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We report on the observation of a nonlocal voltage in a ballistic �quasi�-one-dimensional conductor, realized
by a single-wall carbon nanotube with four contacts. The contacts divide the tube into three quantum dots,
which we control by the back-gate voltage Vg. We measure a large oscillating nonlocal voltage Vnl as a
function of Vg. Though a resistor model that includes the impedance of the voltmeter can account for a
nonlocal voltage including change of sign, it fails to describe the magnitude properly. The large amplitude of
Vnl is due to quantum interference effects and can be understood within the scattering approach of electron
transport.
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The recent realization of the spin field-effect transistor in
carbon nanotube �CNT� devices1 demonstrated the ability to
control spin transport in a quantum dot �QD�.2 However,
additional effects, such as the anomalous magnetoresistance,
can contribute to the observed signal in spin valves.3–6 It
seems clear that despite a number of large responses seen in
CNT-based devices,1,7–9 one needs to go beyond two-
terminal structures by realizing multi-terminal devices where
nonlocal measurements are feasible.10 The nonlocal measure-
ment in spin-valve devices was pioneered by Johnson and
Silsbee11 in metallic spin valves and was further applied to
various other systems.12–14 This technique separates spin
from charge effects by passing the current through the injec-
tion branch of the device and detecting the nonlocal voltage
in the part of the device that does not lie in the charge current
path. Recent application of the nonlocal spin technique in
CNTs10 showed the feasibility and yet tremendous challenge
of performing such measurements in low-dimensional meso-
scopic systems. The hallmark of these measurements is that a
positive voltage is measured when the magnetization of the
injector and detector electrodes is parallel, and a negative
one only when they are antiparallel. However, it has been
reported recently that the four-probe resistance with nonmag-
netic probes in CNTs can be negative due to interference
effects.15 This suggests that the measurement of the nonlocal
spin transport in mesoscopic systems such as CNTs with fer-
romagnetic contacts could be strongly influenced by quan-
tum interference effects.

We report here on measurements of a large nonlocal volt-
age Vnl in multiterminal CNT devices �Fig. 1�a�� in the quan-
tum dot �QD� regime, which changes sign and magnitude as
the back-gate voltage is swept. We show that Vnl cannot be
explained by a classical resistor model. Instead, a quantum
approach is required. We also show that in these devices,
which have relative transparent contacts with resistances in
the range of 10–100 k�, the magnitude of the oscillating Vnl
greatly exceeds any nonlocal spin signal.

Our devices consist of single-wall CNTs grown by chemi-
cal vapor deposition �CVD� and contacted with four probes
as shown in Fig. 1�a�. Two middle electrodes are ferromag-
netic �F� made of PdNi�20 nm� /Co�25 nm� /Pd�10 nm�
trilayer, whereas the two outer probes are normal �N�
Pd�40 nm� electrodes. A PdNi alloy with 30% Pd is used,
because it makes stable contacts to the CNT,1 while Co

serves as magnetization alignment layer for PdNi.16 The de-
vice lies on a 400-nm-thick SiO2 layer, with an underlying
highly doped Si substrate that is used as a back gate. The
CNT was localized with a scanning-electron microscope
�SEM� and the structure was defined using electron-beam
lithography.

Samples were cooled in a He4 cryostat to 1.8 K where the
differential conductance �G=dI /dV0� was measured using
standard low-frequency lock-in technique with an excitation
voltage of V0=100 �V. Two-terminal local G measurements
were made across the three segments of the sample
�schematics in Fig. 1�c�� in the gate voltage range
Vg=1.4–2.4 V, see Figs. 2�a�–2�c�. G is found in the range
of 0.1–2e2 /h and strongly varies as a function of Vg, as
expected for a QD. By sweeping a dc source-drain voltage
Vsd, we have obtained a gray-scale plot of G for the right
segment 3-4 �inset of Fig. 2�c��. The conductances of the
three segments display qualitatively similar patterns in dif-
ferent Vg ranges, but the fine structure may vary. This par-
ticular Vg range has been selected for Fig. 2, because of the
pronounced fourfold pattern17,18 in the voltage detection arm
of the nonlocal measurement, proving the absence of

(b)

(a)
(c)

(d)

g

+

+

g

+

+

magnetic field H (T)
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

re
si
st
an
ce
R
(k

Ω
) 590

580

570

560

550

V0 I

V0 I
Vnl

FIG. 1. �a� A SEM image of a device. The metallic single-wall
CNT is contacted with two ferromagnetic �F� and two normal con-
tacts �N�, which together divide the tube into three equidistant seg-
ments �L�500 nm� which act as QDs. �b� Two-terminal magne-
toresistance signal �F-F�. �c,d� Schematics of the measurement
setup for the local two-terminal �c� and nonlocal four-terminal �d�
measurement.
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intratube scattering, and the presence of a QD formed by an
individual single-wall CNT.

The nonlocal voltage measured across segment 3-4 is
shown in Fig. 2�d� �full� together with the current I �dashed
curve� injected through segment 1-2 and driven by a constant
ac voltage V0 of 200 �V. Two very striking features are
noticeable in these measurements. First, the nonlocal voltage
Vnl oscillates around zero, and secondly, the amplitude is
large with a typical value of 1 �V. This results in an oscil-
lating nonlocal resistance Rnl=Vnl / I with values of
0.1–1 k�. A similar behavior is found in different gate-
voltage ranges, as well as in different samples; see, e.g.,
Fig. 3.

In order to understand the origin of the observed signal,
we first model our device as a classical network of resistors,
shown in Fig. 4�a�.10 Each terminal in the circuit is charac-
terized by contact resistances Rci and rci, and the CNT sec-
tions between terminals i and its next neighbors j have resis-
tances Rij. Two limiting cases are shown in �b� and �c� of
Fig. 4: in case �b� of “noninvasive” contacts �Rc�rc�, all
contacts 1-4 couple weakly to the CNT. In contrast, in case
�c� of “strongly invasive” contacts �Rc�rc�, the CNT is split
into segments. Although there have been reports on both
strong and weak contacts to CNTs,19 a typical device lies in
between. For weak contacts �Fig. 4�b��, driving a current in
the left branch results in the appearance of a uniform voltage
V� on the CNT. Hence, V3=V4=V� and the nonlocal voltage
VnlªV3–V4=0. For strong contacts �Fig. 4�c��, V3 and V4
equal the bias voltage V0, leading again to a vanishing non-

local voltage. Because we have assumed ideal voltage probes
in which no current flows, the right arm must have a uniform
potential also in the general case. We therefore conclude that
Vnl=0 in the classical limit. This breaks down, if the elctrom-
eters are not ideal, but possesses a finite input impedance,
thereby providing a current sink.

We next take the input amplifier input impedances
RI=100 M�, appearing at the voltage probes 3 and 4, in the
resistor model in Fig. 4�a� into account. Assuming a ballistic
wire with Rij =0, we obtain the following for Vnl of the third
segment �3-4�: Vnl�V

2
*�rc3+rc4+Rc4−Rc3� /RI, where V

2
* is

the potential at the inner node of contact 2, as shown in Fig.
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FIG. 2. �a�–�c� Linear conductance G of each segment of the
device as a function of gate voltage Vg. The inset of �c� shows a
gray-scale plot of dI /dV0 as function of Vg and source-drain bias
Vsd in the same Vg range. �d� Nonlocal voltage measured across
terminals 3 and 4 �full curve� and the current injected across termi-
nals 1 and 2 �dashed�.
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FIG. 3. Nonlocal measurement as a function of gate voltage Vg

of another device. �a� The current I between terminals 1-2 �dashed�
is plotted together with the nonlocal voltage Vnl between terminals
3-4 �solid�. �b� Calculated nonlocal resistance R=Vnl / I.
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FIG. 4. �a� Resistor model for metal-CNT contacts. The three
resistors in each shaded region model the property of the contact,
whereas R34, for example, describes the intratube resistance in be-
tween contacts 3 and 4. Two limiting cases are shown in �b� and �c�:
In �b�, the contacts are weakly coupled to the CNT, whereas they
split the CNT into segments due to their strong coupling in �c�. �d�
shows the quantum description, using three-port scattering matrices
Sj �triangles� in each node. Note that there is an additional input
resistance RI �not shown� in both electrometers measuring V3

and V4.
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4�a�. V
2
* is of order V0. that because of the minus sign in one

term, a negative Vnl is possible for certain resistance values.
If the magnitude of all contact resistances is similar, how-
ever, a positive “mean” nonlocal voltage is predicted, in dis-
agreement with the experiment. The observation of an oscil-
lating Vnl with a mean value close to zero could only be
reconciled with the classical model if rc�Rc. Then, the
equation simplifies and we arrive at the following estimate:
Vnl�V0�Rc4−Rc3� /RI.This formula predicts that Vnl follows
the gate-voltage behavior of the resistances of contact 3 and
4. Using a typical contact resistance for our device of
100 k�, RI=100 M�, and V0=200 �V, we estimate
Vnl�0.2 �V. This is an order of magnitude smaller than
measured in the experiment, where the oscillating nonlocal
voltage peaks up to Vnl�2 �V. In order to be absolutely
certain that the current in the detector arm caused by the
finite input impedance RI of the amplifiers is not the source
of Vnl, we have crossed-checked these measurements with a
custom-modified amplifier with an input impedance of
RI=1 G� and have found no change in Vnl. We are therefore
confident that the classical resistor model cannot account for
the measured oscillating nonlocal voltage Vnl and that the
finite input impedance of the amplifiers is not the source of
this signal.

To understand the magnitude of the nonlocal voltage, we
next move on to a quantum-coherent description. We apply
the scattering approach20 to calculate Vnl. A similar approach
was taken by Lerescu et al., but for an open cavity that
supports many modes.21 In contrast, in our case of a CNT we
deal with a �quasi�-one-dimensional �1D� system. This ap-
proach is sketched in Fig. 4�d�. The triangles in each node j
denote a three-port scattering matrix Sj. If we assume that
each port is described by a one-mode conductor, Sj is
a 6�6 matrix that describes the amplitudes between outgo-
ing and incoming waves.20 If we stick to a one-mode con-
ductor, one can prove that Vnl=0, independent of any details
of Sj. This theorem of vanishing nonlocal voltage in a 1D
conductor can be traced back to the particular structure of the
whole S matrix in which the Sj’s are connected in series.
Hence, similar to the resistor model, even in the coherent
description, the nonlocal voltage is expected to disappear,
provided the wire is 1D. Because we do measure a large Vnl
in our devices, one of the assumptions in the theorem must
be violated. These are as follows: linear response and truly
1D. For the former, we note that the maximum applied volt-
age of 200 �V corresponds to 2.3 K,which is slightly above
the measurement temperature. But we have also measured at
100 �V and below confirming linearity. For the latter, we
emphasize that Vnl does not change with the relative magne-
tization direction of the two ferromagnetic contacts, so that
the spin degeneracy is not lifted. What remains as an expla-
nation is the fact that due to the so-called K and K� degen-
eracy of graphene,22 any CNT should carry two �orbitally�
degenerate 1D modes. This then leads to the well-known
fourfold pattern17,18 in the spectrum of a CNT-QD, which is
clearly visible in Fig. 2�c�.

In order to estimate Vnl, we use the Landauer-Büttiker
formalism.20 The current Ii in lead i is given by
Ii� �N−Ri�Vi−�TijVj, where N denotes the number of modes
�here N=2�, Ri is the total reflection coefficient for contact i,

Tij is the probability that a charge carrier is transmitted from
contact j to contact i, and Vk is the potential at contact k.
Using this formalism, one can derive a compact formula for
a general four-terminal voltage.20 For our geometry, one ob-
tains Vnl=V0�T32T41−T42T31� /D, where the denominator D is
given by D= �N−R4��N−R3�−T34T43. This expression can
only be evaluated �estimated� if we can, in addition to
nearest-neighbor transmissions, estimate the transmission
probabilities that embrace second- or even third-nearest-
neighbor contacts. These are the coefficients T31, T42, and
T41. For the former two, the electron wave has to be able to
transmit under one contact �2 or 3� without relaxation, while
for the latter even both contacts 2 and 3 need to be passed.
We estimate this transmission beneath a contact by compar-
ing the conductance G42 between terminals 2 and 4 when
contact 3 is floating or grounded. The result is shown in Fig.
5. If the intermediate contact is floating, electrons that are
transmitted into contact 3 must be reinjected into the device
so that the transmission between 2 and 4 can be large. On the
other hand, for rather strong-coupling contacts such as ours,
only a small fraction of electrons is expected to transmit
unperturbed under the contact. If contact 3 is now grounded,
most carriers disappear via contact 3 to ground. This latter
situation is indeed realized as shown in the data of Fig. 5.
The dashed curve is suppressed by approximately a factor of
7−8. Hence, a fraction of 13% can pass under the contact by
direct transmission.23 This is surprisingly large given the
typical values of the two-terminal resistances and the fact
that the metal electrodes were evaporated directly onto a
freshly CVD-grown CNT. Let us assume that transmission
under the contact is similar for contacts 2 and 3 and let us
denote this probability by t. The magnitude of Vnl /V0 is then
estimated by t2, so that �Vnl � �3.5 �V, in good agreement
with the measured Vnl.

We now turn our attention to spin transport and estimate
the expected spin-dependent nonlocal voltage Vnl

spin. We use
the resistor model shown in Fig. 4�a�. This time, however,
one has to expand it by introducing separate spin-up and
spin-down channels. The contact resistances at F contacts
depend on the relative orientation of the electron spin and the
magnetization within the F contacts.10 For simplicity, we as-
sume that different contacts have equal resistances. We em-
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FIG. 5. Measurements of the two-terminal conductance G42 be-
tween terminals 2 and 4 while terminal 3 is floating �line� and while
it is grounded �dashed line�. The inset depicts transmission through
the CNT in both cases.
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phasize here that for the detection of a nonlocal spin signal,
the spin imbalance in the injector part 1-2 has to be able to
“diffuse” into the detector branch. In the strongly invasive
limit this is impossible, because the strongly coupled contact
2 would equilibrate the spin imbalance. In contrast, for
weakly coupling contacts, a spin imbalance in the CNT
caused by spin injection can be sensed by an F contact. Vnl

spin,
therefore, strongly depends on the ratio rªrc /Rc.
Assuming a small contact polarization p, one obtains
Vnl

spin /V0= p2�0.25 if r�1, which is the largest possible sig-
nal. Using the measurement shown in Fig. 5, we can estimate
the r ratio for our devices. We obtain r	6. This then yields
Vnl

spin /V0	 p2�0.0037. We estimate p from the typical
two-terminal TMR of �4%,1,24,25 yielding a polarization
of �20%. Inserting p and V0=200 �V, the expected

spin-dependent nonlocal voltage is only Vnl
spin	30 nV, two

orders of magnitude smaller than the measured nonlocal
voltage.

In conclusion, we find large oscillating nonlocal signals in
all of our CNT quantum dot devices. The existence of such a
background, which changes its sign with the back-gate volt-
age, can screen the nonlocal signals due to spin in particular
in devices with relative high contact transparency.

Note added. Recently, we have become aware of a similar,
but independent study by A. Makarovski et al..23
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