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The recent literature has now firmly attributed the common C defect on the Si�001� surface to the dissocia-
tive adsorption of water. This work, by examining the dynamical properties of the C defect at elevated
temperatures ��450 K�, establishes the missing mechanistic link between dissociative water adsorption and
wet surface oxidation. Scanning tunneling microscopy and density functional theory in combination reveal in
detail the various paths by which a water molecule breaks apart on the surface and inserts oxygen atoms into
the surface.
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The reaction of water with the Si�001� surface is techno-
logically relevant in the fabrication of ultrathin silicon-oxide
gate dielectrics. As such, the atomic-scale processes of the
H2O:Si�001� reaction system have received considerable at-
tention. It is well established1–8 that H2O adsorbs dissocia-
tively at room temperature, which produces OH and H frag-
ments bonded to the Si-Si dimers of the surface. Scanning
tunneling microscopy �STM� experiments2,4,8 have identified
two types of surface features that are correlated with H2O
exposure; one has the appearance of a single asymmetric
dark dimer; the other is familiar as the C defect,9 a Si�001�
surface impurity commonly encountered in STM experi-
ments. As outlined in Figs. 1�a�–1�c�, these two features are
now understood4–6,8 to correspond to the same- and adjacent-
dimer H+OH species, respectively. At higher temperatures,
further dissociation becomes possible with infrared
spectroscopy3 showing that a single-dimer H-Si-O-Si-H spe-
cies �Fig. 1�d�� is formed at 575–675 K. This species is an
important intermediate in the formation of silicon dioxide as
it contains on oxygen atom inserted into a Si-Si surface
dimer. For the special case of a chlorine-covered silicon sur-
face, a recent STM study10 revealed a correlation between C
defects observed at room temperature and the number of Si-
O-Si dimers formed after anneal. With this Rapid Communi-
cation, we resolve the missing chemical mechanism by
which these oxygen-inserted species are formed. We report
detailed STM experiments at elevated temperature and den-
sity functional theory �DFT� calculations to reveal how C
defects �H+OH� break apart into three types of oxygen-
inserted 2H+O species. The routes taken to form these spe-
cies highlight the importance of interdimer reactions absent
in many previous models of H2O-induced silicon surface
oxidation.11–14

Density functional theory calculations were performed us-
ing the GAUSSIAN03 software15 and a four-dimer Si27H24 clus-
ter representation of the Si�001� surface. Formation energies
were calculated using B3LYP hybrid exact exchange, a com-
posite Gaussian-type basis set, and additional corrective
terms to account for finite cluster size, finite basis set size,
and vibrational zero-point effects.16 Formation energies cal-
culated by using this method for various intermediates and
transition states of room-temperature H2O adsorption and/or
dissociation �given in Fig. 1�a�� agree well with those of
previous works.5,6 Specifically, the H2O molecular adsorp-

tion species �at −0.51 eV�, the dissociated adjacent-dimer
H+OH �−2.32 eV�, and the same-dimer H+OH species
�−2.58 eV� increase in thermodynamic stability. The calcu-
lated activation energies �EA� for dissociation of molecularly
adsorbed H2O into same-dimer and adjacent-dimer H+OH
are very similar �0.28 and 0.26 eV, respectively�. This also
matches earlier calculations6 and agrees with the experimen-
tal finding2,5,8 that both structures �as asymmetric features
and C defects; Figs. 1�b� and 1�c�� are formed at room tem-
perature.

In order to understand how these two H+OH species dis-
sociate at elevated temperatures, we first consider an OH
fragment in isolation and categorize several plausible onward
reactions �Figs. 2�a�–2�d��. We find that OH dissociation by
interdimer H shift �Fig. 2�a�; transfer of hydrogen to an ad-
jacent dimer� with an activation energy of EA=1.67 eV is
kinetically preferred over OH dissociation by intradimer H
shift �Fig. 2�b�; EA=2.31 eV� and insertion of the complete
OH fragment into a Si-Si dimer �Fig. 2�c�; EA=1.81 eV�.

FIG. 1. �Color online� �a� Schematic valence structure diagrams
of the room-temperature adsorption and dissociation of H2O on
Si�001� leading to the adjacent- and same-dimer OH+H species.
These species are experimentally observed as C defects �Cd� and
asymmetric �as� features in �b� filled- and �c� empty-state STM
images. �d� The single-dimer H-Si-O-Si-H species reported �Ref. 3�
to form in the 575–675 K temperature range. Our schematic struc-
ture diagrams assume Si atoms at the vertices and use bold vertical
lines to indicate Si-Si surface dimers and dotted lines for the
backbonds.
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This finding is in contrast to the literature,11–14 which has
advanced the latter reaction �OH insertion� as the primary
route of wet surface oxidation without considering the inter-
dimer H shift as a possibility. Our discovery of this process
as a reaction channel with a smaller activation energy sug-
gests that OH dissociation and surface oxidation commence
at lower temperatures and by a dramatically different route
than previously thought. A fourth reaction, the OH switch
�Fig. 2�d�; transfer of the OH fragment from one dimer end
to another� presents a much lower activation barrier
�1.29 eV� and is therefore more easily activated than the in-
terdimer H shift. Note, however, that the initial and final
structures of the OH switch are equivalent; thus, we should
expect the switch to reversibly occur many times before the
OH fragment dissociates via the interdimer H shift.

The discussion in the previous paragraph considered an
isolated OH; however, we find that the same process occurs
for a dissociated H2O molecule �i.e., HO+H� with activation
energies slightly changed due to the presence of the second
hydrogen atom. Okano and Oshiyama5 previously ascribed
OH-switch reactions to C-defect transitions seen in
experiment.17 We additionally observe that interdimer H shift
is the rate-determining step of C-defect dissociation and wet
silicon surface oxidation. We have been able to directly im-
age such transitions in scanning tunneling microscopy ex-
periments conducted on a H2O-exposed Si�001� surface that
is resistively heated in situ to approximately 450�50 K.
Atomic resolution images were obtained using an Omicron
variable-temperature STM operating under ultrahigh vacuum
conditions at a base pressure of 2�10−11 mbar.18 All images
shown herein were acquired in pairs by using tip-sample bi-
ases of +2 V �empty state image� and −2 V �filled state�, a
current of 0.3 nA, and at a rate of approximately one image
pair every 3 min over a period of several hours. In the se-
quence of images, C defects and asymmetric features were

seen to undergo a variety of transformations. A representa-
tive large-scale image in filled and empty states is shown in
Figs. 2�e� and 2�f�: C defects and asymmetric features are
still present on the surface; two new features—the double-
dot and the T-shaped feature—are indicated by arrows. A
third, less-common S-shaped feature is presented in an inset
of Figs. 2�e� and 2�f�. All three originate from C defects by
interdimer OH dissociation.

The prototypical dissociation reaction of a C defect pro-
ceeds, as shown in Fig. 3. This sequence of three images
each for filled and empty states shows a C defect �Figs. 3�a�
and 3�b�� change into a double-dot feature �Figs. 3�e� and
3�f�� via an intermediate feature �Figs. 3�c� and 3�d�� that we
refer to as a switched C defect. The chemical processes that
are revealed in these images are outlined alongside in Fig.
3�g�. Following Refs. 4 and 8, the orientation of the C defect
in Figs. 3�a� and 3�b� is as shown in the adjacent schematic
with H and OH fragments located on the lower left- and
right-hand dimer ends, respectively. The threefold bonded
silicon atoms on the upper dimer ends present single dan-
gling bonds that typically image bright in STM. We have
highlighted such sites with gray shading in our valence sche-
matics to facilitate comparison with experiment. In the
switched C defect �Figs. 3�c� and 3�d��, the dangling bond of
the OH dimer �white arrow� has shifted to the lower dimer
end; this is best seen in the filled-state image. In other words,
an OH-switch reaction has taken place. In the next set of
images �Figs. 3�e� and 3�f��, the switched C defect has
changed into a double-dot feature. This occurs via the pos-
tulated interdimer H-shift reaction that produces in the first
instance �Fig. 3�g�� a single-bonded oxygen adatom and a
H-Si-Si-H monohydride dimer. This adatom species is meta-
stable relative to either form of the C defect and short lived,
being able to considerably stabilize �a further 1 eV� by in-
serting the oxygen atom into the Si-Si dimer bond. The two
dangling bonds of the resulting Si-O-Si dimer produce the

FIG. 2. �Color online� ��a�–�d�� Schematic outline of plausible
onward reactions of an OH fragment on Si�001� and calculated
activation energies �EA�. �e� Filled- and �f� empty-state STM images
of an H2O-exposed Si�001� surface in situ heated to approximately
450 K. Three features—T shaped �Ts�, S shaped �Ss�, and double
dot �dd�—arising from C-defect dissociation are indicated by ar-
rows. A dimer-vacancy �dv� defect is also seen, which is distinct
from the asymmetric �as� feature in the empty-state image.

FIG. 3. �Color online� Sequence of STM images in ��a�, �c�, and
�e�� filled state and ��b�, �d�, and �f�� empty state, showing a C
defect �labeled Cd� change into a switched C defect �swC�, which in
turn dissociates into a double-dot feature �dd�. �g� Schematic va-
lence diagram of the reaction steps revealed in these images. Gray
shading indicates the threefold bonded silicon sites that typically
image bright in STM.
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double-dot protrusion seen in the STM images �white arrow
in Figs. 3�e� and 3�f��; the adjacent monohydride dimer ex-
hibits a hallmark dark-dimer appearance. These assignments
are consistent with the Tersoff–Hamann simulated STM
images.19 An illustrative image simulation is included for the
double-dot feature as the insets of Figs. 3�e� and 3�f�.

The STM assignments are compelling in light of the cal-
culated energetics �Fig. 3�g��. Transitions between regular
and switched C defects occur very frequently �every few
STM frames� and proceed in both directions. The calcula-
tions explain why the two structures are of near equal forma-
tion energy �−2.32 vs −2.29� and the activation energies for
OH switching �1.29 and 1.26 eV, respectively� are readily
accessible at 450 K. In contrast, the onward reaction to the
double-dot feature occurs only sporadically over several
hours of imaging. This is explained by the much higher bar-
rier �1.54 eV� for OH dissociation by interdimer H shift. The
intermediate oxygen adatom species is short lived �and not
seen by STM� due to the low activation barrier �0.37 eV� for
the insertion of oxygen into the Si-Si dimer.20 An overall
0.7 eV energy gain relative to the C defect ensures that the
reverse reaction from double dot to C defect cannot occur,
which is in agreement with observation.

The two-dimer double-dot feature also has two compan-
ion features that are three dimers wide. Pairs of images in
Figs. 4�a�–4�d� and Figs. 4�e�–4�h� show C defects convert-
ing into a T-shaped �Ts� and an S-shaped feature �Ss�, respec-
tively. Both features are composed in filled state �Figs. 4�b�
and 4�f�� of a bright protrusion on the outer dimers and a
somewhat darker dimer in the center. The reaction diagram
in Fig. 4�i� explains how these features come about. As for
the double-dot feature, the formation starts out with the rap-
idly reversing OH-switch reaction between regular and
switched C defects, with OH dissociation by interdimer H
shift again being the rate-determining step. Depending on the
switching state of the C defect and the direction of the H
shift, the hydrogen atom may be transferred to one of three
sites �indicated by red arrows�. One of these sites produces a
monohydride and hence the double-dot feature as described
above, while the other two possibilities result in the S- and
T-shaped features. The H-shift activation barriers leading to
double-dot, S-shaped, and T-shaped features are very similar
�1.54, 1.59, and 1.65 eV, respectively�, which are consistent

with the formation of all three features at 450 K. We note in
passing that the same-dimer H+OH species �the asymmetric
feature in Figs. 1 and 2� is seen to undergo dissociation in
isolated instances. Preliminary analysis suggests that OH dis-
sociation by interdimer H shift is also the governing process
for the same-dimer H+OH dissociation with a calculated
barrier of 1.78 eV. This relatively high barrier is consistent
with its low likelihood experimentally at 450 K.

We are now in a position to comment on the missing link
between room-temperature water adsorption and the single-
dimer H-Si-O-Si-H motif observed at 575–675 K.3 Criti-
cally, dimer-to-dimer diffusion of hydrogen atoms is acti-
vated in this temperature range.21,22 As we have shown, the
C-defect dissociation processes at 450 K produce surface-
inserted oxygen atoms with two hydrogen atoms variously
distributed on surrounding dimers. For the case of the
double-dot feature, Fig. 5 outlines how the two hydrogen-
diffusion reactions result in the single-dimer H-Si-O-Si-H
species. At −3.52 eV, this species is much more stable than
the double-dot precursor �−3.01 eV�; thus, we would expect
H-Si-O-Si-H to form as soon as the relevant H-diffusion bar-
riers �1.69 and 1.94 eV� become thermally activated. Analo-
gous processes apply to S- and T-shaped features. Overall,
the adsorption of H2O and the subsequent steps of dissocia-
tion, incorporation, and recombination lead to structures of
increasingly lower energy.

In summary, a combination of STM experiments con-
ducted at elevated temperatures, guided by DFT reaction
path calculations, provides direct images of the water-

FIG. 4. �Color online� STM image sequences showing additional transformations of C defects �labeled Cd�: ��a�–�d�� The sequence on
the right-hand side shows the formation of a T-shaped feature �labeled Ts�. ��e�–�h�� On the left-hand side, an S-shaped feature �Ss� is
formed. The proposed reaction mechanism is shown in the center �i�: OH dissociation by interdimer H shift to a third dimer, commencing
with regular and switched C defects, produces T- and S-shaped features, respectively. Imaging threefold bonded silicon sites are shaded in
gray.

FIG. 5. �Color online� Outline illustration of temperature acti-
vated processes leading to the formation of the single-dimer H-Si-
O-Si-H species via a series of intermediate species of increasing
energetic stability. For each of the transitions shown, the rate-
determining activation energies �EA� are given.
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induced silicon surface oxidation. This leads to the identifi-
cation of a number of important intermediate species and
elucidates OH dissociation by interdimer H shift as a key
elementary reaction step. Knowledge of these fundamental
processes provides essential new input for large-scale models
such as kinetic Monte Carlo �e.g., Ref. 14� used to describe
the collective processes of wet silicon surface oxidation.
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