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We present a general theory of current deviations in straight current-carrying wires with random imperfec-
tions, which quantitatively explains the recent observations of organized patterns of magnetic field corrugations
above micrometer-scale evaporated wires. These patterns originate from the most efficient electron scattering
by Fourier components of the wire imperfections with wavefronts along the �45° direction. We show that
long-range effects of surface or bulk corrugations are suppressed for narrow wires or wires having an electri-
cally anisotropic resistivity.
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Electron scattering by microscopic structural imperfec-
tions in thin conducting films is a major factor determining
their conductivity properties, especially at low
temperatures.1,2 Ordinary polycrystalline metal wires with
straight boundaries are usually considered to have Ohmic
conductance with a homogeneous current flow on a scale
much larger than their grain size �typically tens of
nanometers�.3 Measurements using ultracold atoms as a
highly sensitive probe to minute changes in the magnetic
field have revealed directional deviations of the current flow
far from the edges of the wire.4 Recent observations of
atomic density fluctuations a few micrometers above wires
of different thickness and grain size have revealed organized
patterns of current flow directional deviations that are ori-
ented predominantly at �45� relative to the wire axis, on a
length scale as large as tens of micrometers.5 It was shown
that this effect is a general property of electron scattering by
random imperfections in the conductor. In contrast to most
previous observations of atomic density fluctuations above
current-carrying wires,6–9 which were attributed to current
irregularities due to wire edge corrugations,9–11 the recent
observation follows previous observations12 that emphasize
the importance of the wire surface or bulk structural imper-
fections on a length scale of the order of one micrometer or
longer.

Here, we present a detailed model for the current irregu-
larities formed in a current-carrying wire with random geo-
metrical perturbations or bulk resistivity inhomogeneities.
This model enables not only the quantitative understanding
of the observed patterns and their origin, but also provides
predictions of electron transport properties in wires with
various geometries and crystalline structures. Together with
further measurements using the ultracold atomic probe, it is
expected to shed new light on electron transport, and to al-
low for less corrugated atomic traps and guides to be devel-
oped for atom optics and quantum technology.13

The results of our calculations are demonstrated in Fig. 1,
comparing the measured atomic density patterns with pat-
terns calculated by assuming random imperfections of the
wire geometry or bulk resistivity. Each spectral �Fourier�
component of these imperfections is a plane wave with a
random phase and an amplitude taken from a nonwhite iso-

tropic power spectrum modeled in Ref. 5. The angular pref-
erence of the patterns emerges from a universal electron scat-
tering mechanism described below, where the apparent
difference in the spectral composition of the density fluctua-
tions above the thick wire of thickness 2 �m �Figs. 1�a� and
1�b�� and the thin wire of thickness 280 nm �Figs. 1�c� and
1�d�� is attributed to the different nature of the wire imper-
fections.

Our calculations are performed for a metallic wire as in
Fig. 2�a�, having a rectangular cross section of width W in
the ŷ direction and thickness H in the ẑ direction, and carry-
ing a current density J�r�=J0x̂+�J�r�. Here J0= I /WH is the
regular current density for a total current I. Utilizing Ohm’s
law J=E /�, where E is the electric field, and Maxwell’s
equation ��E=0, we find

� � J = −
��

�
� J , �1�

with �=�0+���r� being the isotropic resistivity. Although
significant resistivity perturbations may exist in a polycrys-
talline metal near grain boundaries �length scale of nanom-
eters�, one may safely assume that over most of the length
scales of interest �micrometers� ����, such that in the Fou-
rier expansion ���r�=�k�keik·r one has ��k � ��0 for any rel-
evant wave number k��kx ,ky ,kz�. By keeping only terms up
to first order in the resistivity gradient �� and using the
current continuity equation � ·�J=0, we obtain the solution
for the components of the current irregularities as a function
of the bulk inhomogeneity,

�J�bulk��k� = J0� kx

�k�2
k − x̂	��k

�0
, �2�

where the transverse components �ky ,kz� of the wave vector
k take the discrete values 2��m /W ,n /H� with integers m
and n, −	 
m ,n
	.

The horizontal transverse current irregularities �Jy
�bulk� are

proportional to kxky /k2�sin 2�k, where �k� tan−1�ky /kx� is
the angle in the x-y plane. This immediately implies that
transverse currents are predominantly generated by Fourier
components of the resistivity perturbations with wavefronts
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oriented at �45°. Vertical current irregularities �Jz
�bulk� are

proportional to kxkz /k2�sin 2
k, where 
k� tan−1�kz /kx�.
Vertical currents are therefore significant only for Fourier
components satisfying kx
kz �
k
 �45° �, namely for lon-
gitudinal wavelengths 2� /kx of the order of the thickness H
or less, corresponding to nonzero values of kz. For thin wires,
these wavelengths are usually beyond the spatial measure-
ment resolution in the x-y plane. At wavelengths of interest,
much larger than H �kx�kz�, vertical currents are suppressed
as �Jz

�bulk�� kxH / 2� �1.
In the following, we refer to the spectral regime

�kx ,ky��2� /H as the “thin-film limit,” where only contribu-
tions from Fourier terms with kz=0 are important. We will
then consider the film as two-dimensional and characterize it
by the real-space vector ���x ,y� and Fourier space vector
���kx ,ky�. Thickness variations of the wire �H�x ,y� may
then be regarded as irregularities of the thin-film resistivity
��thickness=−�0�H /H. Figure 2�a� demonstrates the genera-
tion of periodic horizontal current directional deviations due
to resistivity perturbations originating from bulk or thickness
variations.

A typical magnetic potential along an elongated trap, such
as that used in Ref. 5, is determined mainly by the longitu-
dinal component of the magnetic-field fluctuations at the
trapping position. Its Fourier spectrum at a height z0 is re-
lated to the current irregularities in the wire by

�Bx�kx,ky,z0� =
�0

2
�

−H

0

dz�e−��z0−z��

���Jy�kx,ky,z�� + i sin ���Jz�kx,ky,z��� ,

�3�

where �0 is the permeability of the vacuum. Here, the free-
space �continuous� Fourier transformations �J�kx ,ky ,z�� may
be approximated by their discrete form as in Eq. �2� if
�W�1 and z0�W /2. Substituting �J of Eq. �2� into this
expression, one finds that �Bx����e−�z0 sin 2�� limiting the
spatial resolution in the x-y plane by the measurement dis-
tance z0.

The sin 2�� dependence together with a 
1 /� depen-
dence of the resistivity perturbations �found in the spectral
analysis of the data in Ref. 5�, demonstrated by the color
map in Fig. 2�b�, describe well the behavior in the continuum
limit W→	. However, for finite widths �and a finite mea-
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FIG. 1. �Color� Measured �Ref. 5� and simulated patterns of
atomic density �normalized� 
3.5 �m above �a�, �b� a thick wire
�H=2 �m�, and �c�, �d� a thin wire �H=280 nm�, with grain size of

70 and 
40 nm, respectively. Atomic density variations measure
corrugations in the magnetic-field component �Bx along the wire
axis x̂. These corrugations are due to current directional deviations
from the main current along x̂. The trapping potential ensures a
cloud width of 
1 �m along ŷ and ẑ, and hundreds of �m in the x̂
direction. To create the above 2D maps, the different transverse
locations are scanned across the wire at a constant height. The
simulation assumes a combination of bulk resistivity inhomogeneity
and geometrical perturbations of the wire with parameters chosen
such that the power spectrum of the magnetic field along x̂, aver-
aged over ŷ and over many realizations of the simulation, fits the
measured power spectrum �right�.

W=1 W=5 W=10 W=20 W=50 W=100 W=200

FIG. 2. �Color� �a� A single Fourier component �plane wave� of
the planar resistivity perturbations due to bulk inhomogeneity or
wire thickness variations induces current flow directional changes
�arrows�. The current tilts along low-resistivity wavefronts and
across high-resistivity wavefronts. �b� The amplitudes of transverse
current component �Jy��� ����kx ,ky��, generated by resistivity
perturbations ������1 /� �see Ref. 5�, are proportional to sin 2��

�color scheme�. For a wire with a finite length L and width W, these
amplitudes are calculated at discrete values of �, which are integer
products of 2� /L and 2� /W. �c� As a consequence of this discrete-
ness, the corrugations at long wavelengths �kxW
1� are suppressed
when the wire becomes narrower: the density of ky states becomes
lower and no corresponding values of ky exist along the maximum
scattering amplitude line ky 
kx. Here, the power spectrum of the
magnetic field corrugations at 3.5 �m above the center of the wire
is shown as a function of kx for resistivity perturbations
��� /�0=3.4�10−4��0 /�� with �0=2� /680 �m−1. �d� For com-
parison, the magnetic-field corrugations above the center of the wire
are shown for wires of different widths for a model assuming edge
fluctuations with ��y��kx� � =10 nm� ��0 /kx�. Here, short-
wavelength components are suppressed when the wire becomes
wider.
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surement length L�, kx and ky assume only discrete values
that are integer multiples of 2� /L and 2� /W, respectively,
as demonstrated by the grid of dots superposed on the color
map. It follows that for small values of kx, no counterparts ky
exist on the grid that lie in the region where �sin 2��� is large,
or more specifically, around the line ��=45°. This implies
that at wavelengths larger than the wire width W, the current
irregularities are significantly suppressed beyond the sup-
pression caused by the reduction of grid points. This predic-
tion is demonstrated in the power spectrum shown in Fig.
2�c�. This result is very different from the effect of current
irregularities due to edge roughness, which characterized
measurements of atomic density fluctuations in some previ-
ous works.9–11 In that case, the short wavelengths are expo-
nentially suppressed near the center of the wire, while only
wavelengths of the order of the wire width or more are ef-
fective �Fig. 2�d��.

Another prediction of our model is obtained when we
generalize the situation to the case where the conducting
wire is electrically anisotropic, such that the resistivity is a
diagonal tensor and Ohm’s law generalizes to Ej =� jJj for
j=x ,y ,z. In this case, Eq. �2� becomes14

�J�bulk��k� = J0� kx

k · q
q − x̂	��x,k

�x,0
, �4�

where q= �kx /�x ,ky /�y ,kz /�z�. In the limit of a thin film,
where kz=0, the horizontal transverse current irregularities
�Jy are proportional to sin 2�� / �1+ �r−1�cos2���, where
r=�y /�x is the resistivity ratio. As demonstrated in Fig. 3, the
scattering at angles ��
45° is suppressed if r�1 and en-
hanced if r
1, thus changing the preferred scattering wave-
front angle in the range 0° 
��
90°. The overall magnetic
corrugations are suppressed as r−3/4 in the limit of high an-
isotropy r�1.

Now we turn to a more detailed theory of current irregu-
larities due to geometrical imperfections of the wire.15 We
solve Eq. �1� with ��→0 and with boundary conditions
ensuring that the current flows parallel to the boundaries.
Taking the upper and lower surfaces of the wire at
z= �H /2+�z� and the right and left edges at
y= �W /2+�y�, where �z��x ,y� and �y��x ,z� are small
fluctuations of the corresponding surfaces, we obtain the fol-
lowing boundary conditions:

�Jy�x, �
W

2
,z	 = J0

��y�

�x
,

�Jz�x,y, �
H

2
	 = J0

��z�

�x
, �5�

where terms of second or higher orders in �z� and �y� were
omitted. The current irregularities are then written as a sum
of two terms,

�J�surf��r� = �
kx

eikxx��Jkx

W�y,z� + �Jkx

H�y,z�� . �6�

Equation �1� with ��=0 together with the continuity equa-
tion � ·J=0 imply that the current can be written as the
gradient of a potential function �J�surf�=�F, which satisfies
the Laplace equation �2F=0. It follows that the terms in Eq.
�6� have the form

�Jkx

W�y,z� = ikxJ0�
n,�

an,��kx�ei2�nz/He−�y�W/2�/�n, �7�

�Jkx

H�y,z� = ikxJ0 �
m,�

bm,��kx�ei2�my/We−�z�H/2�/�m, �8�

where the exponential terms describe the attenuation of cur-
rent fluctuations induced by each boundary perturbation at a
distance �n= �kx

2+ �2�n /H�2�−1/2 from the left-right bound-
aries and �m= �kx

2+ �2�m /W�2�−1/2 from the top-bottom
boundaries. Since �J is derivable from a scalar function, it
follows that each of the vectorial coefficients an,� and bm,�
can be derived from the corresponding scalar coefficients.
Linear equations are obtained for these scalar coefficients
when �J of Eq. �6� is substituted in the boundary conditions
�5�.16

Next, we describe the solutions of these equations for a
few typical simple cases. The term �Jkx

W �Eq. �7�� is signifi-
cant when the edge perturbations �y� are large and the mea-
surement height is comparable to the wire width W. This
situation was discussed in previous works.10,11 Here we con-
centrate on the other limit, where the field is measured at a
low height and a large distance from the edges compared to
�n such that �Jkx

W 
0 for most values of kx. The surface
height fluctuations �z�

� then generate the following current
irregularities �Eq. �8��:

�Jy
�surf��r� � − J0�

�

ei�·�kx
ky

�

cosh��z�
sinh��H/2�

�H�

2
, �9�

FIG. 3. �Color� For a current flowing through an electrically
anisotropic wire, the perturbation wavefront angle ��

max, giving rise
to maximum transverse electron scattering, will depend on the ratio
r=�y /�x between the transverse and longitudinal resistivities �main
plot�. The two-dimensional maps show the predicted atomic density
above a wire similar to that presented in Fig. 1 in the extreme cases
��=0° �r�1�, 90° �r�1�, and the isotropic case ��=45° �r=1�.
Bottom inset: the magnetic corrugation amplitude as a function of
��, which is suppressed when r�1. For details see Ref. 14.
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�Jz
�surf��r� � J0�

�

ei�·�ikx
cosh��z�

cosh��H/2�
�z�

mean, �10�

where �H�=�z�
+ −�z�

− are wire thickness variations and
�z�

mean= ��z�
+ +�z�

−� /2 are height fluctuations of the center of
the wire. In the thin-film limit �H�1, we find �z�1 for
�z � �H /2 such that �Jy assumes a form similar to Eq. �2�
with ��� /�0→−�H� /H,

�Jy
�surf��r� � − J0�

�

ei�·� sin 2��

�H�

2H
. �11�

In the same limit, the magnitude of the vertical current com-
ponent �Jz becomes negligible, since �Jz

�surf��kx�z�
mean

=kxH��z�
mean /H���z�

mean /H.
Equation �11� shows that the surface roughness �z�

causes current irregularities mainly through the thickness
variations �H=�z+−�z−. In thin films, long scale surface
height variations �z+, which follow bottom �wafer� surface
variations �z−, are not expected to cause significant current
variations. On the other hand, the effect of thickness varia-
tions is expected to be more pronounced in thin films, where
�H /H is larger than in thicker wires. The power spectrum of
the measured magnetic-field pattern above the thin wire �Fig.
1�c��, which was analyzed in Ref. 5, could be explained by a
model assuming that thickness variations exist mainly at
short length scales �below 
20 �m�, while �z+��z− at long
length scales. This may explain the shorter characteristic
length scale of the features in the thin wire �Fig. 1�c�� rela-
tive to the thick wire �Fig. 1�a��, where the measured surface
roughness was not sufficiently large to account for the
magnetic-field fluctuations even if the bottom surface varia-
tions were assumed to be uncorrelated with the top surface.

This analysis implies that bulk resistivity perturbations with
�1 /k spectrum could play an important role in the thick
wire, but they are much smaller in the thin wire.

To conclude, we have presented a detailed model for cur-
rent directional deviations in thin wires with random imper-
fections on a length scale of the order of a micrometer or
longer. These deviations may arise either from bulk resistiv-
ity inhomogeneities or from geometrical perturbations of the
wire, where the significance of each factor depends on the
wire thickness and fabrication process. In both cases, elec-
tron scattering is dominant at wavefronts oriented at �45°
relative to the main current axis. The model predicts a strong
suppression of long-wavelength current deviations originat-
ing from bulk or surface corrugations in narrower wires.
Electrically anisotropic materials are also capable of signifi-
cantly suppressing these deviations. Such analysis opens the
road for material engineering to considerably improve atom
optics on atomchips where currents are used for creating
magnetic potentials for atom trapping and guiding. Compari-
son of this theory with further cold atom magnetometry or
other measurements providing high field sensitivities and
spatial resolution will enable a deeper understanding of elec-
tron transport in thin films.
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