular variables of the spherical
coordinates in Eq. (4), we can find the filler permittivity
s?(thZ) that meets the condition of the zero scattering form
factor as follows:

1.

S [sin(Gprs) = Gypars cos(Grrs) ]
0 il
er(Gp) =

s p
f —Sin(thlr)dr
0 8s(r)

1
G2 R(thls rs)
— hkl ) (5)

s

J;) gs(r) sin(th,r)dr

Here, we have designated the Rayleigh—Hans function as
R(G,r)=sin(Gr)-Gr cos(Gr).

To understand the behavior of 8?‘(th1) as a function of the
reciprocal lattice vector Gy, we do not limit it to the dis-
crete values Gy, but rather consider it as a continuous func-
tion G and omit the Akl indices. Note that the values of
Gpu=m2(h*+k*+1%)a;} for the {hkl} planes experimentally
studied in this work are G111=7.695, G200= 8886, G220
= 12566, G311= 14735, and G222=2G1“ =15.390 (here and
below, the values of Gy, are taken in the units of the recip-
rocal distance between the sphere centers a;,).

It is also important to note that one should be careful in
using conditions (4) and (5) in the case of a multiple Bragg
diffraction regime, i.e., when stop-bands corresponding to
different G, overlap. In this case, nondiffraction condition
should be obtained by solving the full eigenvalue problem
using numerical methods such as the plane wave
expansion®~'° and the Korringa-Kohn-Rostocker (KKR).??

B. Two-component three-dimensional Crystals: Switching off
stop-bands selectively by varying structural parameters

We will first consider a simple case of a two-component
3D photonic crystal (Fig. 1), whose fcc lattice is composed
of homogeneous spheres, &,(r)=g,=const, immersed in a ho-
mogeneous filler e;, with the following inverse permittivity:

Lzl_k(l_l)@(rs—r). (6)
&(r) & \& &

At |Gyl # 0, the expression for the scattering form factor (4)
is

4m2 (11

&g Sf
It follows from Eq. (7) that the nondiffraction regime S(G)
=0 is valid for a two-component PhC in two cases. Only one
of them is usually considered in the literature: when the van-
ishing of the form factor is defined by the vanishing of the

S(G) =
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FIG. 2. (Color online) The scattering form factor S(G) for the
two-component fcc lattice with the sphere radii r,=0.5 (point con-
tact), r,=0.359 (the nondiffraction regime for the {220} planes), and
ry=0.306 (the nondiffraction regime for the {311} planes) calculated
from formula (7) at £,=1.9 and &,=2.0. The moduli of the shortest
reciprocal lattice vector Gy, are shown by vertical lines.

first bracketed term in Eq. (7), i.e., when the matching con-
dition for the permittivity 8?=8s is reached [we get a similar
relation after the integration of the denominator in Eq. (5)
with &,(r)=g;=const]. Obviously, when the medium be-
comes optically homogeneous, the matching condition s?
=g, is the condition for a simultaneous disappearance of all
the {hkl} stop-bands.

In addition to this trivial case, the nondiffraction regime
may occur when the Rayleigh-Hans function R(G,r,) van-
ishes. The S(G) function for a two-component PhC, de-
scribed by Eq. (7) with the parameters £,=1.9 and &;=2.0, is
shown in Fig. 2, which also gives the module values of the
reciprocal lattice vector G for the {hkl} family of planes with
the lowest Miller indices. The zeros in the Rayleigh—Hans
function are defined as

tan Gr,= Gr,. (8)

If the solution to Eq. (8), i.e., G;, coincides with one of the
parameters G, the scattering form factor (7) will turn to
zero for the {hkl} family of planes. In the fcc lattice made up
of regular close-packed spheres with a point contact (r;
=0.5), the first root G, in Eq. (8) is close to the value of
G,00=8.886 (Fig. 2). However, if we consider a hypothetical
structure made up of noncontacting spheres fixed by a filler
at the lattice sites, we get G| =Gy, When the sphere radius is
as small as r,=0.359, which means that the nondiffraction
regime for the {220} planes is fulfilled. If the sphere radius is
made still smaller, we have the condition G;=Gj,, for the
higher index planes (Fig. 2). It can be concluded from this
analysis that the diffraction cannot be switched off in the
(I11) plane of a two-component structure. Besides, the con-
dition G;=Gy, is defined only by the parameter r; and is
independent of &, or &, By varying the sphere size, there-
fore, we can create two-component PhCs with a selected
(hkl) stop-band switched off. On the other hand, the modu-
lation of the permittivity does not provide on/off switching
of a desired (hkl) stop-band.
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C. Three-component three-dimensional crystals (coated
spheres): Switching off stop-bands selectively by varying
structural and dielectric parameters

Consider a practically feasible three-component 3D PhC
(Fig. 1). Suppose that the fce structure is formed by spheres,
each consisting of a homogeneous nucleus of radius r, with
the permittivity €,, having a homogeneous coat of €. and the
outer radius r.. The intersphere space is assumed to be filled
with a homogeneous material with &,. Then, the inverse per-
mittivity of a Wigner—Seitz cell is defined as

L—l+< ! l>(r,,—r)+(l—l)@)(rc—r).
8(}") 8f & & €c 8f
)

By substituting Eq. (9) into Eq. (2), we can derive the
following condition for the nondiffraction regime at G # 0:

L2 e (3 e
(Gaon)3|: 8;1_80 R(G’rn)+ Sc—gf R(G’rC)

=S1(G)+SQ(G)=O. (10)

S(G) =

A comparison of Eq. (7) for the scattering form factor of a
PhC made up of homogeneous spheres and Eq. (10) leads
one to the conclusion that the scattering form factor of a
three-component PhC includes two terms: (1) S;(G) that de-
scribes the contribution of the scattering from the homoge-
neous spheres with the permittivity €, and the radius r,, hav-
ing a homogeneous coat &, and (2) S,(G) that defines the
contribution of the scattering from the homogeneous spheres
with the permittivity &, and radius r,, immersed in a filler
with e;. Both terms are alternating in sign and depend on the
permittivity ratio and the sign of the respective Rayleigh—
Hans function R(G,r,). To illustrate, consider the fcc opal
structure with a variable filler permittivity, and the quantity
to be defined is the function s?(G). Formula (10) yields the
expression for the nondiffraction regime in a three-
component PhC,

1L _1 (1_1)RGr)
sj?(G)‘sC*(sn 80>R(G,rc)’ o

It follows from expressions [Eq. (11)] that sjq vary with G
and with all the parameters of the structure: ¢, €, 1, and ..
This means that we get different conditions of the nondiffrac-
tion regime for different {hkl} photonic bands. In other
words, there is a possibility of on/off switching of a definite
(hkl) stop-band by modulating the dielectric permittivity of
one of the components.

Let us now discuss an opal structure with the nucleus of
radius r,,=0.4 composed of a-SiO, material with permittivity
of £,=1.9 2136 with different coats (r,=0.5, point contact of
the spheres) and a permittivity smaller than (g.=1.0), equal
to (g,=1.9), and larger than (g,=5,11) that of the nucleus
(Fig. 3). At g,=¢,, the quantity s;‘)» corresponding to the non-
diffraction regime is seen to be independent of G, so the
structure becomes fully transparent when the filler permittiv-
ity matches the permittivities of the nucleus and the coat,
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FIG. 3. (Color online) The filler permittivity a?(G) of a three-
component photonic crystal in the nondiffraction regime as a func-
tion of the reciprocal lattice vector G calculated from Eq. (11) for a
fce structure composed of close-packed spheres with the nucleus of
radius r,=0.4(g,=1.9) and different coats (r.=0.5, £.=1.0, 1.9, 5,
11). The moduli of the shortest reciprocal lattice vector Gy, are
shown by vertical lines.

sf—sn—s =1.9 (the cyan dash-dot line in Fig. 3). At g,
#&,, the £)(G) function shows a complex resonance behav—
ior possessing the following features.

(i) The s?(G) functions show a quasiperiodic behavior
with the resonance features at G=G,.,. The resonance values
are found from the following relation:

(i_l>R(G,rn)+siR(G,rc)=0, (12)

& &

n c

which is derived from Eq. (10) at e,— * . It follows from
Eq. (12) that the resonance values of G, are determined by
both the dielectric parameters g, and €. and by the struc-
tural parameters r, and r.. For example, in a fcc structure
made up of a-SiO, spheres (r,=0.4, ,=1.9) coated with
silicon (r,=0.5, g.=11), the first two resonances Sf(G)
correspond to G~ 10.8 and 18.7 (the vertical green dot-
ted lines in Fig. 3). The Bragg diffraction from the reso-
nance {hkl} planes meeting the requirement Gj=Ge, Will
always take place and cannot be switched off by changing
the filler permittivity.

It is noteworthy that the resonance condition Gy=G e
can always be accomplished by appropriately choosing the
parameters of the multi-component structure. For example,
the resonance condition G,,;=G, in Eq. (12) for a three-
component fcc structure can be regarded as the G, depen-
dence on the variable parameters ¢, €,, and r,,. If we take &,
as a single variable, Eq. (12) will yield the coat permittivity
values at which an {hk/} photonic band becomes resonant
(Giii=Gres),

R(thl’rc):| (13)

R(thl’ rn)

For instance, to make the {220} band family (G,,=12.566)
resonant in a fcc structure composed of close-packed
coated spheres (with the parameters g,=1.9, r,=0.4, and
r,=0.5), one should take the coat permittivity to be

gc(reshkl) = 8n|: 1-
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FIG. 4. (Color online) The filler permittivity e?(G) in the non-
diffraction regime as a function of the reciprocal lattice vector G
calculated from Eq. (5) for a fcc structure composed of close-
packed spheres with the nucleus r,=0.33,¢,=1.9 and a coat r,
=0.5, e,=11 (the blue dashed curve) and of spheres with the
nucleus r,=0.4, £,=1.9 and a coat r,=0.5, £.=-2.87 (the red solid
curve). The moduli of the shortest reciprocal lattice vector Gy, are
shown by vertical lines. The first resonance G, for both a?(G)
functions matches Gyyg=12.566.

& (resyp)=-2.87 (Fig. 4). In order to calculate a structure
consisting of preselected compounds, the variable param-
eter should be the nucleus of radius r,. To illustrate for a
a-Si0, fcc structure (g,=1.9) coated with silicon (g,=11),
the numerical solution of Eq. (12) with respect to r, will
give the following value determining the resonance for the
{220} photonic bands: r,(res;,)=0.33 (Fig. 4).

(ii) An important feature of the s?(G) function is the
presence of quasiperiodic points at G=G,, where we have
e (GO) 0 1rrespect1ve of the values of ¢, or g,, except for
the case of sf—s =g, (the cyan dash-dot line in Fig. 3). This
feature arises when the function R(G,r,) in the second term
S,(G) of Eq. (10) becomes zero. In this case, the nondiffrac-
tion regime S;(G)+S,(G)=0 with the first nonzero term,
S,(G) #0, can be obtained at sj9—>0 only when the second
term contains an uncertainty with the finite value equal to
—S,(G). The G, values are found from the following relation:

tan Gr.= Gr,, (14)

and they do not depend on the parameters €., g,, or r,. At
r.=0.5, the two minimum values of G, are =9.0 and 15.5
(Fig. 3).

(iii) Another specific feature of the s?(G) function is the
presence of special quasiperiodic points at G=G, when s_?-
does not vary with .. The G, values are found from the

following equation:
R(G,r,) =R(G,r,). (15)

At r,=0.4 and r.=0.5, the two minimum values of G, are
=~7.0 and 13.9 (Fig. 3). At these special G, points, the con-
ditions for the nondiffraction regime change. Consider, as an
illustration the range of the minimum G values (before the
first resonance G). In the range of G<G, at £,<e,, we
have the relation sn<8?-<sc, while at g,> ¢, there is the
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opposite relation, g, > gl> .. Therefore, for the scattering to
be compensated and for the nondiffraction regime to be ac-
complished at G <G,, the filler permittivity must differ from
the nucleus permittivity by the same value as the coat per-
mittivity, i.e., the optical densities of both media must be
simultaneously higher or lower than the nucleus density. The
opposite condition is fulfilled at larger G values after the
special point G, in the range G,<G <G, The higher
optical density of the coat, ¢,<e., is compensated by the
lower density of the filler, 8n>8.(f)-, and vice versa: the lower
coat density, &,>> &, is compensated by the higher filler den-
sity, & >s(f) For instance, the nondiffraction reglme at e,
=1.0, £,=1.9, and G=G,|;=7.7 is achleved at sf~2 9(8f
>gn>sc), whereas at e€.=11, it occurs at sf~ 1.4 (sf<s,1
<¢g,) (Fig. 3). These conditions, however, again become in-
verted with further increase in G after the first resonance
point (G,.~8.3 for £,=1.0 and G,.,=~10.8 for g,=11) and
so on (Fig. 3). This behavior is determined by the periodic
nature of the functions defining the nondiffraction regime in
Eq. (10).

Similarly, we can consider the opal structure, whose non-
diffraction regime is provided by varying the nucleus permit-
tivity sg(G) and the coat permittivity s?(G), as in the case of
so-called inverted opals.?’~%°

Thus, the presence of inhomogeneities in a multi-
component PhC leads to a G-dependent variation in s?. Gen-
erally, this allows a selective manipulation of the (hkl) pho-
tonic stop-bands.

Additionally, we can consider requirements for the non-
diffraction regime depending on the structural parameters,
similar to what was already described in the Sec. II B for the
two-component PhCs.

III. OPAL STRUCTURE AND SAMPLE
CHARACTERIZATION

Opals are 3D photonic crystals consisting of uniformly
sized close-packed a-SiO, (silica) spheres that are commonly
postannealed at a high temperature to sinter. During anneal-
ing, the silica spheres demonstrate pronounced changes in
the dielectric constant,’ which can be linked to the changes
in the structure of the spheres. A complete densification of
spheres does not take place even at 600 °C and their refrac-
tive index is consistently lower than that of fused quartz.
Interestingly, the value of the refractive index as a function
of annealing temperature shows a minimum at intermediate
temperatures, which can be interpreted as being due to the
initial removal of material from pores in the spheres at lower
temperatures and to a slow elimination of pores at higher
temperatures.’’ Transmission electron microscopy (TEM)
has confirmed the lack of homogeneity and the presence of
pores within opal spheres.'* As the structure of spheres may
strongly depend on the synthesis conditions, we performed
an independent TEM and scanning electron microscopy
(SEM) analysis on all the opals used in our study.

The microstructure of silica spheres was investigated by
using high-resolution TEM. The TEM samples were pre-
pared by crushing opals in a rubber coated mortar, followed
by a 5 min sonication of the powder in isopropanol with a
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FIG. 5. [(a)-(c)] Transmission and [(d)—(e)] scanning electron
micrographs of opal samples. The fcc close-packed silica spheres
show a smooth dense surface and a porous interior. The Brillouin
zone of the fcc lattice is a truncated octahedron centered at I' (f).

subsequent deposition on a lacey-carbon coated copper grid
(200 mesh). A field-emission TEM microscope (JEOL
2010F, Japan) with an imaging filter (Gatan GIF) was used at
200 kV. The SEM study was performed by using an FEI
XL30 environmental field-emission electron microscope
(Netherlands) operating at an accelerating voltage of 10 kV.
The samples were uncoated and were studied at a working
distance of 5-8 mm. The chamber pressure of 1 Torr allowed
minimization of the surface charging.

High-resolution TEM of the spheres revealed their smooth
surface and amorphous microstructure [Fig. 5(a)]. The ab-
sence of nanocrystals was also confirmed by electron diffrac-
tion data (not shown). Lower resolution micrographs [Figs.
5(b) and 5(c)] were recorded at a strong defocusing to pro-
vide clear imaging of the compositional discontinuities
through the appearance of Fresnel fringes and enhanced con-
trast. Pores in the silica spheres were observed in all the
samples, supporting the results of the previous studies.®
They appear as lighter areas in the micrographs [Figs. 5(b)
and 5(c)] due to the smaller projected potential and, hence,
the weaker scattering of electrons as they travel through the
pore-containing silica layer. Due to the spherical shape of the
particles and the relatively large sphere diameter (310-340
nm), clear observations of the pore sizes and shapes were
only possible in thinner silica fragments [Fig. 5(c)]. Most of
the pores are spherical, 7-15 nm in diameter, and isolated
from each other [Fig. 5(c)]. The sphere-to-sphere contact
area marked by thick white arrows in the micrographs as
well as the 10-30 nm near-surface region do not contain
pores and are therefore expected to have a higher average
density. This variation in the optical density across the
spheres indicates a multi-component nature of as-produced
synthetic opals.

SEM data confirmed the smoothness of the silica surface
[Figs. 5(d) and 5(e)] and demonstrated a high degree of or-
dering within the close-packed layers of the silica spheres
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(not shown). Bulk opal samples are formed via consecutive
superposition of the (111) layers along the [111] axis (in the
designations of the fcc lattice). The close packing of layers
can produce, in addition to the fcc lattice, other high density
structures, which are both well ordered, e.g., the hexagonal
close-packed (hcp) lattice, and variously disordered, e.g., the
twin fec lattice.?*33 The intersphere spaces can be filled with
liquid or solid materials, allowing variation in the opal-filler
dielectric contrast and, hence, modification of photonic stop-
bands. We will denote the [111] growth direction as I'— L,,
in contrast to the three other equivalent nongrowth directions
I'— L in a fcc lattice [Fig. 5(f)]. Besides, the high symmetry
points on the BZ surface that belong to the same hexagonal
plane as the L, point will also be marked with the subscript
g

In this work, we studied high quality samples predomi-
nantly with the fcc lattice that were investigated earlier.'**"
All of the samples were cut out of a large bulk sample,
whose spherical a-SiO, particles had the diameter D
=315*=15 nm, as shown by the SEM and optical spectro-
scopic data.’® Most of the experimental data presented below
were obtained from a rectangular parallelepiped sample, in
which two sides of ~7.2X 3.0 mm? formed a plane coincid-
ing with the (111) growth plane, while the third plane
(~0.6 mm) normal to it was oriented along the [111] growth
axis. The average sphere size found from the comparison of
the experimental data and calculations (Sec. VC) was D
~317 nm.

IV. EXPERIMENTAL TECHNIQUES

The most suitable way to detect any modification in dif-
ferent (hkl) stop-bands from the variation in the dielectric
contrast is to use transmission spectroscopy.’*

A. Experimental setup

Transmission spectra from synthetic opals were taken dur-
ing direct passage of white linearly polarized (using a Glan-
Taylor prism) light through an oriented sample by employing
a two-beam Perkin Elmer Lambda-650 spectrophotometer in
the wavelength range of 215-850 nm. The sample was
placed at the center of a vessel with plane-parallel quartz
windows, which was filled with an immersion liquid. The
liquid served as the opal filler and as the ambient medium for
the sample. We used two liquids—distilled water with g,
=1.78 and propylene glycol with &,,=2.05, as well as their
mixtures providing the variation in the dielectric constant of
the filler in the range of 1.78 =g, <2.05. The permittivities
of the liquids were measured by an Abbe IRF-454B2M re-
fractometer. The fillers were chosen from the following cri-
teria. First, these liquids possess a high optical transparency
in a wide spectral range: water allows measurements to be
made in the wavelength range of 215-850 nm and propylene
glycol in the range of 260-850 nm. Second, among liquids
transparent in a wide spectral range, water has the lowest
permittivity and propylene glycol has the highest permittiv-
ity. Our experiments were performed at a low opal-filler di-
electric contrast when light was practically not reflected or
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refracted by the sample surface, in which case the effects of
the sample shape and surface morphology were negligible.

In order to take spectra at various orientations of the opal
fcc-lattice relative to the incident light beam, the sample was
rotated around two axes normal to each other and an addi-
tional axis by using a movable goniometer. The angular ac-
curacy of the sample orientation relative to the incident beam
was 0.5°. The beam cross section on the sample was less
than 2 mm? with the incident light cone spanning less than
6° from the normal incidence.

We took the following precautions to avoid undesirable
effects on the measurements induced by possible structural
defects of the opals and/or the filler inhomogeneity: (i) the
samples had different sphere diameters, (ii) the {111} stop-
bands were investigated at different incidence, (iii) the
samples were infiltrated with three liquids possessing differ-
ent viscosities but the same permittivity, (iv) the samples
were kept in an ultrasonic bath, and (v) all the transmission
spectra were measured at three time moments: immediately
after the infiltration, 24 h later, and a week after the infiltra-
tion. The analysis of the experimental data showed that all
the results to be reported below were reproducible and were
not specific to the sample or the method. Here, we discuss
the results obtained for the sample of 317 nm spheres.

B. Calculation of dispersion dependences of photonic
stop-bands in a low contrast face-centered cubic lattice

The photonic band structure was experimentally studied
by scanning the light wave vector K across the BZ surface.
In order to obtain complete information on stop-bands in a
fce lattice, it is sufficient to calculate the band structure and
to measure the light transmission spectra for three scan
planes of the wave vector K in the BZ: (A) 'L ,K,L, (B)
I'L,W,K, and (C) I'K,W,X planes [Figs. 5(f) and 6(a)-6(c)].
Scan planes (A) and (B) contain the common I'— L, axis
(the [111] growth direction) and are normal to each other; the
planes (A) and (C) contain the common I' — K, axis and are
also normal to each other. In these scans, the wave vector
passes through the following special points on the BZ:

AX—U,—L,—~K,—L -55°=6,=70°,

(16a)
(B)L,— W,—K 0=63=90°, (16b)
(OK,— W, —X 0=0.=45°. (16¢)

The relations of Egs. (16a)—(16¢) also indicate the varia-
tion in the incidence angle 6; (the wave vector K) with re-
spect to the fcc structure for each scan, which agrees well
with the experimentally obtained data. The data can be ad-
equately interpreted if we attribute the observable spectral
features to the respective (hkl) bands, using different models
and calculations. At a low dielectric contrast, the most effec-
tive approach is to use the dispersion dependences of the
(hkl) bands calculated in a simple Bragg approximation.'® It
is shown that the stop-band dispersion can be described well
in the approximation of Bragg diffraction in the (hkl) planes
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FIG. 6. (Color online) Three cross sections of the Brillouin zone
of the fcc lattice made by the scanning planes (a) A, (b) B, and (c)
C. (d) Symbols are the measured positions of the dip minima in the
transmission spectra for the three paths at the angles 6; along the
upper abscissa. The symmetry points along the paths are shown in
the lower abscissa. The solid curves are calculations from Eq. (18)
for the filler with ¢ g,=1.78 (water).

of a fcc lattice. The dependence of the Bragg wavelength
A(uy in vacuum on the angle 6, of the light incidence onto
the (hkl) planes can be found from the following expression:

3 172
12) Cos 6(hkl)a (17)

N (6) = 2dy Ve | 5—5—
(hkl)( ) 111\8av<h2+k2+

where d,;, is the distance between the neighboring (111)
planes and &,,=0.74,+0.26¢, is the average dielectric con-
stant of a perfect opal-filler fcc structure with a point contact
of close-packed a-SiO, spheres. The calculations, to be de-
scribed in Sec. V C, yield the value of £,=1.92 and, hence,
the values of g,, for each filler used in the experiment with
the known &;. The fitting of the experimental \;;(6) depen-
dences with formula (17) gives the parameter d;;;
~259 nm and the average sphere diameter D= \%dm
~317 nm for the sample used in the experiment.

Figure 6 shows the theoretical dispersion dependences of
the Bragg wavelengths \ ;) (6) for scans (A), (B), and (C)
in different (hkl) planes of the following plane families ex-
perimentally studied: {111} (712 nm), {200} (617 nm), {220}
(436 nm), {311} (372 nm), and {222} (356 nm). In the brack-
ets, we give the maximum wavelengths X, (0) for water-
filled opals.

V. RESULTS AND DISCUSSION

A. Photonic band structure of synthetic opals

We would like to start the discussion of the experimental
data with a general remark about light transmission spectra
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FIG. 7. (Color online) Trans-
mission spectra taken in the whole
range of angles —55°=6,=70°
for scan (A): (a) in s polarization
at two permittivity values of the
filler, =178 (solid), 1.82
(dashed); (b) in the s and p polar-
izations g4=1.78. The solid curve
and solid symbols, s polarization;
dashed curve and open symbols, p
polarization; symbols, experimen-
tal minima. The meaning of the
symbols is the same as in Fig. 6:
red circles, the {111} bands; green
triangles, the (200) band; inverted
blue triangles, the band defined by
the (020), (002), and (022)
regions.
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of photonic crystals. It is well known that such spectra con-
tain characteristic “opaque” bands directly related to the light
diffraction in the definite (kkl) planes, i.e., to the photonic
band structure.?* The actual stop-bands, i.e., bands with
nearly zero light transmission through the crystal lattice in a
certain direction, may not be experimentally observed for
several reasons, including a low contrast of the dielectric
permittivities, the finite sample size, and noncollinearity of
the light beam. So, we will refer to all bands having a dif-
fraction nature as photonic bands.

The transmission spectra were measured in the whole
range of incidence angles 6,, 6, and 6. by scans (A), (B),
and (C) in s- and p-polarized light passing through opal
samples of 0.6 mm thick filled with different liquids (1.78
=g,;=2.05). Figure 7(a) illustrates the transmission spectra
from the (A) scan taken in the s polarization from a water-
filled sample (,=1.78) and a sample filled with a mixture of
water and propylene glycol (e,=1.82). The comparison of
the data given in Fig. 7(a) and the dispersion dependences
calculated from formula (17) enables one to attribute most of
the spectral features to the particular (/kl) planes and, hence,
to the (hkl) photonic bands. The experimental dependences
of the band positions obtained from the spectral processing
are presented in Fig. 6. The spectra also contain bands that
we failed to attribute. Some of them lie in the short wave-
length region containing a large number of intercepting dis-
persion curves \(6), which are hard to attribute to a par-
ticular (hkl) photonic band. The unattributed bands may also
be due to various defects in the fcc lattice.

B. Immersion dependences for the {ikl} photonic bands

Our major task in making the experiments was to find the
immersion dependences of the various {hkl} photonic band

600 700 800

Wavelength (nm)

families. In addition to the {111}, {200}, and {220} band fami-
lies examined in Ref. 14, we studied the immersion for the
{311} and {222} photonic bands. We would like to emphasize
that in this work, the immersion dependences were first
found for the {hkl} bands in all high-symmetry directions on
the BZ by making the (A), (B), and (C) scans in both light
polarizations, p and s. Below, we discuss the behavior of
each {hkl} band family at varying permittivity contrast in the
opal-filler system.

1. {111} family, the nondiffraction regime at 8})(G111)=1.82

The successful identification of these bands is primarily
due to the fact that Ny;;,(0) is the longest wavelength in the
photonic band spectrum [see formula (17)], defining the red
diffraction cutoff in the fcc structure. In our experiments, its
value for water-filled opals was found to be N\g;3(0)
=712 nm (the I'— L, path in Figs. 6 and 7).

Figure 7(a) presents the transmission spectra for opals
filled with two materials, one of which (water/propylene gly-
col, &,=1.82) showed the disappearance of the {111} photo-
nic bands. Note the close value of sg(G] 11)=1.83 obtained in
Ref. 14. The details of the immersion dependence of a single
(I11) band are given in Fig. 8(a) for the scattering geometry
I'— L, and in Fig. 8(b) for I'— M. Here, we introduce a new
point M on the surface of the Brillouin zone of the fcc lattice
in the middle of L,~W,. This point corresponds to the angle
of 03=20° for scan (B).

Figure 9 presents the results of the spectral analysis show-
ing the normalized square root of the intensity of the dips
matching the experimental (hkl) photonic bands as a function
of the filler permittivity &, Under the term “dip intensity,”
we imply intensity of the peak in the extinction spectra
x(\)==In T(\)/d, assuming that the amplitude of the wave,
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FIG. 8. (Color online) [(a)—(e)] The immersion dependence of the transmission spectra in the whole range of the filler permittivity
1.78 =g,;=2.05. The spectral regions and scattering geometries (with special points in the Brillouin zone) indicate the most typical immer-
sion behavior of the photonic band families {111} (L,, M), {200} (M,X), {220} (M ,K,W), {311} (W), and {222} (M). (f) The processed
spectra are shown in frame (e). The filler permittivity values &/ given in frame (a) also refer to the respective spectra in frames (b)—(f). Red
dotted spectra are for the filler e,=1.82 that immerses the {111} bands; blue dashed spectra are for the filler £y=1.93 that immerses the {220}

bands.

having a frequency within the stop-band, exponentially de-
creases with travel distance within a PhC (see, e.g., Ref. 36).
The dependence for the {111} band family is represented here
as that of the (111) photonic band measured in the I'— L,
geometry.

The experimental data indicate that the filler permittivity
s?(Gm)= 1.82 determines the nondiffraction regime in both

the (111) growth planes and the (111) nongrowth planes, and
this is valid for the F—>Lg and I'— K geometries, as well as
for the whole range of wavelengths and wave vectors we
have studied: the (A), (B), and (C) scans performed for the
s and p polarizations (Sec. VI A).

2. {200} family, the nondiffraction regime at st(G200)~1.63

The most convenient scattering geometry for observation
of the {200} photonic bands is the wave vector range close to
the I' — X path (Figs. 6 and 7). In particular, the (A) scan
shows the (200) band, with the respective wavelength at the
point X (6,=-55°) having the maximum value of
~625 nm (for water-filled opals) only slightly exceeding the
theoretical _value for the {200} family,  Ngy003(0)
=2d;1VeuV3/4=617 nm. The (C) scan exhibits the (020)
band at point X (6-=45°) at =619 nm, which is also close
to the theoretical value of A (0).

The immersion dependence of the (200) photonic band
[Fig. 8(d)] demonstrates that this band is characteristic for all
the fillers with the permittivity &, ranging from 1.78 (water)
to 2.05 (propylene glycol). This result fully agrees with the
data of Ref. 14. Figure 9 shows the dependence of the nor-
malized (200) dip intensity on the filler permittivity &/.
Keeping in mind the linear dependence for the (111) band
and assuming a similar dependence for the (200) band, we
can find the value of s?(Gzoo) ~1.63 at which the (200) pho-
tonic band is to be immersed by the filler.

The remarkable difference between the permittivity of the
immersing filler, 82((;200) ~1.63, and the average permittiv-

ity of the a-SiO, spheres, £,=1.92, is due to the fact that the
reciprocal lattice vector modulus of this plane family, G,
=8.886, is simultaneously close to the special point G,
~9.0 at which the condition 8?(6)50 is valid and to the
first resonance G, in the s?(G) function for a low-contrast
opal sample (see Fig. 3). It should be noted that the positions
of the special G, points on the G scale are constant because
the relation of Eq. (14) remains valid, irrespective of the
dielectric parameters of the opal-filler structure.

3. {220} family, the nondiffraction regime at 8})(G220)=1.93

In the (A) scan along the L,— K,— L path, the (022)
photonic band has the same energy as the (020) and (002)
photonic bands, so it cannot be individually analyzed (Fig.
6). To separate these spectral bands, we should turn to the
(B) L,— W,—K scan in the I'L,W,K plane or to the (C)
K,— W,— X scan in the 'K,W X plane normal to scan plane
(A), ie., 'L,K,L. The degeneracy along these paths is re-

moved, and the {200} and {220} families split, so that the
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FIG. 9. (Color online) The normalized square root of the inten-
sity of the (hkl) photonic bands as a function of the filler permit-
tivity ;. Straight lines, the fitting of experimental points by a linear
function.
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respective wavelengths at the X point essentially differ: 619
nm for (020) and 370 nm for (022). The maximum wave-
length N(»p(0)=431 nm lies at the K (K,) points on the BZ
surface. Note also that the (022) band in the (C) scan has a
higher contrast in the p polarization. Thus, we have unam-
biguously separated the {200} and {220} photonic bands due
to the comparison of experimental data and calculations as
well as to the proper choice of the scanning paths.

The immersion dependence of the (022) band in the trans-
mission spectra is shown in Fig. 8(c) for the I' — K scattering
geometry; the results of the spectral processing are presented
in Fig. 9. Unlike the (111) and (200) photonic bands, the
(022) band disappears at a much higher filler permittivity
s?(GZZO): 1.93. This value agrees well with the value of 1.92
obtained in Ref. 14. In addition to the I'— K scattering ge-
ometry, the {220} bands are observed along the I'— W path
(Fig. 6). The immersion dependence of this band family is
given in Fig. 8(e) and the results are shown in Figs. 8(f) and
9. It is clearly seen that the {220} photonic bands become
immersed at 8?-(G220)= 1.93.

4. {311} family, the nondiffraction regime at 8})(6311)~1.75

The immersion dependence of the {311} photonic bands
has never been studied before. To our knowledge, an experi-
mental observation of these bands was reported in Refs. 19
and 40 only. The analysis of the band structure shown in Fig.
6 indicates that the best scattering geometry for the {311}
photonic bands to be observed is the I'— W, path (6
=~40°). The dispersion branches of the (311) and (131) bands
intercept at the point W,, and the calculation from formula
(17) yields the value of 356 nm. It is important that the {311}
branches do not intercept in the vicinity of this point with the
dispersion branches of the other {hkl} band families (Fig. 6);
therefore, the dips due to the {311} bands can be unambigu-
ously attributed. Indeed, the transmission spectra taken along
the I'— W, path contain a weak band centered at ~358 nm
[Fig. 8(e)], which can be attributed to the {311} band family.
Note also that the maximum theoretical wavelength for the
{311} bands in our samples is found to be Aj;;3(0)
=372 nm at 6,~-30° and 6p~=58° [A;3;3(0)
—\3/11)\{“1}(0) for the (311) directions in the BZ]. How-
ever, the {311} bands are overlapped in these geometries by
more intense bands of the other {/kl} families (Fig. 6), mak-
ing the study of their immersion dependences impossible.

It is quite hard to understand the nature of the immersion
dependence for the {311} band from the raw spectra in Fig.
8(e). However, the dependence of its integral intensity can be
seen fairly well in Figs. 8(f). The {311} band exists for all of
the fillers with a permittivity value of 1.78 =g,=2.05. As-
suming a linear dependence of this band intensity similar to
that of the (111) and (022) bands, we find the value of
s?(Gm) ~1.75 at which the {311} photonic bands are to be
immersed.

5. {222} family, the resonance photonic band without the
nondiffraction regime

We have failed to find reports on the immersion depen-
dence of the {222} photonic bands. The (222) bands are due
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to the second-order diffraction in the (111) growth planes and
can be detected in the (A) and (B) scans at wavelengths
N222)(6) twice as short as Ngy;13(60) (Fig. 6). However, the
(222) dispersion branch measured in the most convenient
scattering geometry, I'— L,, is superimposed on some other
{hkl} branches, so it cannot be attributed exactly. For this
reason, we used the I'— M direction (see Sec. VB 1) to
analyze the (222) band separately [Fig. 8(b)].

The processing results presented in Fig. 9 shows the nor-
malized (222) dip intensity to be practically independent of
the filler permittivity & in the range 1.78 <g,=2.05. There-
fore, we can attribute the {222} bands to the class of reso-
nance photonic bands. The resonance nature of these bands is
due to the fact that the reciprocal lattice vector modulus of
these planes G,,,=2G;;;=15.39 lies in the region of the sec-
ond resonance G in the s?(G) function for low-contrast
opal (Fig. 3). Therefore, in spite of the second-order diffrac-
tion in the {111} growth planes, the {111} and {222} families
demonstrate absolutely different immersion dependences.
While the {111} photonic bands are immersed by a filler with
853-(G1 11)=1.82, the {222} bands are not immersed in the &,
range of interest and have the resonance nature or are similar
to resonance bands, which can be immersed only by fillers
with very high or very low (negative) permittivities s;)»(Gzzz).

C. Simulation of the 8}'(6) function

Earlier, we simulated the general & (G) function by using
formula (5) and two experimental parameters sf(Gm) and
€ f(Gzzo) 14 The fitting parameters were the parameters of the
rising piecewise linear function that modeled &,(r). The
choice of e,(r) was based on the assumption that the smooth
and continuous surface of a-SiO, spheres observed in the
SEM images (Fig. 5) was an evidence for a higher density of
the near-surface region, as compared to the porous nucleus.

In addition to the refined parameters gf(Gm) 1.82 and
8f(G220) 1.93, here we use two originally measured param-
eters, Sf(Gzoo) 1.63 and sf(Gg“) 1.75, as well the addi-
tional information about the value of sf(Gzzz) being close to
the resonance value. A larger number of experimental points
provide a higher reliability of the simulated permittivity &(r)
of a-SiO, spheres The permittivity value is further used to
calculate the sf(G) function from Eq. (5) and to compare its
values with experimental sf(thl) The simulation of &(r)
was based on the TEM and SEM data (Fig. 5) indicating
that the sphere surface of the experimental samples was con-
tinuous, so that it should have a permittivity close to that for
bulk silica, £4.510,=2.13 (see the inset in Fig. 10). Further,
Fig. 5 indicates that the dense shell has a small thickness as
compared to the sphere radius and rapidly transforms to the
porous nucleus. Taking these factors into account, we ap-
proximated the &,(r) function with a piecewise linear func-
tion and employed nonlinear optimization procedures to cal-
culate €%(G), which describes the experimental data well
(Fig. 10§. The first two resonances of this function lie at
Ges1=9.07 and G »,=15.54. We would like to emphasize
that the G, value is close to the reciprocal lattice vector
modulus G,,=8.886 for the {200} bands, while the G
value is close to the reciprocal lattice vector moduli Gs;;
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FIG. 10. (Color online) The nondiffraction conditions for an
opal structure. The filler permittivity e?(G) as a function of the
reciprocal lattice vector calculated from Eq. (5) for the permittivity
profile &y(r) simulating the a-SiO, spheres. The &, (r) profile is
given in the inset. The moduli of the shortest reciprocal lattice vec-
tor Gy, are shown by vertical lines. Circles, experimental values of

eN(G)-

=14.735 and G,y,=15.39 for the two band families, {311}
and {222}. This is the reason why the three band families
cannot be immersed in the limited range of &.

Figure 10 (see the insert) shows the model &,(r) function
obtained by the fitting, which can yield the average permit-
tivity of the a-SiO, spheres. By averaging &,(r) over the
sphere volume, we get £,=1.92, a value which agrees fairly
well with £,=1.97 derived from the processing of the reflec-
tion spectra for opals in Ref. 41. The value of &, makes it
possible to calculate the average permittivity of opal with a
filler, &,,=0.748,+0.26¢/, and is found to be &,,=1.88 for
water. Then, we use formula (17) and the experimental Ay
values, measured with the highest possible accuracy among
all sets of A, to calculate the size of the a-SiO, spheres.
The size we found, D=317 nm, is in perfect agreement with
the earlier value of D=315*15 nm for the same opal
sample.?

It should be mentioned that the averaged permittivity of
spheres, &, found earlier was identified with eg(Gm) at
which the (111) dips are immersed.?** The results of the
present work directly show that these are quite different
quantities: the average permittivity value £,=1.92 markedly
differs from the immersion value s?(Gl 11)=1.82.

VI. POTENTIAL APPLICATIONS

A. Selective switching of photonic bands: Active and passive
modes

An obvious application of the effects discussed above is
to selectively control the light fluxes of various wavelengths
propagating through a crystal. Light is known to be the fast-
est information carrier, so future telecommunication circuits
and computers can be based on elements made from photo-
nic crystals. We believe that multi-component PhCs will be-
come increasingly important in the near future due to a large
variety of functions that can be governed by selective on/off
switching.
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Figure 7 demonstrates the selective on/off switching of
photonic bands that can be performed either by a proper
selection (modulation) of the crystal structural parameters (a)
or by controlling the light polarization (b). The analysis of
polarization features of photonic bands in low-contrast
opals?>2® demonstrated that each set of (hkl) crystal planes
should be related to the respective the p and s components of
linearly polarized light. The available data on light
transmission?>?% and diffraction?® in opals indicate a certain
similarity between the observable inhibition of photonic
bands in the p polarization in a definite range of scanning
angles and the classical effect in homogeneous media which
defines the Brewster angle. In the case of PhCs, the quasi-
Brewster angle #8=a tanye,,/&,, where &,, is the permittiv-
ity of the structure (in our case, the opal-filler system) and &,
is the permittivity of the ambient (in our case, the filler).

Figure 11 summarizes the main results obtained in this
study. It demonstrates, with reference to synthetic opals, the
experimental dependence of the modulated photonic band
structure of multi-component fcc PhCs on the permittivity of
one of the components and on the linear polarization of the
incident light. These results are given for samples filled with
three materials: &,=1.78 (distilled water), &, =2.05 (propy-
lene glycol), and &,= sg(Gm): 1.82 (a mixture of water and
propylene glycol). The p and s polarizations are defined re-
spective to the scanning plane [(A), (B), or (C)].

One can see in Fig. 11 the complete switch-off effect for
the {111} photonic bands at sf:.s;)(Gm):l.SZ. The {111}
bands in this structure cannot be observed in any of the scat-
tering geometries (that is for all the possible directions of the
wave vector K): neither in the (111) growth planes nor in the

(111) nongrowth planes, in the whole spectral range of in-
terest, 300—800 nm. We would like to stress that a theoreti-
cally perfect compensation of a photonic band in a wide
spectral range is not feasible due to the difference in the
dispersion dependences of the permittivity for silica,
&45i0,(N), and the filler, &¢(\). However, our experiments
have shown that this effect is not essential, so it will not be
discussed here. In addition to the dispersion dependence, Fig.
11 demonstrates the polarization dependence of the photonic
band structure, which reveals itself at the quasi-Brewster
angle #*® individually defined for each (hkl) plane family.

Therefore, the multi-component nature of PhCs may open
opportunities to photonics. Indeed, a common two-
component PhC can exist only in two states: (1) in the off
state when all of its photonic bands are open (g;# &,, the
incident beam is reflected) or (2) in the on state when all the
bands are closed (g;=¢,, the incident beam is transmitted).
For this reason, a two-component PhC does not allow inde-
pendent information processing by using different Bragg
wavelengths A(,). In contrast, a multi-component PhC is
capable to switch on/off photonic bands, thereby selectively
creating several possible states. Clearly, the latter type of
crystals possesses much greater communication capabilities
and can be employed as selective switches and selective
waveguides in various optoelectronic devices.

Selective processing of signals can be performed in the
passive or dynamic mode. The passive mode uses a multi-
component PhC with prescribed parameters s?(th,), which
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FIG. 11. (Color) The photonic band structure of opal. (a) Bragg wavelengths vs the angle of incidence for diffraction from different {/k/}
plane families calculated from Eq. (18) for three scanning paths [(A)—(C)], Eq. (17). The calculation parameters are the same as in Fig. 6.
Red lines, the {111} family of planes; green, {200}; blue, {220}; cyan, {311}; orange, {222}. (b) The filler permittivity s?(G) in the
nondiffraction regime (black line) calculated from Eq. (5) for the permittivity profile e4(r) shown in Fig. 10. The filler permittivity values
£,=1.78, 1.82, and 2.05 are shown by horizontal lines. The moduli of the shortest reciprocal lattice vector Gy, are given by vertical lines.
[(c)—(h)] The photonic band structure of opals for three fillers and two linear polarizations is shown on the same scales of wavelengths and
wave vectors and in the same scanning planes as the calculations in frame (a). The intensity scale of photonic bands is given in the lower

right corner. (c) &
polarization, and (h) &,=2.05, p polarization.

separates in space (reflects or transmits) the information
propagating at different Bragg wavelengths A(,,. Greater
perspectives are provided by the time modulatlon of the crys-
tal parameters, which can allow a selective manipulation of
the information transmitted at various Bragg wavelengths
A(ug) in the online mode. The on/off selective switching can
be realized by dynamic tuning of the permittivity of one (or
several) component(s)?>?3 or by picosecond strain pulses,*’
i.e., by modulation of the reciprocal lattice vector G. The
modulation can be particularly effective near the resonance
point (G~ G, at the Bragg wavelengths X 5.

To summarize, we identified the following stop-bands’
switching mechanisms:

(i) Selective polarization mechanism based on a quasi
Brewster effect. In contrast to other mechanisms, it is not
related to a scattering form factor S(G) becoming zero. For
the light propagating at a critical incident angle 695 to the
planes (hkl), the corresponding (hkl) stop-band disappears in
p polarization and remains constant in s polarization. This
effect can be observed in both the two-component and multi-
component PCs.

(ii) Nonselective mechanism that may be observed only
in two-component PCs and is related to the formation of
optically uniform material when the dielectric contrast be-

g;=1.78, s polarization, (d) £,=1.78, p polarization, (e) &,=1.82, s polarization, (f)

£;=1.82, p polarization, (g) £,=2.05, s

tween the matrix and filler completely disappears. The effect
could be achieved by varying the permittivity of one compo-
nent. In this case, all of the photonic stop-bands {hkl} disap-
pear at the same time as the scattering form factor S(G)=0
for all the G vectors.

(iii) Selective mechanism that takes place when S(Gjy,
=0) by varying one of the structural parameters of PCs. The
effect can be observed in both the two-component and multi-
component PCs.

(iv) Selective mechanism that takes place when S(Gy)
=0 by varying one of the dielectric parameters of PCs. The
effect can only be observed in multi-component PCs. The
experimental and theoretical study of this effect first ob-
served in Ref. 14 was the main focus of our investigation.

B. Optical cloaking of periodic nanostructures

Another potential application of the effects discussed
above is related to “cloaking,” which was a subject active
interest in recent years.**-4¢ The problem is how to make a
region in space classically opaque or transparent to waves in
the whole or, at least, partial spectral range. In perfect causal
cloaking, waves must appear to pass through an object as if it
is an empty space or a transparent media.
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Because every material has a local response, there is no
material that could be used as an “invisible paint” for genu-
ine cloaking. Recent reports have shown that a shell of
metamaterial could achieve cloaking but only to monochro-
matic electromagnetic waves.*** As an alternative to cloak-
ing with a metamaterial, a method was proposed which is
based on wave measurement and final wave cancellation.*®
In this method, special sensors would measure the waves
near the surface of the object and excite active sources of
electromagnetic waves using an approach to determine those
sources. Note that active sources cloaking for slowly propa-
gating acoustic waves have no problems in principle,*’*® al-
though cloaking to broadband optical waves is problematic
because there is little or no time available for any calcula-
tions or extra propagation.*®

The results presented above seem to be closely related to
these problems and can be regarded as steps on the way to
cloaking technologies for periodic structures. Two-
component structures become fully transparent to light when
the permittivity of one component matches that of the other.
Full light transparency is impossible to create in multi-
component periodic structures, but they can be made trans-
parent to certain wavelengths in certain directions. Indeed,
the technique we have suggested allows selection of such a
homogeneous medium with constant permittivity &, for any
inhomogeneous sphere profile ,(r) that the resultant struc-
ture becomes optically transparent to waves in a definite
wavelength range. This kind of structure can be considered
as being totally opaque, with only one structural element
being “visible.”

In particular, at &= s?(Gm), we immerse the {111} family
of bands, thereby considerably broadening the opacity range
and shifting the red diffraction cutoff toward the shorter
wavelength region. In this case, the red diffraction cutoff of
the whole periodic structure, which is determined in the fcc
lattice by the diffraction boundary of the {111} planes,
7\{111}(0)=2d111\":w» is shifted to the diffraction boundary of
the {200} planes, Agp0(0)=13/4\;;;;y(0). Therefore, the
spectral range between \;;13(0) and A(0y(0) becomes fully
transparent in any direction in the lattice, as is well seen in
Fig. 11. Thus, we have given an example of collective cloak-
ing of a multitude of identical particles in the chosen wave-
length range.

VII. CONCLUSION

We reported on a detailed study of switching off {ikl}
stop-bands depending on the structural and dielectric param-
eters of PhCs, as well as on the polarization of the incoming
light. The suggested classification of PhCs as two-component
PhCs and multi-component ones was found to play an impor-
tant role in distinguishing the stop-bands’ switching mecha-
nisms. We showed that the Bragg diffraction on the nonreso-
nance {hkl} planes in multi-component periodic structures
can be selectively switched off, with each {hkl} plane family
being immersed at the intrinsic permittivity 8?(thz) of the
variable component of this structure. In other words, the im-
mersion permittivity value splits on the & scale. In the reso-
nance planes, however, the Bragg diffraction cannot be
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switched off by changing the permittivity of one of the com-
ponents. This medium can never be transparent to the respec-
tive Bragg wavelengths Ap,g,-

These effects were theoretically treated with reference to
Bragg diffraction in multi-component photonic crystals and
experimentally studied from light transmission spectra of 3D
opal-filler systems. One should keep in mind that many pho-
tonic crystals known today are multi-component structures.
For example, there are no natural or synthetic opals made up
of homogeneous spheres, they are just theoretical models.
Inhomogeneities of a-SiO, spheres, which seem inessential
at first sight, may lead to remarkable optical effects, some of
which were studied in the present work. Various semicon-
ductor 2D photonic crystals have a complex space-periodic
morphology and a defect surface formed during their fabri-
cation by lithographic techniques. Generally, multi-
component photonic crystals can be produced by sputtering
or deposition of various compounds on host structures. Here,
we have described the methods we used for the calculation of
photonic characteristics of such compounds and showed that
a proper selection of structural and dielectric parameters can
always lead to a resonance photonic band. Similarly, one can
selectively switch off the prescribed photonic bands splitted
on the permittivity scale. It is important that some photonic
bands that cannot be switched off by immersion in the ac-
cessible permittivity range (e.g., the {200} bands) can be ma-
nipulated by using the properly chosen incident light polar-
ization.

We used optical transmission spectroscopy to experimen-
tally study the photonic band gap of opals as a function of
the filler permittivity, light polarization, and incident beam
orientation in the fcc lattice. The measurements were made
for all high-symmetry points and directions across the Bril-
louin zone. The conventional model of synthetic opals as a
two-component composite was found to be inadequate to
describe their photonic properties. We analyze this problem
and demonstrated that the microstructure of a-SiO, spheres
needs to be taken into account and that opals should be re-
garded as multi-component photonic crystals. The experi-
mental data and calculations presented here demonstrate a
very good agreement.

To conclude, we can expect a variety of new effects in
multi-component photonic crystals and their potential appli-
cations. These effects can be used to design new types of
PhC-based devices. Since the structure permittivity can be
deliberately controlled, it would not be hard to design multi-
component PhCs that would exhibit different nondiffraction
states of preselected {hkl} photonic bands in the passive
mode. Dynamic modulation of the permittivity or the lattice
parameters may allow a selective on/off switching of desired
(hkl) bands and, as a result, provide a simultaneous control
of the information transmitted at different wavelengths in the
online mode.

ACKNOWLEDGMENTS

We thank A. A. Kaplyanskii and V. A. Kosobukin for
helpful discussions and M. I. Samoylovich and A.V. Gury-
anov for the preparation of the samples. SEM was performed

205106-14



SELECTIVE MANIPULATION OF STOP-BANDS IN...

in the Centralized Materials Characterization Facility of
A. J. Drexel Nanotechnology Institute. TEM studies were
done in the Penn Regional Nanotechnology Facility, Univer-
sity of Pennsylvania. This work was supported in part by
the Super Optical Information Memory Project from the

PHYSICAL REVIEW B 77, 205106 (2008)

Ministry of Education, Culture, Sports, Science and
Technology of Japan (MEXT), Grant-in-Aid for Scientific
Research (S) No. 17106004 from Japan Society for the Pro-
motion of Science (JSPS), and by the RFBR Grant No.
08-02-00642.

'E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

2S. John, Phys. Rev. Lett. 58, 2486 (1987).

3. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals: Molding the Flow of Light (Princeton University,
Princeton, NJ, 1995).

4 Photonic Crystals: Physics, Fabrication and Applications, edited
by K. Inoue and K. Ohtaka (Springer, New York, 2004).

SK. Sakoda, Optical Properties of Photonic Crystals, 2nd ed.
(Springer, New York, 2004).

E. Yablonovitch, J. Phys.: Condens. Matter 5, 2443 (1993).

7A. Guinier, Crystals, Imperfect Crystals, and Amorphous Bodies
(Freeman, San Francisco, 1963).

8K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65,
3152 (1990).

9H. S. Soziier, J. W. Haus, and R. Inguva, Phys. Rev. B 45, 13962
(1992).

10K, Busch and S. John, Phys. Rev. E 58, 3896 (1998).

I'H, Takeda and K. Yoshino, Appl. Phys. Lett. 80, 4495 (2002).

2P, D. Garcfa, J. F. Galisteo-Lépez, and C. Lépez, Appl. Phys.
Lett. 87, 201109 (2005).

13 A. Glushko and L. Karachevtseva, Photonics Nanostruct. Fun-
dam. Appl. 4, 141 (2006).

14A. V. Baryshev, A. B. Khanikaev, M. Inoue, P. B. Lim, A. V.
Sel’kin, G. Yushin, and M. F. Limonov, Phys. Rev. Lett. 99,
063906 (2007).

ISP, J. Darragh, A. J. Gaskin, B. C. Terrell, and J. V. Sanders,
Nature (London) 209, 13 (1966).

I6R. K. ller, The Chemistry of Silica (Wiley, New York, 1979).

17W. Stober, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62
(1968).

18P, J. Darragh and J. L. Perdrix, J. Gemmol.. 14, 215 (1975).

M. V. Rybin, K. B. Samusev, and M. F. Limonov, Photonics
Nanostruct. Fundam. Appl. 5, 119 (2007).

20y, N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, A. V.
Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Yu. A.
Vlasov, Nuovo Cimento D 17, 1349 (1995).

2I'yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyan-
skii, V. N. Bogomolov, and A. V. Prokofiev, Phys. Rev. B 55,
R13357 (1997).

22D. A. Mazurenko, R. Kerst, J. 1. Dijkhuis, A. V. Akimov, V. G.
Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin,
Phys. Rev. Lett. 91, 213903 (2003).

2 A. B. Pevtsov, D. A. Kurdyukov, V. G. Golubev, A. V. Akimov,
A. A. Meluchev, A. V. Sel’kin, A. A. Kaplyanskii, D. R. Yakov-
lev, and M. Bayer, Phys. Rev. B 75, 153101 (2007).

24 A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, K. B. Sa-
musev, D. E. Usvyat, and M. F. Limonov, Phys. Rev. B 70,
113104 (2004).

23 A. V. Baryshev, A. B. Khanikaev, H. Uchida, M. Inoue, and M.
F. Limonov, Phys. Rev. B 73, 033103 (2006).

26M. V. Rybin, A. V. Baryshev, M. Inoue, A. A. Kaplyanskii, V. A.
Kosobukin, M. F. Limonov, A. K. Samusev, and A. V. Sel’kin,
Photonics Nanostruct. Fundam. Appl. 4, 146 (2006).

27B. T. Holland, C. E. Blanford, and A. Stein, Science 281, 538
(1998).

28], E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998).

2 A. A. Zakhidov, R. H. Baughman, Z. Igbal, C. Cui, I. Khairulin,
S. O. Dantas, J. Marti, and V. G. Ralchenko, Science 282, 897
(1998).

30M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, and
T. Narayanan, Ad Lagendijk, and W. L. Vos, Phys. Rev. Lett.
83, 2730 (1999).

31S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller,
R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Joua-
nin, Phys. Rev. E 63, 056603 (2001).

32 A. V. Baryshev, A. A. Kaplyanski, V. A. Kosobukin, M. F. Li-
monov, and A. P. Skvortsov, Phys. Solid State 46, 1331 (2004).

BAV. Baryshev, V. A. Kosobukin, K. B. Samusev, D. V. Usvyat,
and M. F. Limonov, Phys. Rev. B 73, 205118 (2006); Phys.
Solid State 45, 459 (2003).

3*A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New
York, 1984).

35 A. Modinos, N. Stefanou, I. E. Psarobas, and V. Yannopapas,
Physica B (Amsterdam) 296, 167 (2001).

36Yu. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, Phys. Rev.
B 60, 1555 (1999).

37A. A. Chabanov, Y. Jun, and D. J. Norris, Appl. Phys. Lett. 84,
3573 (2004).

3BV, N. Bogomolov, L. M. Sorokin, D. A. Kurdyukov, T. M. Pav-
lova, and J. L. Hutchison, Phys. Solid State 39, 1869 (1997).

M. V. Rybin, K. B. Samusev, and M. F. Limonov, Phys. Solid
State 49, 2280 (2007).

405, A. Asher, J. M. Weissman, A. Tikhonov, R. D. Coalson, and
R. Kesavamoorthy, Phys. Rev. E 69, 066619 (2004).

410. A. Kavtreva, A. V. Ankudinov, A. G. Bazhenova, Yu. A.
Kumzerov, M. E. Limonov, K. B. Samusev, and A. V. Sel’kin,
Phys. Solid State 49, 708 (2007).

42Y. Tanaka, S.-I. Tamura, A. Akimov, A. Pevtsov, S. Kaplan, A.
Dukin, V. Golubev, D. Yakovlev, and M. Bayer, J. Phys.: Conf.
Ser. 92, 012107 (2007).

“A. Alu and N. Engheta, Phys. Rev. E 72, 016623 (2005).

44U. Leonhardt, Science 312, 1777 (2006).

4], B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780
(2006).

4D, A. B. Miller, Opt. Express 14, 12457 (2006).

47P. A. Nelson and S. J. Elliott, Active Control of Sound (Aca-
demic, London, 1992), pp. 290-293.

4E. Friot, R. Guillermin, and M. Winninger, Acta Acust. 92, 278
(2006).

205106-15



