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Quantum transport of Dirac electrons in graphene in the presence of
a spatially modulated magnetic field
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We have investigated the electrical transport properties of Dirac electrons in a monolayer graphene sheet in
the presence of a perpendicular magnetic field that is weakly and periodically modulated along one direction.
We find that the Landau levels broaden into bands and their width oscillates as a function of the band index and
the magnetic field. We determine the o, component of the magnetoconductivity tensor for this system, which
is shown to exhibit Weiss oscillations. We also analytically determine the asymptotic expressions for o,,. We
compare these results to recently obtained results for electrically modulated graphene, as well as those for a
magnetically modulated conventional two-dimensional electron gas (2DEG) system. We find that in the mag-
netically modulated graphene system considered in this work, Weiss oscillations in o, have a reduced ampli-
tude compared to that in the 2DEG but are less damped by temperature, while they have a higher amplitude
than in the electrically modulated graphene system. We also find that these oscillations are out of phase by 7

with those of the electrically modulated system while they are in phase with those in the 2DEG system.
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I. INTRODUCTION

The successful preparation of the graphene monolayer has
allowed the possibility of studying the properties of electrons
in graphene.! The nature of quasiparticles called Dirac elec-
trons in these two-dimensional (2D) systems is very different
from those in the conventional two-dimensional electron
gas (2DEG) realized in semiconductor heterostructures.
Graphene has a honeycomb lattice of carbon atoms. The qua-
siparticles in graphene have a band structure in which elec-
tron and hole bands touch at two points in the Brillouin zone.
At these Dirac points, the quasiparticles obey the massless
Dirac equation. In other words, they behave as massless
Dirac particles leading to a linear dispersion relation €,=vk
(with a characteristic velocity v=10° m/s). This difference
between the natures of quasiparticles in graphene and of
those in the conventional 2DEG has given rise to a host of
new and unusual phenomena such as anomalous quantum
Hall effects and a 7 Berry phase. Earlier, it was found that if
the conventional 2DEG is subjected to artificially created
periodic potentials in the submicrometer range, it leads to the
appearance of Weiss oscillations in the magnetoresistance.
This type of electrical modulation of the 2D system can be
carried out by depositing an array of parallel metallic strips
on the surface or through two interfering laser beams.’

Besides the fundamental interest in understanding the
electronic properties of graphene, there are also serious sug-
gestions that can serve as the building block for nanoelec-
tronic devices.® Since Dirac electrons cannot be confined by
electrostatic potentials due to Klein’s paradox, it was sug-
gested that magnetic confinement should be considered.” The
technology for this already exists as the required magnetic
field can be created by having ferromagnetic or supercon-
ducting layers beneath the substrate.’

In conventional 2DEG systems, electron transport in the
presence of magnetic barriers and superlattices has continued
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to be an active area of research.’ Recently, electrical trans-
port in graphene in the presence of electrical modulation was
considered and theoretical predictions were made.!® Along
the same lines, in this work, we investigate low temperature
magnetotransport of Dirac electrons in a single graphene
layer subjected to a one-dimensional (1D) magnetic modula-
tion. The perpendicular magnetic field is weakly and periodi-
cally modulated along one direction.

II. FORMULATION AND ENERGY SPECTRUM

We consider two-dimensional Dirac electrons in graphene
moving in the x-y plane. The magnetic field (B) is applied
along the z direction perpendicular to the graphene plane.
The perpendicular magnetic field B is weakly and periodi-
cally modulated along one direction, such that B=[B
+B, cos(Kx)]Z. Here, B, is the strength of the magnetic
modulation. In this work, we consider the modulation to be
weak, such that By<<B. We consider the graphene layer
within the single electron approximation. The low energy
excitations are described by the 2D Dirac-type Hamiltonian
(here, A=c=1)"10-11

H=v5-(=iV+eA). (1)

Here, 7={0",7,} are the Pauli matrices and v characterizes
the electron velocity. We employ the Landau gauge and write

the vector potential as A =[0,Bx+(By/K)sin(Kx),0], where
K=2m/a and a is the period of the modulation. The Hamil-
tonian given by Eq. (1) can be expressed as

- - - By .
H=-ivo-V+evo,Bx+ evcryEosm(Kx). (2)
The above Hamiltonian can be written as
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H=Hy+H', (3)
where H is the unmodulated Hamiltonian given as
Hy=—iv5-V+ eva,Bx

and
- B
H' =ev O'y}OSiIl(KX).

The Landau level energy eigenvalues without modulation are
given by

e(n) = wg\e"; (4)

where n is an integer and w, =v\2eB. As has been pointed
out,'” the Landau level spectrum for Dirac electrons is sig-
nificantly different from the spectrum for electrons in con-
ventional 2DEG, which is given as e(n)=w.(n+1/2), where
w.=eB/m is the cyclotron frequency.

The eigenfunctions without modulation are given by

ek (— i®,_[(x+xo)/1] )
W, ()= 5
SO= 00 @l ©
where
e—x2/2
D, (x) = =———==H,(x), (6)
V2" ! \"7:

where I=\1/¢B is the magnetic length, x,=/%,, L, is the y
dimension of the graphene layer, and H,(x) are the Hermite
polynomials. Since we are considering weak modulation By
< B, we can apply the standard perturbation theory to deter-
mine the first order corrections to the unmodulated energy
eigenvalues in the presence of modulation,

o Lv
Az, = f dx f AW (DH WO, (1), (7)
J _ 0 y d
with the result

Moz, =2 cos(Kxgh2\ne™ (L, 1) = L,(w)]}.  (8)

where wy= If , v=K?I?/2, and L,(v) are the Laguerre poly-
nomials. Hence, the energy eigenvalues in the presence of
modulation are

e(n.k,) = e(n) + Ae, ;= w,\n+ o cos(Kxo)G,,  (9)

with G,,(u)—z\"e "_[Ln_l(u)—Ln(u)]. We observe that the de-
generacy of the Landau level spectrum of the unmodulated
system with respect to k, is lifted in the presence of modu-
lation with the explicit presence of k in x;. The n=0 Landau
level is different from the rest as the energy of this level is
zero and electrons in this level do not contribute to the dif-
fusive conductivity, which will be calculated in Sec. III. The
rest of the Landau levels broaden into bands. The Landau
bandwidths ~G,, oscillate as a function of n since L,(u) are
oscillatory functions of the index n.

Before we begin the calculation of electrical conductivity,
it is necessary to discuss the regime of the validity of the
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perturbation theory presented above. For large n, the level
spacing given by Eq. (4) goes as [\n V(n- 1)]—>a)g2\,1
and the width of the nth level given by Eq. (8) goes as

2 172 . . .
wlo(rll . There is, therefore, a value of n at which the width

becomes equal to the spacing and the perturbation theory is
no longer valid. This occurs when l’lmax—\Q.’JT By where B’
=L2—O 0054 T for a=350 nm. For a fixed electron density
and the period of modulation, this suggests the maximum
value of the magnetic modulation B, above, in which it is
necessary to carry out a more sophisticated analysis.

III. ELECTRICAL CONDUCTIVITY WITH PERIODIC
MAGNETIC MODULATION

To calculate the electrical conductivity in the presence of
weak magnetic modulation, we use the Kubo formula to cal-
culate the linear response to an applied external field. In a
magnetic field, the main contribution to Weiss oscillations
comes from the scattering induced migration of the Larmor
circle center. This is diffusive conductivity and we shall de-
termine it by following the approach in Refs. 10 and 12,
wherein it was shown that the diagonal component of con-
ductivity o, can be calculated by the following expression
in the case of quasielastic scattering of electrons:

Oy=7 sz(Eg)[l JEJHEY@D?,  (10)

where L, and L, are the dimensions of the layer, S= k;—T is the
inverse temperature with kz as the Boltzmann constant, f(E)
is the Fermi-Dirac distribution function, 7(E) is the electron
relaxation time, and { denotes the quantum numbers of the
electron eigenstate. The diagonal component of the conduc-
tivity o, is due to the modulation induced broadening of the
Landau bands and, hence, it carries the effects of modulation,
in which we are primarily interested in this work. o, does
not contribute, as the component of velocity here in the x
direction is zero. The collisional contribution due to impuri-
ties is not taken into account in this work.

The summation in Eq. (10) over the quantum numbers ¢
can be written as

0

> . (11)

277[2 n=0

N |

dk, >, =

L L» e 27TL n=0

The component of velocity required in Eq. (10) can be cal-
culated from the following expression:

J
vf,: Eys(n,ky). (12)

Substituting the expression for &(n,k,) obtained in Eq. (9)
into Eq. (12) yields

=

y

s1n(Kx0)G (u). (13)

With the results obtained in Eqgs. (11)—(13), we can express
the diffusive contribution to the conductivity given by Eq.
(10) as
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FIG. 1. The dimensionless conductivity vs inverse magnetic
field.

=A,D, (14)
where
Ay=2w5e’ 7B, (15)

and the dimensionless conductivity ® is given as

—u ng (En) 2
®=2e EO L5 + PLLm1 0~ LGP, (16)
where g(E)=exp[B(E—Ef)] and Ey is the Fermi energy.

In Fig. 1, we plot the dimensionless conductivity given by
Eq. (16) as a function of inverse magnetic field at the tem-
perature T=6 K and electron density n,=3X 10! cm™.
The dimensionless magnetlc field is mtroduced which is
given as b—;, where B’—J In the region of high mag-
netic field, we can see Shubnikov—de Haas (SdH) oscillations
superimposed on the Weiss oscillations.

IV. ASYMPTOTIC EXPRESSIONS

To get a better understanding of the results of Sec. III, we
will consider an asymptotic expression of conductivity
wherein analytic results in terms of elementary functions can
be obtained by following Ref. 10. We shall compare the
asymptotic results for the dimensionless conductivity ob-
tained in this section to the results obtained for a magneti-
cally modulated conventional 2DEG system. We shall also
compare these results to those of the graphene that was sub-
jected only to the electric modulation.

The asymptotic expression of dimensionless conductivity
can be obtained by using the following asymptotic expres-
sion for the Laguerre polynomials:

1
exp—u/Z L”(M) N /?Cos(2\"ﬁ— g) . (17)

NmNnu

Note that the asymptotic results are valid when many Landau
levels are filled. We now take the continuum limit
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1IEV < (L[
n— —(—) . > _><—> J EdE (18)
2\ v n=0 1% 0
to express the dimensionless conductivity in Eq. (16) as the
following integral:

ot (l)de
_\'@77 % 0

Xsin2(1/2\"%)sin2<2v%— jf), (19)

E*3(E)
[g(E)+ 1]

where u=27>/b.

Now, assuming that the temperature is low such that !
<Ey and replacing E=E +s/3"!, we rewrite the above inte-
gral as

4p*a 2( 77) “ dse® (217]) i 2ma )
=———sin’| — ——sin’| — - —
uvb° B (e +1)

b 4 vbB
(20)

p

where pz%szaz \e“?nea is the dimensionless Fermi mo-
mentum of the electron. To obtain an analytic solution, we
have also replaced E by E in the above integral except in
the sine term in the integrand.

The above expression can be expressed as

8p*a . L[\ ([~ ds . ,(2mp w 2ma
® = ——sin’| — ————sin’| —— - —+ ——s
vb B p/J)_ cosh™(s/2) b 4 uvbp

21

The above integration can be performed by using the follow-
ing identity:?

fx J cosax am 22)
o “cosh? Bx 2 sinh(am2B)’

ERTE

_WZbMTDS“] P {1 A TD

+2A<T1>sm [277(12 ;)}} (23)
D

(x—)

— 2xe™*

with the result

where kBTD—— I _4ma ond Alx)=

47%a’ Tp~ vbB> 9mh

V. COMPARISON TO MAGNETICALLY MODULATED
CONVENTIONAL TWO-DIMENSIONAL
ELECTRON GAS SYSTEM

We start by comparing the energy spectrum and velocity
expression obtained in Egs. (9) and (13) to similar expres-
sions for the conventional 2DEG wherein the electron spec-
trum is parabolic.’ For the energy spectrum, we find that the
Landau level spectrum is significantly different from that of
standard electrons in the conventional 2DEG. The first term
in Eq. (9), wg\e‘“‘n, where wg:v\r’ﬁ, has to be compared to
w.(n+1/2), where w,=eB/m, for standard electrons. The

195421-3



M. TAHIR AND K. SABEEH

10700 728 L R
0.06 |

0.05

0.04 |
s 0.03F
0.02 |

0.01 |

0.00 FaddWWWW¥W' . 7 M, YV
0.00 0.01 0.02 0.03 0.04 0.05
B//B

FIG. 2. The dimensionless conductivity vs inverse magnetic
field. Magnetically modulated graphene (solid curve); conventional
2DEG (dashed curve).

modulation effects are in the second term, where the essen-
tial difference is in the structure of the function G,(u)

= \z'f—:u/z[Ln_l(u)—Ln(u)]. We find that there are essentially
two basic differences: First, for Dirac electrons, we have a
difference of two successive Laguerre polynomials, whereas
we had the sum of the Laguerre polynomials in the corre-
sponding term for standard electrons in 2DEG. Second, the
expression for Dirac electrons is multiplied by the square
root of the Landau band index \n that was absent in the
expression for standard electrons. The above mentioned dif-
ferences in the G,(u) function cause the velocity expression
for the Dirac electrons given by Eq. (13) to be different from
that of the standard electrons.

As expected, these differences in the energy spectra and
velocities lead to different results for the diffusive conduc-
tivity in the two cases. We now compare the results obtained
for the asymptotic expression of the diffusive conductivity
o,,. To make this comparison possible, we first express @
given by Eq. (23) as

] sinz(z>F, (24)
p

where F:{l—A(T—TD)+2A(T—TD)sin2[27T(’,f—é)]}. We now com-
pare the results for dimensionless conductivity obtained in
Eq. (24) to those presented in Eq. (18) of the first work cited
in Ref. 9. We find that the result for the graphene (Dirac
electrons) system differs from that of the conventional 2DEG
(standard electrons) system by a factor of ;zfi—bsin2(;—7). For
the system under consideration p ~ 50 and, in this limit, if we
take sinz(f)ﬂ(;l)z, it yields the factor ﬁ Hence, we con-
clude that the amplitude of the oscillations in the conductiv-
ity will be reduced by this factor in the magnetically modu-
lated graphene system compared to the conventional 2DEG
under the same conditions. For the parameters considered in
this work, the conductivity is larger by a factor of =30 (at
magnetic field of 0.5 T) in the 2DEG system compared to
that for graphene. In Fig. 2, we plot the dimensionless con-
ductivity versus inverse magnetic field for magnetically
modulated graphene and 2DEG. Note that in Fig. 2, the di-
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mensionless conductivity for conventional 2DEG is rescaled
by a factor of 0.023.

The temperature scale for the damping of Weiss oscilla-
tions in graphene can be obtained from Eq. (23) and is char-
acterized by the T, given above, while the characteristic
temperature for 2DEG is given in the first work cited in Ref.

9 as kyT,=(hw./47%)aky. Comparing Ty, and T,, we obtain
T,

a

T—D:Uf where v is the Fermi velocity in 2DEG. This shows
that Weiss oscillations in the graphene are less damped with
temperature compared to 2DEG due to the difference in
Fermi velocities in the two systems.

VI. COMPARISON TO ELECTRICALLY MODULATED
GRAPHENE SYSTEM

We will now compare the results obtained in this work to
the results obtained in Ref. 10 for the case of the electrically
modulated graphene system. We will first compare the en-
ergy spectra in the two cases. The difference in the energy
spectra due to the modulation effects was obtained in Eq. (8).
If we compare this result to the corresponding expression for
the electrically modulated case, we find the following differ-
ences: First, in the magnetic modulation case, we have a
difference of two successive Laguerre polynomials, whereas
we had the average of two successive Laguerre polynomials
in the electric case. Second, in the magnetic modulation case,
the energy eigenvalues are multiplied by the square root of
the Landau band index yn that was absent in the expression
for the electric case. These differences cause the velocity
expression for the Dirac electrons given by Eq. (13) to be
different from that of the electrons in the electrically modu-
lated system.

We now compare the expressions for dimensionless con-
ductivity @ given by Eq. (23) to the electrically modulated
case [Eq. (22) in Ref. 10]. We find that in the magnetically
modulated case, we have sin? x functions in place of cos? x
functions for the electric case, which results in the oscilla-
tions being out of phase in the two cases. We also find that
the amplitude of the oscillations in the magnetic case are
larger by a factor of % compared to the electrically modu-
lated case. For the parameters considered in this work, the
conductivity is larger by a factor of =2 (at magnetic field of
0.5 T) in the magnetically modulated graphene system com-
pared to the electrically modulated one.

An exact expression of the dimensionless conductivity ®
for the electric and magnetic modulated graphene systems is
shown in Fig. 3 as a function of the inverse magnetic field at
temperature T7=6 K, electron density n,=3 X 10! ¢cm™2, and
period of modulation a=350 nm. In Fig. 3, we can clearly
see that the Weiss oscillations in the dimensionless conduc-
tivity are enhanced, in which they have a larger amplitude, in
the magnetically modulated case compared to the electrically
modulated case for the same parameter values. Furthermore,
we note that the oscillations in the magnetic and electric
modulated cases have a 7 phase shift. We also observe that
in the region of high magnetic field, SdH oscillations are
superimposed on the Weiss oscillations. The oscillations are
periodic in 1/B and the period depends on electron density
as \Z in both the magnetic and electric modulated cases.
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FIG. 3. The dimensionless conductivity vs inverse magnetic
field. Magnetic modulation (solid curve); electric modulation
(dashed curve).

The characteristic damping temperature is the same for both
the systems.

To better understand the increase in amplitude of Weiss
oscillations in the magnetically modulated graphene system
compared to the electrically modulated one, we consider the
difference in bandwidths in the two cases.'> An important
feature is the additional Vn factor in the perturbed energy
eigenvalues for the magnetically modulated case, which is
absent in the electrically modulated case. The result is that
the bandwidth in the magnetically_modulated case is ap-
proximately greater by a factor of y2 compared to the elec-
trically modulated graphene system.
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VII. CONCLUSIONS

In this work, we have investigated the electrical transport
properties of Dirac electrons in a monolayer graphene sheet
in the presence of a perpendicular magnetic field that is
weakly and periodically modulated along one direction. Our
primary focus has been the study of Weiss oscillations in the
diffusive magnetoconductivity o, of this system. We have
compared the results obtained to those obtained for the mag-
netically modulated conventional 2DEG system and to those
of the graphene system subjected only to the electric modu-
lation. We find that in the magnetically modulated graphene
system, Weiss oscillations in the magnetoconductivity have a
reduced amplitude compared to the conventional 2DEG but
are more robust with respect to temperature. In comparison
to the electrically modulated graphene case, we find that the
conductivity is larger in amplitude. We also find that the
oscillations in the magnetoconductivity in graphene are
phase shifted with respect to the electrically modulated case,
whereas they are in phase with the conventional 2DEG sub-
jected to magnetic modulation.
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