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We introduce a theoretical model for the investigation of the scattering properties by defects in semicon-
ducting carbon nanoribbons. The analysis of multichannel coherent transport in the presence of discontinuities
is performed by means of a numerical solver, which was previously shown to correctly predict the electronic
properties of carbon nanotubes, in some respects analogous to the nanoribbon. A scattering-matrix represen-
tation has been used to characterize the propagation and scattering of the periodic wave functions of carriers
traveling along the carbon nanoribbon. Results show that reflection of charge is important for the defect types
considered, i.e., atomic vacancy, potential deformation, and discontinuity caused by a 120° bifurcation. Re-
flection may be enhanced by interaction �resonance� between successive or periodic discontinuities. The de-
pendence of scattering on carrier energy, referred to the band edge, has also been investigated: Generally,
reflection decreases as carrier energy increases. The analysis suggests that the operation of devices employing
carbon nanoribbons, such as nanotransistors, may be quite affected by the presence of lattice defects.
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I. INTRODUCTION

The analysis of carrier transport in low-dimensional
systems1 is becoming of fundamental importance, as other
classes of materials are demonstrated to exist in a stable
state. Besides the well known class of one dimensional �1D�-
atomic structures, represented by carbon nanotubes �CNTs�,2
emerging freestanding two dimensional �2D� layers of
atomic crystal �graphene, single layer boron nitride, and
some others3� are now attracting great attention as they show
promise for material-based electronics and for optoelectronic
applications.4–9

The scientific relevance of graphene 2D crystal, made of
carbon atoms packed in a honeycomb lattice, has already
been pointed out in the literature:3 it features not only very
high crystal quality, but it is also so “flexible” as to form the
basic constituent of all materials of other dimensionalities,
such as zero dimensional fullerenes, 1D nanotubes, or 3D
graphite. Ideally, charges are allowed to travel without scat-
tering for thousands of interatomic distances: Electronic mo-
bility is typically very high and transport is nearly ballistic,
so that the analogy with a 2D-electron gas in a semiconduc-
tor becomes evident. Our analysis is focused on carbon na-
noribbon �CNR�, as this is an ideal candidate for the building
block of future electronics: An example is provided by
CNR-FET10–12 �field effect transistor�.

The theoretical gap still existing for a complete character-
ization of CNRs motivates the need for their accurate mod-
eling. A recent model, previously developed for the analysis
of CNTs,13 is revisited in order to make it suitable for CNRs.
Nanoribbons and nanotubes are made of the same hexagonal
carbon lattice, and this analogy is evident from their elec-
tronic properties.14–18 Many concepts of CNTs, such as
chirality, may be inherited in CNRs: A similar behavior of
the dispersion curves follows. As a consequence, CNR can
be metallic, semimetallic, or semiconducting, depending on
chirality and width.

The use of a multichannel coherent transport model,1

based on the formalism of transmission line theory, together
with an appropriate use of electromagnetic solvers, makes it
possible to explain and investigate many aspects of CNR
devices. Some interesting examples are provided by the cou-
pling of electronic wave functions with external applied elec-
tromagnetic fields, the dependence of charge distribution on
geometric parameters and on metal contacts, and charge scat-
tering due to the localized atomic defects, which is the sub-
ject of the present work.

Our simulations consider semiconducting CNRs typically
2–3 nm wide, that is, tens of atoms in the transverse section.
In the literature, we found just a few contributions to CNR
analysis including the fine detail of its periodic lattice: Usu-
ally, they consider small structures made of a few carbon
atoms in the transverse direction.10 In cases where large
structures are considered, some approximations are ex-
ploited, such as tight binding �TB�, Dirac, or effective mass
formulations: Although accurate in some respects, unfortu-
nately, these formulations imply loss of information about
the spatial distribution of the electronic wave functions,
which makes them unsuitable to the analysis of CNR discon-
tinuities.

In Sec. I, we present our potential-well model of the car-
bon lattice and perform a preliminary analysis, taking into
exam the case of 2D graphene. Section II is devoted to a
detailed explanation of our strategy for the CNR analysis: A
scattering-matrix formulation is proposed in order to de-
scribe the carrier transport in CNRs, which are seen as peri-
odic electronic waveguides. In Sec. III, we report results and
provide an insight on charge scattering due to the lattice
defects, which highlights, possibly, real advantages or limi-
tations on the use of CNR devices. We also report an ex-
ample of multibranch CNR that is likely to appear next, i.e.,
the counterpart of CNT Y junction.19 Final considerations are
made in Sec. V.
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II. THEORETICAL MODEL

A. Potential-well model of the two-dimesional-carbon lattice

We have previously developed quantum-mechanical mod-
els of carbon nanotubes by making use of our home-made
Schrödinger-Maxwell Nanowave solver, which exploits the
formal analogy between Schrödinger and Maxwell equations
in the phasor domain. This point of view allows to exploit
the intrinsic flexibility of effective numerical techniques in
order to solve problems that have been so far approached by
ad hoc or simplified models. Moreover, the analysis of the
electronic transmission properties of systems characterized
by multichannel coherent transport can take advantage of
transmission line theory, i.e., a mature technique for the
analysis of microwave circuits and devices, which is particu-
larly suited for the analysis of devices of high aspect ratios,
possibly loaded by active, periodic, anisotropic, and nonlin-
ear materials.

In the present work, the CNR is modeled as periodic di-
electric waveguide or, equivalently, as photonic crystal slab.
This kind of approach stems from our mentioned work in-
volving CNTs.13 In particular, CNTs have been simulated by
identifying their carbon atoms with potential wells, which
are modeled in the frequency domain by means of dielectric
posts. This is shown in Fig. 1, where the lattice vector is also
defined: Its length is 31/2 times that of the C-C bond2

��1.44 Å�. The electric field normal to the plane of the
lattice is identified, in our dielectric analogy, with the elec-
tronic wave functions.

The Schrödinger equation includes the potential profile
V�x ,z�+V0, which simulates the following carbon lattice:

�2� = −
2m0

�2 �E + V0 + V�x,z��� , �1�

where V0 is the constant potential between the wells, and
V�x ,z� the additional potential distribution of the periodic
wells. The choice of the potential profile is discussed in Ref.
13. Fortunately, it is possible to maintain for the CNR the
same model of the CNT. Indeed, this model is even better
suited to the CNR problem since this structure does not in-
volve curvature.

B. Dirac formulation of two-dimensional graphene

In the limit of very wide CNRs, the band gap approaches
zero and the same happens for the effective mass of charge
carriers within the gap valley. This limit can be tested by a
straightforward TB approach. As a consequence, the elec-
tronic properties of CNR become similar to those of 2D
graphene, where, in the neighborhood of the zero-gap points,

charge carriers at low energy E may be described as quasi-
particles, or Dirac fermions, by the following simple 2D
Dirac-like equation:3

�vF��1x̂ + �2ŷ� · k� = E� , �2�

where �1,2 are the Pauli matrices, k is the quasiparticle mo-
mentum, and vF is the Fermi velocity.

Figure 2 shows a comparison between the dispersion
curves obtained by TB calculation and by the present formu-
lation, for the case of 2D graphene.2 The agreement is evi-
dent, particularly for carrier energies just above the zero-gap
points. Differences appear as a consequence of the full analy-
sis of the periodic potential profile performed here. We note
that the Fermi velocity dE /dk at the zero-gap points is about
8�105 m /s.

In the present work, the Schrödinger representation �1�,
rather than the Dirac one, is maintained, as the numerically
found wave functions are defined everywhere in the E�k�
space and not only just above the zero-gap points. Moreover,
we consider “thin” CNRs, a few nm wide, for which band
gap and effective mass still have finite values.

III. ANALYSIS OF THE CARBON NANORIBBON

A. Definition of the carbon nanoribbon unit cell and excitation
of the nanoribbon

The CNR is considered as an ideal 2D-photonic crystal,
finite in the transverse direction, and periodic along its lon-
gitudinal axis �z�: This allows defining the unit cell of the
CNR periodic waveguide, of length L and width W, as shown
in Fig. 3�a�. In order to perform the simulations, one has to
establish the boundary conditions at the sides. In the litera-
ture, it is found that the edge effects on CNR dispersion
curves are relatively small.15 In the present work, we will not
modify the Hamiltonian in order to account for the different
nature of carbon bonds at the edge: Dirichlet conditions have
been chosen for the lateral boundary, i.e., ��0,z�=0 and
��W ,z�=0. This choice seems to be reasonable, as, in fact,
no lateral electronic tails or tunneling phenomena are consid-
ered.

In order to obtain the electronic dispersion curves, we
excite the CNR by means of “Floquet modes,”20 to be de-
fined below, impinging on its transverse section. A discrete
scattering-matrix representation20 in terms of these Floquet
modes is used in order to satisfy the Bloch condition, to
which we refer here as Floquet condition.

The chosen excitation section of the CNR is that of the
side of the thin homogeneous waveguide shown in Fig. 3�a�,
which is defined by Dirichlet conditions at x= �0,W�. The

Potential wells

This model
Carbon atoms

lattice vector
a

FIG. 1. The “potential well”
model of the carbon lattice. The
spatial distribution of the poten-
tial, i.e., deep and width of the
wells, has been set in accordance
to Ref. 13.
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number of spatial harmonics of the type sin�n� /W� of this
waveguide, required to correctly describe the Floquet modes
of the CNR, depends only on its width: The larger the CNR,
the higher the number of spatial harmonics. The expression
Floquet modes refer to the electronic wave functions of the
CNR, i.e., linear combinations of the spatial harmonics of the
homogeneous waveguide, mixed by the presence of the pe-
riodic potential wells, which satisfy the Floquet condition in
the z direction and, consequently, the Schrödinger equation.
This is, in fact, the harmonic mixing due to the presence of
the periodic array of potential wells. It is noted that the prob-
lem considered may seem to be 3D: In fact, it is 2D, as the
CNR is very thin with respect to the size of the unit cell.

B. Band gap of armchair carbon nanoribbons

As pointed out in many previous papers,21 the degree of
freedom constituted by the spin could be important for zig-
zag CNRs, where the conduction �bottom� and valence �top�
bands are mainly composed of edge states. However, it can
be disregarded for armchair CNRs, which have been ana-
lyzed in the present work.

CNRs with armchair shape edges on both sides are clas-
sified by the number of dimer lines Na across the ribbon
width.22 Following the same line of reasoning of Ref. 15, the
TB calculation can be corrected in order to account for the
hydrogen bonds at the edges: The main change follows from
the modification of the site energy, due to the difference be-
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FIG. 2. Graphene dispersion curves: Results obtained by TB and present model are compared for energies above the zero-gap point. The
simulated structure, i.e., the unit cell of graphene, is reported. Both 2D-surface and 1D-section comparisons are made.
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tween the carbon and hydrogen electronegativities. A choice
of the site energy=bulk energy+0.3t, where t is the “trans-
fer energy” ��−3 eV�, leads to a relatively small change of
the band gap, which is less than 10% for CNRs whose size is
in the range considered here, see Fig. 4. Moreover, the inver-
sion symmetry is broken and the Fermi energy is offset from
the zero bulk energy.

Other works,22,23 based on more rigorous first principles
calculations, show that the actual dispersion curves of arm-
chair CNRs differ from those obtained by TB model, in the
following ways:

�1� The hierarchy of the gap size � passes from ��Na=3p�
���Na=3p+1����Na=3p+2� to ��Na=3p+1����Na=3p����Na=3p+2�,
where p is an integer.

�2� A small gap rises also for CNR of the type �3p+2�.
Moreover, the difference from TB results observed in

Refs. 22 and 23 is a little stronger than that reported in Fig.
4, which is obtained following Ref. 15. The model of Refs.
22 and 23 and the model of Ref. 15 point, qualitatively, to
the same direction for what concern the difference �2� but to
the opposite direction with regard to the difference �1�, as, in
fact, the hierarchy of the gap size does not change in the
curves of Fig. 4. In any case, both models show that correc-
tions tend to decrease with CNR width and are fairly small
for CNRs as wide as those considered in this work.

In Table I, we report the gap obtained with the mentioned
different approaches, respectively, TB, TB corrected as in
Ref. 15, model of Ref. 23, and our method. Data are relative
to three CNRs of the polyperylene series,15 corresponding to
�3p�, �3p+2�, and �3p+1� types, with p=5, p=5, and p=6,
respectively. Despite the non-negligible difference between
the above models, band gap results show a substantial agree-
ment in the range of CNR widths considered in the present
work.

C. Scattering matrix

The direct excitation of the CNR by its electronic wave
functions gives us the unique opportunity to analyze the ef-
fect on charge transport of discontinuities, local potential
changes, lattice defects, bending, graft of new branches,
change of lattice orientation, etc. The local potential energy
seen by electrons �holes� traveling along the CNR can be
varied in order to locate the carrier in an arbitrary position
above the bottom �below the top� of the conduction �valence�
band. This is done by simply adjusting the potential profile in
the model so as to represent the incremental energy. In this
way, the numerical simulations give an insight on the depen-
dence on energy of all the above phenomena �propagation,
reflection, and scattering�.

Electron wavefunction at the bottom of the conduction band

a)

b)

Unit
cell

Excitation port
Cross section

of a homogeneous waveguide

x

y

z

L

W

FIG. 3. �a� Side excitation of
the CNR �only the unit cell is
shown�. �b� Example of simulated
electronic wave function. Dirich-
let conditions impose vanishing of
the wave function at the side
boundary.
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FIG. 4. Comparison between
band gaps of armchair CNRs cal-
culated by TB approach and by
TB with edge correction: curves
are plotted as function of Na.
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Moreover, this approach fits very well the features of
nano-FET devices,10–12 where carrier energy is controlled
and continuously varied by means of a “gate” electrode. In
nano-FETs, the channel conductivity is controlled by varying
the probability of charge tunneling: Lattice defects and dis-
continuities along the channel are expected to strongly affect
the device operation and performance. In the following, we

show the derivation of the scattering matrix Ŝ of an arbitrary
length of CNR containing a discontinuity. A brief summary is
provided in Fig. 5. Let us chose an energy level for an elec-
tron traveling just above the conduction band edge. It was
stated before that an adequate number of spatial harmonics,
say, N, of the homogeneous waveguide, whose cross section
is shown in Fig. 3, is required in order to describe the Flo-
quet modes of the CNR, i.e., to account for the mixing of
harmonics due to the potential wells. An important point to
be highlighted is that, even though N may actually be rela-
tively small, we may need to excite the unit cell with many
more harmonics, two times N or more, in order to ensure that
any residual coupling between harmonics is accounted for.
This operation has to be carried out at least once as a pre-
processing step.

The excitation set fixed by the choice of N is then used
also in order to characterize a finite piece of CNR made of an
arbitrary �compatibly with the computational cost� number of
unit cells and containing defects. The whole structure is
simulated as a two-port network: 2 is the number of physical
ports, and 2N that of virtual and actual ports. The solution of
the eigenvalue problem arising from the Floquet condition
applied to the unit cell yields, at any chosen energy, the new

model basis of Floquet modes, which we use as “reference
system” for any further computation.

Indicating by Su the scattering matrix of the unit cell in
the representation of the spatial harmonics, and by a, b the
incident and reflected traveling-wave amplitudes of the har-
monics, we have

�b1

b2
� = Su�a1

a2
� = �S11

u S12
u

S12
u S22

u ��a1

a2
� , �3�

where

b1 = �b1,1,b1,2 . . . b1,N�, b2 = �b2,1,b2,2 . . . b2,N� ,

a1 = �a1,1,a1,2 . . . a1,N�, a2 = �a2,1,a2,2 . . . a2N� .

The charge wave function at the beginning of the unit cell,
with reference to Fig. 3, is given by

��x,z = 0� = �
1	n	N

�a1,ne−iknz 1
	kn

sin
n�

W
x�

+ b1,neiknz 1
	kn

sin
n�

W
x��

z=0

, �4�

where the factor 1 /	kn is used to normalize the scattering
parameters, n is an integer, and

kn =	2m0

�2 �E + V0� − �n�/W�2 if n�/W � 	E + V0

or

kn = − i	2m0

�2 �E + V0� − �n�/W�2 otherwise.

Before imposing its periodic condition, Eq. �3� is linearly
transformed as follows:

TABLE I. CNR gap obtained with four different approaches.

Na TB
�eV�

TB edge correction
as in Ref. 15

�eV�

Model of Ref. 23
�eV�

Our model
�eV�

15 0.67 0.72 0.49 0.65

17 0 0.02 0.11 0.09

19 0.55 0.52 0.6 0.5

1 2

1 2

ikLe−⎡ ⎤ ⎡ ⎤
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b a
=

a b

( ) ( ) ( )2 2 2 2|Nx N NxN NxN
− +⎡ ⎤ ⎡ ⎤≡⎣ ⎦ ⎣ ⎦M M M

jik Lu
j je± ±⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦S M Mm

ˆ

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠⎝ ⎠
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0 I 0 I
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22
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Floquet condition
(eigenvalue problem)

Eigenvectors ≡ Floquet modes ≡ columns of M:

The j-th column of M± is the
Floquet mode with propagation

S2Nx2N Ŝ 2Nx2N

ˆ
1b ˆ
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ˆ1a ˆ2a

ˆˆ,a b : wave amplitudes of the
Floquet modes
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FIG. 5. Steps needed to obtain

the scattering matrix Ŝ of a CNR
containing a discontinuity, in
terms of Floquet modes.
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�b1

a1
� = T�Su�
0 I

I 0
��a2

b2
� , �5�

where I �N�N� is the identity matrix and

T�X� = T
�X11 X12

X21 X22
��

= � − X12
-1X11 X12

−1

X21
u − X22X12

-1X11 X22X12
−1� T�T�X�� = X .

�6�

Imposing the Floquet condition means

�b1

a1
� = T�Su�
0 I

I 0
��a2

b2
� = e−ikL�a2

b2
� , �7�

so that the Floquet modes are found from the solution of the
following eigenvalue problem:

�T�Su�
0 I

I 0
� − e−ikjL� · M j = 0

For example, Eq. �4� for the jth Floquet mode becomes

� j�x,z = 0� = �
1	n	N

��Mn,j + Mn+N,j�
1

	kn

sin
n�

W
x�� ,

�8�

where the columns of the matrix M are the eigenvectors.
Indicating with S the scattering matrix of a finite piece of

CNR containing the following localized defect:

�b1

b2
� = S�a1

a2
� , �9�

it is possible to derive the new scattering matrix Ŝ, referred
to the Floquet basis, as

Ŝ = T�M−1T�S�
0 I

I 0
�M
0 I

I 0
�� ,

�b̂1

b̂2

� = Ŝ�â1

â2
� , �10�

where â and b̂ are the vectors of amplitudes of the Floquet
modes.

IV. RESULTS

A. Nanoribbon discontinuities

In the present work, we are dealing with three different
types of CNR discontinuities: �a� vacancy defect, which is
simulated by removing one of the potential wells of the
CNR; �b� local potential deformation, which we mimic by
varying the diameter of a potential well; �c� Y junction, that
is, the 120° bifurcation. Our model provides a direct way to
analyze the effects of localized lattice defects, i.e., �1� the
amplitude and phase of transmission and/or reflection coef-

ficients of electronic wave functions �Floquet modes�; �2� the
mutual coupling between wave functions of any bands or
subbands.

The analysis is performed under the most general condi-
tion, i.e., the multiband situation. However, since the energy
range �E under study, shown in Fig. 6, is chosen such that
only the fundamental band is propagating �above cutoff�, just
item 1 referred to the same band is really significant. Floquet
modes that correspond to carriers belonging to the subbands
are below cutoff and rapidly attenuate as they propagate.

It is observed that the S2N�2N
u matrix of the unit cell is

typically made of distinct blocks corresponding to distinct
and noninteracting groups of spatial harmonics. As a conse-
quence, the analysis of the effect of a CNR discontinuity, for
example, on the propagating Floquet mode, can be simplified
just by considering the appropriate subblock of the S matrix
�9�, which involves a number N�
N of harmonics.

Alternatively, it is possible to excite the structure directly
containing the discontinuity by only the N� harmonics above:
In this case, the advantage of a simpler excitation is offset by
the necessity of placing the excitation ports far away from
the discontinuity and, consequently, of increasing the com-
putational domain, in order to make the attenuated Floquet
modes inaccessible, which are not well described by only N�
harmonics. The best choice depends of many factors, includ-
ing, in particular, the nature of the discontinuity, which may
bring about more or less coupling between modes, and the
features of the solver used, for example, the supported aspect
ratio and possible limitations to the maximum number of
allowed harmonics.

B. Numerical test: Unperturbed nanoribbon

Although an experimental validation is not currently
available, our results are believed to be quantitatively reli-
able as the model was previously tested by comparing the
dispersion curves of CNTs of different chiralities, for energy
values around the band gap, with TB results, and by includ-
ing challenging complications, such as band distortion due to
a strong applied electric field and metal contacts.

Before proceeding with our main results, a simple test
was carried out in order to demonstrate numerical self-
consistency. It is actually not trivial to verify that, for a rela-
tively long piece of unperturbed CNR, carriers are not re-
flected, as instead it may be expected from cumulative loss
of accuracy of the solver and from truncation of the number
of harmonics N to a finite value.

E

EG=0.5 eV

EC

EV

∆E~0.21eV

Sub-bands

Conduction-band

CNR ~2nm wide

FIG. 6. Ec and Ev are the conduction and valence band energies,
respectively.
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In fact, Fig. 7 shows that the transmission probability
�amplitude square� from “Port 1” to “Port 2” of a CNR with
Na=15 is nearly unity over the whole energy range consid-
ered �this range refers to the bottom of the conduction band,
as shown in Fig. 6�. The numerical self-consistency of the
approach is then confirmed.

C. Examples

In the following, the scattering properties of the afore-
mentioned three types of discontinuities are reported.

Figure 8 shows the transmittivity of the electrons travel-
ing across a defect formed by an atomic vacancy. The zero
energy corresponds to the bottom of the conduction band: As
expected, at this point, transmission abruptly drops; on the
contrary, i.e., for carriers traveling at the higher energies, the
discontinuity is shown to have a weaker effect on the scat-
tering of the wave function. This also seems quite reason-
able.

A similar energy dependence is found, in Fig. 9, for a
defect modeled as a modified potential well, i.e., a potential

well with an increased radius. Figure 9 shows, in addition,
the dependence of the transmittivity on the defect radius for
a fixed carrier energy.

Figure 10 shows a Y junction, with 120° rotational sym-
metry: This choice preserves the structure of the lattice with-
out deformation, since the same angle is formed by the sides
of the carbon hexagons. In this case, we report the fraction of
reflected charge at the discontinuity.

In general, we observe that carriers experience a non-
negligible reflection, at least 10% �amplitude square�, even
for small discontinuities. This is not surprising if we consider
that the CNR is a periodic waveguide for carrier transport,
where propagation takes place through constructive interfer-
ence between the plane waves scattered by carbon atoms, so
that even a small break of the lattice periodicity produces a
considerable effect. In fact, experimental evidence shows
that missing carbon atoms in the crystal lattice cause strong
scattering.24 These effects may become critical in the fabri-
cation of real CNR devices, where particular care ought to be
taken of the crystal quality, as it may strongly impact on
device performance. It is noted, however, that the currently
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FIG. 7. Numerical test: simulation of a length of CNR, formed by 14 unit cells. The transmittivity is nearly unity over the whole energy
range analyzed.
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FIG. 8. Transmittivity through a vacancy defect, as function of the electron energy.
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obtainable CNRs, wider than 10–15 nm, ought to be less
sensitive to single localized defects. As an example, consid-
ering a vacancy in a CNR of half of the simulated width W,
the transmittivity of carriers with a 0.2 eV energy reduces
from 90% to less than 40%.

Finally, it is noted that the present approach can be ap-
plied to very long and complex structures containing local-
ized defects or discontinuities: Each unperturbed length of

CNR is simply represented by the matrix Ŝ of a cascade of
unit cells and any discontinuity can be characterized as de-
scribed above. The scattering parameters of the whole struc-
ture follow from the cascade of the scattering matrices of its
substructures. An interesting example is given by the inter-

ference effects caused by a pair of cascaded vacancies lo-
cated along the longitudinal symmetry axis of the CNR: Fig.
11 shows the transmission probability of electrons through
the vacancies as a function of their distance D and of the
carrier energy. Maxima and minima correspond to the con-
structive and destructive interferences: They are spaced by a
quarter of carrier wavelength. As expected, at higher ener-
gies, the wavelength decreases, the standing wave ratio de-
creases, and carriers experience an increased transmittivity.

It is noted that the cooperating effect of two vacancies
may produce complete electronic transmission or, on the
other hand, it may strongly emphasize the wave function
reflection.
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FIG. 10. Reflectivity of a 120° bifurcation, as function of the electron energy.
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Table II reports the reflectivity of vacancy defects offset
in the x direction from the symmetry axis of the CNR, for
two values of carrier energy. The reflection is generally
higher for vacancies placed along the CNR axis. As shown in
the table, the offsets from the axis are taken as multiples of
the lattice vector a.

In Fig. 12, we report the transmittivity through a pair of
cascaded vacancy defects, as a function of �, which is the
phase retardation of the propagating Floquet mode in travel-
ing between the two vacancies. The sharper curve corre-
sponds to the case of vacancies placed along the CNR axis;
the other curve is obtained by placing one of the two vacan-
cies a distance a from the axis. In the latter case, the result-
ing “resonant cavity” is not symmetric and its resonance can-
not provide complete carrier transmission.

D. Periodic impurities in carbon nanoribbons

In this section, we include the results about periodic de-
fects in armchair CNRs. In this way, we provide an example

of the expected behavior of charge transport in CNR with a
given concentration of substitutional impurities, showing the
transport dependence on the strength of the impurity poten-
tial. As already described above, the analysis is carried out
by employing an idealized impurity, which is simulated by
means of an increased area of the corresponding potential
well.

The presence of impurities is shown to affect the unper-
turbed dispersion curves in that they open new band gaps,
whose width increases with the strength of the perturbing
defects expressed by the area of their potential well. The new
band gaps are associated with forbidden energy levels for
carrier propagation, or, considering a finite length of CNR, to
strong dips of transmission.

In Fig. 13, we compare the dispersion relation of an un-
perturbed CNR �Na=19� to that of a perturbed CNR �Na
=19�: The latter is described by a supercell with 266 carbon
atoms containing a substitutional impurity at its center,
which corresponds to having a defect concentration of
�0.38%. Energies lie, as usual, just above the bottom of the
conduction band. We consider three different values of the
defect size, showing how strongly this affects the width of
the opening band gaps. As expected, resonances are centered
at energies corresponding to k�E�Ls=n�, where Ls is the
length of the supercell and n is an integer: This “electronic”
Bragg condition implies that the interference of wave func-
tions, due to the periodic defects, constructively acts, in such
a way that the carrier reflection along the CNR is maximized.
As pointed in Ref. 25, the substitutional atoms act as scatter-
ing centers for the electronic transport along the nanorib-
bons, reducing the transmittance channels. This produces a

TABLE II. Reflectivity of vacancy defects offset in the x direc-
tion from the symmetry axis of the CNR for two values of carrier
energy.

Offset 0 a 2a 3a

Reflectivity
�E=0.205 eV�

0.091 0.019 0.048 0.083

Reflectivity
�E=0.055 eV�

0.248 0.021 0.156 0.128
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FIG. 11. Transmittivity through a pair of vacancies positioned along the CNR axis. The surface is plotted with respect to the carrier
energy and distance between vacancies.
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reduction of the free mean path for carriers, analogous to the
drop of mobility in doped CNTs.26

V. CONCLUSION

We have discussed the effects of discontinuities on carrier
propagation in carbon nanoribbons, for different types of lat-
tice defects. We provide an estimation of the scattering prop-
erties of electron wave functions, i.e., reflectivity and trans-
mittivity, and quantify their dependence on carrier energy.
Results suggest that, due to the resonant nature of the carrier

propagation in the periodic waveguide formed by the CNR,
even small defects can produce appreciable reflection.

Our analysis enables the investigation of the operation of
CNR-FETs under the realistic condition of imperfect channel
transport. Additionally, we analyze a Y junction, which may
be an important example of a multibranch circuit, realized on
the nanonoscale, for electronic devices of future generation.
As an example of the potential utility of the presented model,
we also investigate the scattering properties of both periodic
and aperiodic cascaded defects, where “resonant” behavior
may occur under some conditions.
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FIG. 12. Transmission probability for carriers of energy 0.055 eV through a pair of vacancy defects, as a function of the phase retardation
�=kD of the propagating Floquet mode. The solid curve results from two vacancies along the CNR axis, and the dashed one is obtained with
one of the two vacancy offsets from the axis by a, as shown in the inset.
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