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In this paper, the average density of states �ADOS� in graphene with binary alloy disorders is calculated by
the recursion method. We observed an obvious resonant peak and a dip in ADOS curves near the Dirac point,
which result from interactions with surrounding impurities. We also found that the resonance energy �Er� and
the dip position ��dip� are strongly dependent on the concentration of disorders �x� and their on-site potentials
�v�. A linear relation, �dip=xv, holds when the impurity concentration is low. This relation can also be extended
when the impurity concentration is high, but with certain constraints. We also compute ADOS with a finite
density of vacancies.
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I. INTRODUCTION

Graphene is a two-dimensional material with a single
atomic layer of graphite. The material was initially fabricated
by rubbing graphite layers against an oxidized silicon
surface.1 Due to the linear dispersion relation of its electronic
spectrum near the Dirac point, the electron transport behav-
ior of graphene at low-energy range is essentially determined
by the massless relativistic Dirac equations. Many interesting
properties of graphene have been experimentally studied.
The key physical properties include the unusual quantum
Hall effect,2–4 minimal conductivity,4–10 ferromagnetism,11,12

and superconductivity.13–15

Disorders in graphene can significantly impact their elec-
tronic properties, which have been extensively studied over
the past decades.12,16–27 The interplay between disorders and
electron-electron interactions determines the low-energy be-
havior of electrons in graphene.4 Due to the disorder, the
average density of states �ADOS� increases near the Dirac
point. The minimum conductivity ��min� can be estimated
through the Einstein relation ��min=�D� by calculating the
diffusion constant �D� and ADOS ��� at the Dirac point. To
date, various methods have been proposed to calculate
ADOS and the local density of states �LDOS� in various
types of disorders in graphene, such as Anderson
disorder,28,29 short-range potential disorder,10,30–34 long-range
potential disorder,10 and atomic vacancies.4,35 However,
these calculated results are unreliable due to limitations in
the approximations used. These calculations are only suitable
for addressing an electronic structure with a low impurity
concentration. It is, therefore, important to explore robust
schemes to accurately describe the electronic structure of the
disordered graphene.

Recently, the phenomenon of spectrum rearrangement has
been studied in graphene with a binary alloy disorder. Due to
limitations in the coherence potential approximation
�CPA�,32,36 the results can only appropriately address the
electronic structures of graphene with extremely low impu-

rity concentration. In this paper, we propose to calculate the
ADOS by the recursion method. Our numerical simulations
can provide the accurate ADOS for different impurity con-
centrations. Moreover, our simulations can also be general-
ized to study other types of disordered graphene, although
the main features of ADOS with a binary alloy disorder in
graphene can be characterized by the resonant and antireso-
nant states caused by the scattering of impurities as reported
in Ref. 19. Interestingly, we observe that the impurity con-
centration �x� and the on-site potential �v� have significant
impacts on the main features of ADOS. The impurity con-
centration shifts the position of resonance energy �Er�. A
linear relation for the dip �the minimum in the density of
states �DOS�� shift ��dip=xv� with a relatively low impurity
concentration can be extended to a high impurity concentra-
tion case under certain conditions. Moreover, the ADOS with
a finite concentration of vacancies is also calculated by using
our proposed approach.

This paper is organized as follows: the tight-binding
model of graphene with a binary alloy disorder is given in
Sec. II. The recursion method is introduced, and its accuracy
and applications are also discussed in Sec. II. The ADOS of
graphene with different impurity concentrations and on-site
potentials is calculated and the detailed discussions are given
in Sec. III. Finally, we draw conclusions in Sec. IV.

II. COMPUTATIONAL MODEL AND METHOD

Figure 1 shows the hexagonal lattice structure of a
graphene, where each unit cell has two nonequivalent atoms
labeled with A and B, respectively. If we consider the con-
tribution from the � bond �one � electron per atom� and the
nearest interactions in graphene, the Hamiltonian based on
the Wannier representation can be expressed as

Ĥ = �
i

�i�i��i� − tij�
�i,j�

�i��j� , �1�

where i and j denote the neighboring sites on the lattice. �i is
the on-site energy and tij is the nearest hopping energy �tij
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= t and its value is close to 2.7 eV in graphene�. Here, t is
scaled to be 1 for simplicity.

With a given impurity concentration �x�, the on-site en-
ergy �i for a binary alloy disordered graphene is equal to v
with the probability of x. This model, which is attributed to
Lifshitz,37 features the absolute random distribution of impu-
rities in the space domain. In the following calculations, we
focus on studying the properties of the ADOS in two cases.
In the first case, the on-site potential �v� varies with given
disorder concentrations �x�. In the second case, the concen-
tration �x� changes with given on-site potentials �v�.

The Lanczos method38,39 �also called the Haydock–
Heine–Kelly recursion method,40,41 which is a commonly
used approach to calculate the ADOS in disorder systems� is
adopted in our calculations. The essential idea of the recur-
sion method is that the Hamiltonian matrix is iteratively ex-
pressed by using a tridiagonal representation. After selecting
a localized seed state ��f0��, this method recursively gener-
ates a hierarchy of states ��fn�� based on the defined orthogo-
nal basis as follows:

�fn+1� = Ĥ�fn+1� −
�fn�Ĥ�fn�
�fn�fn�

�fn� −
�fn�fn�

�fn−1�fn−1�
�fn−1� , �2�

where, n=0,1 ,2 , . . ., and the recursive coefficients are given
by

an =
�fn�Ĥ�fn�
�fn�fn�

,bn =
�fn�fn�

�fn−1�fn−1�
�b0 = 0, �f−1� = 0� . �3�

In the orthogonal basis, the Hamilton matrix becomes

H =	
a0 b1 0 0 ¯

b1 a1 b2 0 ¯

0 b2 a2 b3 ¯

0 0 b3 a3 ¯

] ] ] ] � .

 . �4�

The diagonal elements in Green’s function matrix for a
seed state can be derived from Eq. �4� based on the
continuous-fraction method as follows:

G00�E� = �f0�
1

E − H
�f0� =

1

E − a0 −
b1

2

E−a1−
b2

2

E−a2−
b3

2

�

, �5�

and LDOS is defined as

�local�E� = lim
�→0+

�−
1

�
G00�E + i��� . �6�

We can then easily calculate ADOS by using the follow-
ing equation:

�ave�E� =
1

M
�
M

�local�E� , �7�

where M is the number of samples. To terminate continuous
fractions, Eq. �5� can be rewritten as

G00�E� =
1

E − a0 −
b1

2

E−a1−
b2

2

¯

E−an−t�E�

. �8�

In Eq. �8�, the terminating term can be written as

t�E� =
1

2
�E − a�� − ��E − a��2 − 4b�

2 �1/2� . �9�

The asymptotic value of the continuous-fraction coefficient
pairs �a� ,b�� in Eq. �9� can be obtained when n gets large.

This recursion method has been adopted to investigate
various disorder systems.42–44 In fact, an infinite system can
be approximated using this method by imposing the periodic
boundary condition. The numerical error of DOS is easy to
estimate.43 If the system size �L� and its recursion step �N�
are large enough and the corresponding positive broadening
width ��� is reasonably small, the LDOS results should be
accurate. It is easy to get a reliable ADOS for a disorder
system by averaging over a large number of samples �M�.
For a perfect graphene, two relations, ��1 /L and ��1 /L,
approximately hold at the Dirac point as shown in Figs. 2�a�
and 2�b�. Therefore, a large size is needed in simulations to
improve the accuracy because the wavelength of the elec-
trons near the Dirac point approaches infinity. As shown in
Fig. 2�c�, a large recursion step N is also needed to obtain
ADOS results with good accuracy �in our simulation, N is set
to be 2L�.

The accuracy of the recursion method is examined by
comparing the calculated DOSs of a perfect graphene with
those obtained based on the strict integral method in the first
Brillouin zone �BZ�. The calculated DOSs at several energy
points are list in Table I. Clearly, the results using the recur-
sion method are highly accurate and their relative errors are
very small ��0.002�. In the following, we calculate the
ADOS of a disordered graphene and the parameters L=800,
N=2L, �=5�10−3, and M =2000 are chosen.

FIG. 1. �Color online� The honeycomb lattice of a graphene.
Here, a unit cell is outlined by the red dashed lines, and two non-
equivalent atoms are labeled with A �green sphere� and B �blue
sphere�, respectively.
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III. RESULTS AND DISCUSSIONS

Figure 3�a� shows several calculated ADOSs of graphene
with a fixed impurity concentration x=10% but different on-
site potentials �v�. Our results clearly show that the ADOS
remains similar in shape in a high-energy region. However,
the ADOS near the Dirac point remarkably changes for dif-
ferent on-site potentials �v�. Two striking features are ob-
served. �1� An obvious resonance peak appears in the ADOS
curves when v	3. Its energy position or the resonance en-
ergy �Er� shifts toward the Dirac point when the on-site po-
tential �v� increases. This peak is attributed to a resonance
state. A very similar feature is also observed in the LDOS
when there is a single impurity or a low impurity
concentration.30,32 �2� There is a dip �the minimum in the
ADOS� near the Dirac point. The position of this dip ��dip�
shifts with the presence of impurities. As shown in Fig. 3�b�,
the linear relation, �dip=xv, holds when the on-site potential

is relatively small, but the dip disappears when v becomes
larger �i.e., v
3�. These results show that the relation ��dip
=xv� is correct when v�vdip, while this relation does not
hold for a system with on-site potential v
vdip.

FIG. 2. �Color online� �a� � and �b� DOS as a function of L �blue
solid line� and the corresponding fitting line shown with a red
dashed line for a perfect graphene. Insets in �a� and �b� indicate that
the relations ��1 /L and ��1 /L approximately hold at the Dirac
point. �c� DOS ��� as a function of N �blue solid line� at the Dirac
point �E=0�. Here, L=800.

TABLE I. The DOS in a perfect graphene calculated by using both the recursion method and the strict
integral method within the first BZ. Here, L=800, N=2L, and �=5�10−3. The relative differences of
calculated DOS between two different methods are also listed for clarity.

Energy 0.0 0.4 0.8 1.2 1.6 2.0

The recursion method 0.0037 0.0781 0.1990 0.2570 0.1952 0.1702

The strict integral method 0.0037 0.0781 0.1998 0.2529 0.1938 0.1695

The relative difference �0.0001 �0.0001 �0.002 �0.002 �0.002 �0.002

FIG. 3. �Color online� ��a� and �b�� ADOS of a graphene with
impurity concentration x=10% and various on-site potentials �v�.
�c� The energy shift of the antiresonance state ��dip� as a function of
the on-site potential �v� �blue solid line�. The red dashed line stands
for the linear relation �dip=xv. �d� The resonance energy �Er� as a
function of the on-site potential �v�. The blue, green, and red lines
stand for the ADOS of a graphene with x=10%. ADOS is calcu-
lated by using the recursion method. LDOS of a single impurity is
computed by using the recursion method and EMA.

AVERAGE DENSITY OF STATES IN DISORDERED… PHYSICAL REVIEW B 77, 195411 �2008�

195411-3



To quantitatively explore the impact of the impurity con-
centration on the shift of resonance energy �Er�, we compare
the result of finite impurity concentration with that of a
single impurity. The calculated results are shown in Fig. 3�c�.
Here, we adopt the recursion method and the effective-mass
approximation method45 �EMA� to calculate the position of
the resonance energy �Er� of the LDOS at the impurity site
for a single impurity in the graphene system. Er of finite
impurity concentration is determined by using the recursion
method.

The Green’s function based on the effective-mass ap-
proximation in a perfect graphene is expressed as

G0�E� = lim
�→0+

S

�
�

0

kc �E + i��k
�E + i��2 + �3tak/2�2dk

=
�3

3�t2E ln� E2

9t2a2kc
2/4 − E2� − i

�3

3t2 �E�

=
�3

3�
E ln� E2

9a2kc
2/4 − E2� − i

�3

3
�E� , �10�

where S=3�3a2 /2 is the area of a unit cell in real space, a is
a lattice constant, and kc is the cutoff wave vector and is set
to be 2.13 /a.45 For the simple case, Green’s function of a
single impurity graphene is expressed as

G�E� =
G0�E�

1 − vG0�E�

= � �3

3�
E ln� E2

9a2kc
2/4 − E2� −

v
3�

E2 ln2� E2

9a2kc
24 − E2� −

v2

3
E2 − i

�3

3
�E�����1 −

�3

3�
E ln� E2

9a2kc
2/4 − E2��2

+
v2

3
E2� .

�11�

LDOS at the impurity site is easy to obtain by

�imp�E� =
�3

3�

�E�

�1 −
�3
3�E ln� E2

9a2kc
2/4−E2 ��2

+ v2

3 E2
. �12�

The resonant energy �Er� in this case can be defined as

1 = v Re G0�Er� =
�3v
3�

Er ln� Er
2

9a2kc
2/4 − Er

2� . �13�

When the on-site potential �v� increases as shown in Fig.
3�c�, Er shifts toward the Dirac point �Fig. 3�a��. Due to
multiple scattering among impurities, Er of finite impurity
concentration is quite different from that of a single impurity.
This observation implies that the multiple scattering pro-
cesses cannot be neglected for finite concentration cases.
Note that the positions of Er for a single impurity, which are
determined by the recursion method and by the effective ap-
proximation, are quite different for a relatively small on-site
potential and coincide with each other at a large on-site po-
tential. This difference results from the Green’s function ob-
tained by Eq. �10�, which is valid only in a low-energy re-
gion �close to the Dirac point�.

Figures 4�a� and 4�b� present the calculated ADOS of a
graphene with different impurity concentrations �x� while the
on-site potential �v� is set to be 1.5. When the on-site poten-
tial �v� is small, the dip exists although the resonance peak is
not so obvious. Interestingly, we find that the linear relation
�dip=xv, as shown in Fig. 4�c�, still holds even for a large
impurity concentration, considering that the multiple scatter-
ing among impurities is strong in this case. The linear rela-
tion at a low concentration regime with a small on-site po-
tential can be understood by using a virtual crystal

approximation �VCA�, which simply predicts the energy
level at which two bands are shifted by �dip=xv. However,
VCA becomes inadequate for the regime of high impurity
concentration and large on-site potential. Furthermore, it is

FIG. 4. �Color online� �a� ADOS of a disordered graphene and
�b� ADOS near the Dirac point with various impurity concentrations
�x�. Here, v=1.5. �c� The energy shift ��dip� as a function of impu-
rity concentrations �x� �blue solid line� for v=1.5. The red dashed
line shows the following linear relation: �dip=xv.
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also found that the van Hove singularity gradually softens.
To obtain a better understanding of the linear relation

�dip=xv, we present a qualitative discussion based on the
CPA. The dip in the LDOS, which indicates the antireso-
nance states, was approximately investigated based on
CPA.30,32 By ignoring multiple scattering, this method is ef-
fective to calculate the dip in the ADOS. Here, the self-
energy � can be obtained by neglecting multiple scattering
processes among the impurities as follows:

� =
xv

1 − vG0�E − ��
. �14�

The energy shift �dip can be determined by substituting
E−�= i �here, 
0 is real�. We can get

�dip � Re � =
xv�1 −

�3v
3 �

�1 −
�3v

3 �2
+ 1

3�2
2v2 ln2� 2

9a2kc
2/4−2 �

. �15�

 is calculated by the following equation:

Im � = −  =

�3
3�v2 ln� 2

9a2kc
2/4−2 �

�1 −
�3v

3 �2
+ 1

3�2
2v2 ln2� 2

9a2kc
2/4−2 �

. �16�

If v�1, Eq. �15� can be simplified to �dip=xv. For
graphene with a given impurity concentration �e.g., 10%�,
Fig. 5�a� clearly shows that the value of v is small when v
is less than 2.5. If v�1, the linear relation, �dip=xv, holds
as shown in Fig. 3�b�. This observation implies that CPA is a
good approximation and the antiresonance states make a
great contribution to the ADOS in such a condition. How-

ever, the curve of �dip as calculated by using the CPA ap-
proximation does not match the linear relation ��dip=xv�
when v is larger than 2.5. The possible reason is that multiple
scattering among the impurities cannot be neglected in the
CPA calculations when v
2.5. With the given impurity con-
centration of 10%, based on the condition of �Re ��= �Im ��,
the threshold value vdip�2.9 �estimated by the CPA calcula-
tions� of the on-site potential �vdip� to preserve the linear
relation, which is shown in Fig. 5�b�. This result is somewhat
underestimated by Fig. 3�a�. For instance, the value of vdip
should be larger than 3. For the system with a given on-site
potential �v�, Fig. 6�a� shows that the results by the CPA
method are different from those using the recursion method.
In the case of v=1.5, the inequality v�1 is satisfied only
for x�0.2. With a small on-site potential, we find that the
relation �dip=xv still holds even when the impurity concen-
tration is close to 40%. This observation indicates that CPA
is not able to obtain a reliable result for graphene when the
impurity concentration is large because the approach ne-
glects the important scattering process among impurities.

The threshold impurity concentration �xdip� for v=1.5 is
about 37% according to the linear relationship, as show in
Fig. 6�b�. When the on-site potential �v� becomes large
enough, xdip is extremely small. These results are consistent
with results shown in Fig. 5. There is an appreciable dip only
for an extremely small impurity concentration. Clearly, xdip is
sensitive to the on-site potentials. When the inequality v
�1 does not hold anymore, xdip cannot be obtained through
simple CPA calculations.32 Previous theoretical studies32,36

have suggested that the CPA with single-site scattering may
fail to characterize the dip. Our results by the recursion
method reveal that the CPA is valid only if �v�1�. The
linear relation, �dip=xv, can be further extended to graphene

FIG. 6. �Color online� �a� Parameter v and �b� the energy shift
��dip� as a function of impurity concentration �x� when v=1.5 �blue
line� or v=5 �dark cyan lines�. The red solid line indicates  as a
function of impurity concentration for the v=1.5 case. The green
dashed line shows the linear relation of �dip=xv.

FIG. 5. �Color online� �a� Parameter v and �b� the energy shift
��dip� as a function of on-site potential �v�, where the impurity
concentration is x=10%. The blue and red solid lines stand for the
results calculated by using the recursion method and the CPA, re-
spectively. The green dashed line indicates the linear relation �dip

=xv.
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with high impurity concentrations and small on-site poten-
tials.

For large on-site potentials as shown in Fig. 7, there are
distinct resonance peaks. The height of the peak significantly
increases as the level of disorder increases. However, the
position of the resonance peak shifts little at a high impurity
concentration. Generally, Er is determined by both on-site
potential �v� and impurity concentrations �x�. However,
when the on-site potential is large, Er does not depend on the
impurity concentration even if x has a large value. This
might be the consequence of the disappearance of the van
Hove singularity when the impurity concentration is about
20%.

The disordered graphene with a finite density of vacancies
can be modeled by setting the on-site potential V to a very
large value.34,45 Figure 8 shows the calculated ADOS of
graphene systems with vacancies �V=1000� based on the re-
cursion method. There is a clear sharp peak near the Dirac
point, which is in line with the previously reported numerical
results.35 This sharp peak can be accommodated very well by
the Lorentz distribution. However, one theoretical calcula-
tion based on the full Born approximation4 �FBA� predicts
that the value of ADOS should exactly be zero. Its error may
be due to ignoring multiple scattering in the FBA calculation.
In addition, the calculations based on the CPA4 and the full
self-consistent Born approximation4 �FSBA� fail to produce
observable resonance peaks. These inconsistencies indicate
the severe limitations of the CPA, FBA, and FSBA methods
near the Dirac point, which should be carefully examined
further.

IV. CONCLUSION

In this paper, the average density of state in graphene with
binary alloy disorders is calculated by using the recursion
method. The applicability and accuracy of the recursion
method are also addressed. The shape of the resonance peak
and the position of the dip are strongly dependent on impu-
rity concentrations �x� and on-site potentials �v�. The linear
relation, �dip=xv, can be derived from the CPA when v
�1. This relation can explain the shift of the dip’s position at
low and high impurity concentrations when the on-site po-
tential is weak. For a large on-site potential, neither CPA nor
Eq. �14� works well due to omitting scattering events among
impurities, except for an extremely low impurity concentra-
tion �v�1�. By setting v to be a huge value, we have
simulated graphene with a finite concentration of vacancies
and observed the resonance peak of ADOS at the Dirac
point.
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