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We present an ab initio analysis of polarization of multilayer graphene systems under applied electric fields.
The effects of applied electric fields are calculated using a Berry phase approach within a plane-wave density
functional formalism. We have determined polarizability values for graphene films and carbon nanotubes and
found that the polarizability of graphene films follows a linear relationship with the number of layers. We also
examined changes in the induced charge distribution as a function of graphene layers. We focus, in particular,
on the bilayer graphene system. Under applied electric fields, we found the Mexican hat band structure near the
K point reported by previous groups. We found that the induced charge primarily accumulated on the B
sublattice sites. This observation is supported by additional calculations with a tight-binding Green’s function
model. By examining the local density of states at the Fermi energy, we found a high density of states at the
B sites at the Fermi energy. In contrast, coupling between A sites in neighboring graphene layers leads to
negligible density of states at the Fermi level. This high density of states at the B sites results in greater induced
charge under applied electric fields. This scenario of preferential induced charge on the B sublattice sites under
applied electric fields could impact the stability of atoms and molecules absorbed on bilayer graphene.

DOI: 10.1103/PhysRevB.77.195406 PACS number�s�: 81.05.Uw, 71.15.Mb, 77.22.Ej

I. INTRODUCTION

Nanoscale forms of carbon such as nanotubes, fullerenes,
and graphene have a variety of electronic and mechanical
properties that have generated intense interest. Carbon nano-
tubes have been used to develop a number of nanoscale
devices.1 However, the ability to isolate specific metallic and
semiconducting nanotubes has been difficult and has served
as an impediment to mass production of nanotube devices.
Single layer graphene sheets have recently been isolated and
have provided an interesting alternative basis for carbon
electronics.2 Graphene has been used as a metallic channel
field effect transistor.3 Graphene charge carrier concentra-
tions can be continuously adjusted with a gate voltage4 be-
tween hole and electron concentrations of 1013 cm−2. A re-
cent paper also found that high room temperature mobilities
around 200 000 cm2 /V s are possible for technologically
relevant carrier concentrations.5 In addition, recent studies of
bilayer graphene have shown that an applied electric field or
dopants can induce a band gap.6 These unique features,
coupled with the fact that multilayer graphene can be grown
and patterned on SiC, provide an important foundation for
graphene based electronics.7

The discovery that an applied electric field induces a band
gap in bilayer graphene6 has generated great interest in the
effects of external fields on graphene structures. McCann8

developed a tight-binding model for bilayer graphene and
found a linear relationship between the induced band gaps
and induced charges in the bilayer. Guinea et al.9 used a
tight-binding Green’s function approach to look at graphene
films under an applied electric field. They found that the
applied field induced quasi-one-dimensional �1D� van Hove

singularities in the density of states. They also found that the
carbon atoms in graphene surface with nearest neighbors in
the adjacent layers have a negligible density of states at the
Fermi energy.9 Min et al.10 also examined the effect of elec-
tric fields on graphene bilayers using a density functional
approach. These calculations found the characteristic Mexi-
can hat band diagram under an applied field predicted by
tight-binding models. They also found that the band gap
saturated at a value of 0.25 eV with applied field.

In this work, we examine the properties of graphene mul-
tilayers and graphite under an applied electric field by using
a first-principles density functional approach. Since graphene
structures can now be grown with single layer precision, it is
important to study the transition to bulklike behavior. We
determine the polarizability for different graphene systems
and use this to estimate the dielectric constant for bulk
graphite. In addition, we examine the charge distribution in-
duced by the applied electric field and the effects on the band
structure. Additional calculations with a tight-binding
Green’s function approach are also done to understand the
formation of induced charge in bilayer graphene under ap-
plied electric fields.

II. APPROACH

Graphene consists of a honeycomb lattice of carbon atoms
made up of two inequivalent triangular sublattices of A and B
carbon sites �Fig. 1�. The carbon atoms are linked by sp2

bonds where the bond distance is 1.418 Å. Coupling be-
tween remaining pz orbitals at each atom leads to the � va-
lence and conduction bands near the Fermi energy that domi-

PHYSICAL REVIEW B 77, 195406 �2008�

1098-0121/2008/77�19�/195406�8� ©2008 The American Physical Society195406-1

http://dx.doi.org/10.1103/PhysRevB.77.195406


nate transport in graphene. For all structures, we assume that
the graphene layers follow Bernal stacking �ABAB¯� in the
same fashion as bulk graphite. The distance between
graphene layers is given by 3.347 Å. The A site carbon at-
oms have nearest neighbors directly above and below them
in the neighboring graphene layers.

For our investigation, we performed first-principles calcu-
lations of carbon nanotube and graphene systems by using a
density functional approach with pseudopotentials and a
plane wave basis set within the local density approximation
�LDA� implemented in the ABINIT package.11,12 We used
norm-conserving Troullier–Martins pseudopotentials for the
carbon atoms.13

While density functional theory, in principle, can provide
the correct charge density and ground state energy for any
system, in practice, it has difficulties describing long range
van der Waals interactions within the commonly used LDA
or generalized gradient approximation �GGA� for the ex-
change and correlation energies. By using the LDA density
functional approach, Schabel and Martins14 found good
agreement with experimental values for interlayer spacing
and binding energy in graphite. They also compared the
LDA density functional potential for graphene-graphene
layer interactions to an empirical potential that included van
der Waals interactions. The two potentials were found to
match for distances around the equilibrium interlayer dis-
tance. Girifalco and Hodak15 surveyed several density func-
tional calculations that are performed on graphitic structures
and found that DFT-LDA calculations were accurate for
separation distances less than 1.15 that of the equilibrium
separation. It should be stated that in the case of the LDA
approximation, the ability to match the experimental inter-
layer spacing is due to a fortuitous cancellation of errors.16 In
contrast, calculations that are based on the generalized gra-
dient approximation overestimate bond lengths and for the
case of two graphene layers does not predict binding at all.16

Using a density functional approach is also preferable to em-
pirical approaches because it provides insight into the under-
lying physics in the system. Previous studies have found that
the weak van der Waals bonding has little impact on graphite
properties once the proper spacing between layers is fixed for
calculations.17 Since all calculations performed in this study
will be done at the equilibrium graphite interlayer lattice

spacing, we expect our results to be in quantitative agree-
ment with the experiment.

Due to the fact that plane wave density functional ap-
proaches rely on a supercell geometry that is periodic in all
three directions, it is important to isolate the graphene film
under study from neighboring mirror images. For the super-
cell dimension perpendicular to the graphene plane, we did
several total energy convergence tests ranging from 20 bohr
�10.58 Å� to 50 bohr �26.46 Å�. The results show that 30
bohr provide an acceptable balance between calculation
speed and accuracy, having an energy difference less than
10−7 hartree between the total energies for 30 and 40 bohr of
separation. Based on the work done by Konstantinova et
al.,18 we also used a 12�12 Monkhorst–Pack shifted two-
dimensional �2D� k-point grid in the Brillouin zone, which
provided converged total energy in terms of k points. An
energy cutoff of 40 hartree was used for the plane-wave basis
set, which was sufficient to converge the total system energy.

For homogeneous electric fields, the ABINIT code calcu-
lates the static response of insulators through a perturbation
theory implementation that follows the modern theory of po-
larization by King-Smith and Vanderbilt.19 In this implemen-
tation, the position operator in the perturbation term is re-
placed by a Berry phase expression when we consider the
periodic system energy function.20,21 Since the polarization
under applied field can be expressed as a Berry phase over
occupied bands, this approach can be used in a density func-
tional formalism. For all of the systems we modeled, we
applied electric fields perpendicular to the graphene film
ranging from −0.0002 to 0.0002 a.u. �1 a.u. field
=514.22 V /nm�. The Berry phase calculation generates the
polarization vectors in the Cartesian coordinates, which we
use to extract polarization properties. We applied this range
of electric field settings to graphene films with N�7 layers
and observed the differences in charge densities and polar-
ization. We also performed electric field calculations on �7,0�
and �10,0� nanotubes and extracted corresponding properties
for these systems.

The system polarization can be related to the applied elec-
tric field via P=�E, where � is the electric susceptibility.
The optical dielectric susceptibility can be derived from the
slope of the polarization versus electric field graph for each
system. The dielectric constant � for the supercell can then
be determined from the following equation:

� = 1 + 4�� . �1�

In order to study the variable effects of applied electric
field on the band gaps of the systems, we then increased the
Monkhorst–Pack 2D k-point grid to 30�30 for systems of
one to three sheets of graphene for high resolution charge
density analysis. Focusing on the graphene bilayer system, in
which a controllable band gap can be introduced by applying
an electric field, we increased the range of field strengths to
0.003 a.u. �1.54266 V /nm� at steps of 0.0002 and 0.0005
a.u. We also plotted the energy band diagrams near the K
point and examined how the field influences the bands.

III. DIELECTRIC PROPERTIES

The dielectric constant for different graphene thin films
was examined as a function of the number of graphene lay-

A B

FIG. 1. Two layers of graphite are shown. Graphene sheets con-
sist of two inequivalent sites A and B. The A sites have neighboring
A sites in the layers directly above and below. The dark gray atoms
in the upper layer are used to denote the direction along, which the
charge density cross-sections are taken in Fig. 7.
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ers. The bulk dielectric constant for graphite was calculated
to be 3.328 based on the Berry phase calculation. For all of
the calculations within this work, the supercells were con-
structed to give a vacuum region of 30 bohr between the
periodic images of the graphene stacks. The graphene film
dielectric constant shows an almost linear relationship with
the number of layers. However, repeated calculations with
varying unit-cell sizes have shown that for systems such as
films and nanowires, these dielectric constant values strongly
depend on supercell size, an issue which has been brought up
in other literature.22,23 Since the present calculations are per-
formed using a periodic unit cell, the calculated dielectric
constant is not for an isolated stack of graphene but rather a
multilayer system consisting of graphene stacks separated by
30 bohr vacuum regions. This indicates that the dielectric
constant is not a good measure of polarization for these few
layer graphene structures.

In order to observe the effects that adding graphene layers
has on charge polarization in each system, it is more suitable
to consider the polarizability � of the graphene stack under
the electric field. In general terms, the polarizability defines
the relationship �ploc,i=� j�ijEloc,j� between the dipole mo-
ment p of the induced charge in direction i and the local
electric field Eloc acting in direction j. For a slab of material,
we can define the polarizability of the slab in terms of m
=�Eloc /S, where m is the electric dipole per unit surface
area, the electric field Eloc is perpendicular to the layers
within the slab, and S is the surface unit cell for graphene.

If we consider an isolated graphene stack under an ap-
plied electric field, then the polarizability should be indepen-
dent of the size of our supercell. This, in fact, holds true
when the distance between the periodic graphene stacks is
great enough to prevent electrostatic interactions between pe-
riodic images. The Clausius–Mossotti polarizability for an
isolated slab of material can be expressed as

� =
�

4�
�� − 1

�
� , �2�

where � is the supercell volume and � is the dielectric con-
stant in the perpendicular direction of the supercell.22 It is
important to note that the calculated dielectric constant for
the supercell system is a function of the supercell volume,
����. For sufficient spacing between the periodic graphene
stacks, the polarizability converges to a constant value.

For �7,0� and �10,0� carbon nanotube systems, we obtain a
polarizability per unit length of 6.489 and 10.967 Å2, re-
spectively, when the electric field is applied perpendicular to
the nanotube axis. These results are in excellent agreement
with carbon nanotube polarizability values ��7,0� NT
6.47 Å2; �10,0� NT 10.9 Å2� obtained by Kozinsky and
Marzari23 using a different first-principles approach. For a
single graphene sheet, we obtained a polarizability of
0.867 Å3. For comparison, the polarizability for a single bo-
ron nitride sheet was calculated to be 1.32 Å3 in a previous
paper.24 The polarizability values for graphene sheets versus
the number of layers for graphene systems are shown in Fig.
2. From the plot, we see there is a linear relationship between
the polarizability and the number of graphene layers, which

is similar to previous works on benzene and anthracene
multilayers.22

The polarizability of a slab can be thought of as the ef-
fective volume of the slab that acts like a metal in responding
to the applied electric field. From Eq. �2�, we see that there
are two extremes for the polarizability based on the dielectric
constant. If we take �=1, a slab of free space, the polariz-
ability, or effective metallic volume is zero and no polariza-
tion occurs under the applied field. However, for the case of
a metal ��=��, we obtain the highest polarizability,
�slab /4�, and the induced surface charge density completely
shields the applied electric field inside the slab. For a
graphene slab, the dielectric constant within the slab is fairly
constant except near the surfaces. Therefore, as we add more
graphene layers, the slab volume will linearly increase and
the polarizability �effective metallic volume� and charge that
can respond to the field will also linearly increase. This lin-
ear relationship can also be derived by using more rigorous
arguments �see Tóbik and Corso22 for details�.

We can express the slab polarizability as a function of
graphene layers as

��N� = N
�B

8�
��B − 1

�B
� + 2�S, �3�

where N is the number of graphene layers, �B is the volume
of the bulk unit cell, and �S is the surface polarizability.22

Fitting the polarizability data to Eq. �3�, we find the slope of
the line and obtain 3.68 for the bulk dielectric constant of
graphite. A surface polarizability of 0.061 Å3 for graphene
thin films can also be extracted. This surface polarizability is
roughly 10 times less than that of a comparable benzene
film.22

The fitted bulk dielectric constant is slightly higher than
the value 3.328 derived from the Berry phase calculation we
performed for bulk graphite. This discrepancy can be traced
to the underlying assumptions of the Clausius–Mossotti ap-
proach. In this framework, a solid is viewed in terms of a

FIG. 2. �Color online� Polarizability �red circles� in graphene
thin films is shown as a function of the number of layers. The linear
fit to Eq. �3� is also shown.
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collection of well spaced and independent polarizable
units.25 Local dipoles are well defined in these structures.
However, this local dipole model breaks down in materials
where there is strong covalent bonding and delocalized elec-
trons.

If we consider the case of graphene stacks, we have indi-
vidual layers where the electrons are delocalized in the plane.
Due to the 3.347 Å separation between graphene layers,
neighboring layers are weakly coupled and some degree of
polarization would be expected for individual layers. The
slab itself is also isolated in the supercell, which will allow
for charge build up at the two surfaces. The strongest cou-
pling between layers will occur at the A site carbon atoms,
which have adjacent A sites in the neighboring layers directly
above and below. This coupling is not included in the
Clausius–Mossotti framework and leads to the differences
between the two calculated dielectric constants for bulk
graphite.

We examined how the overall induced charge density pro-
file changes as the number of graphene layers increases. To

observe this transition, we subtracted the charge densities in
a two dimensional xy plane for each carbon system in zero
field from that for a field of 0.1028 V/nm. The electric field
points in the positive z direction for all cases considered.
This difference was averaged over the xy plane to get the
variation of the charge distribution along the z axis. The set
of graphs in Fig. 3 highlights the effects of the electric field
on the average induced charge in xy planes and the shielding
effects of these nanostructures. Since this figure plots elec-
tron charge density, positive values indicate electron accu-
mulation and negative values indicate hole accumulation.
For the discussion below, the left and right sides of each
graphene film are defined as the sections with negative and
positive z values, respectively.

In all the graphs for thin layer graphene structures, there
is clear evidence for polarization with electron accumulation
on the far left layer and hole accumulation on the far right
layer. The induced charge profiles for all multilayer graphene
structures also exhibit some degree of asymmetry. This indi-
cates that the graphene thin film is screening a portion of the

FIG. 3. The average induced charge densities in the x-y plane generated by an applied field of 0.1028 V/nm along the z axis are shown
for �a� two layer, �b� three layer, and �c� six layer graphene films as well as �d� bulk graphite. The electric field in all cases is along the z
direction. The electric field vector used in all cases is denoted in panel �a�. For each plot, the origin in the z direction is taken as the center
of the graphene film. The planes of the individual graphene layers are denoted by the dashed lines in each panel.
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applied field. For the case of very poor screening, the in-
duced charge would be identical on all layers. For the
graphene bilayer, the screening is very small and the magni-
tude of induced charge on each layer is almost equal. For the
three layer graphene film, the screening increases with a
charge peak of 12.6 	e− / �bohr�3 on the left layer and a
maximum average induced charge of −9.25 	e− / �bohr�3 on
the right layer. In the case of the six layer graphene structure,
the screening increases, with the average induced electron
charge reaches a peak of approximately 13.8 	e− / �bohr�3,
while the right layer reaches a maximum average induced
charge of only −10.3 	e− / �bohr�3. For the different

multilayer structures, the interior layers are shielded from the
applied field and have a much lower induced charge.

A. Induced charge in bilayer graphene

Since bilayer graphene has the potential to play an impor-
tant role in graphene based devices, we also examined the
band structure and charge distribution in bilayers as a func-
tion of applied electric field. Calculating the band structure
under applied electric field provides an important check of
our approach. The band diagram along the path from 
 to K
to M is shown in Fig. 4. It is clear that the lowest conduction
band and highest valence bands intersect at the K point. The
region that is enclosed in the dashed box in Fig. 4 is shown
in Fig. 5 for the case of no applied field and applied fields
ranging up to 1.5426 V/nm. For the case where there is no
applied field, a conduction and valence band intersect at the
K point, which is similar to what occurs in single layer
graphene.

Upon applying a small electric field �E=0.5412 V /nm�, a
clear band gap forms at the K point. For low applied fields,
the bands are fairly flat and parabolic near the Fermi energy.
However, as the strength of the applied field increases, the
band gap continues to grow at the K point, while the size of
the band gap changes very little at two neighboring shoulders
in k space. These shoulders occur at ko� �U /v f from the K
point, where vF is the graphene Fermi velocity.9 The change
of the band gap with electric field is illustrated in Fig. 6. The
distortion of the bands as the applied electric field increases
leads to the characteristic Mexican hat band structure shown
in Fig. 5�d� that has been discussed in several tight-binding
investigations.8,9 It has also recently been shown in another
first-principles calculation that used a different basis set.10

Similar to the work of Min et al.,10 our calculations indicate

FIG. 4. The bands for a bilayer graphene system are shown
along the path 
 to K to M. A dashed box around the intersection of
the valence and conduction bands at the K point is used to denote
the band region that will be considered in Fig. 5.

FIG. 5. �Color online� The
bands for a bilayer graphene sys-
tem are shown in the region close
to the K point for electric fields
ranging from 0 to 1.5 V/nm. The
K point is taken as the origin of
the graph and the momentum vec-
tor is given in units of 2� /a. The
left and right band directions are
denoted by the arrows pointing to-
ward the high symmetry k points,

 and X, respectively, which are
outside of the plotted region.
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that the band gap saturates to a maximum value of 0.25 eV
with applied electric field. Doping a graphene bilayer with
potassium on one side, Ohta et al.6 found a maximum band
gap of approximately 0.2 eV. For practical device design, it
is also important to take into account the electric breakdown
of SiO2, which occurs at approximately 1 V/nm.26 Based on
this constraint, our approach predicts that a band gap of 0.17
eV is feasible.

Cross sections for the induced charge in a bilayer
graphene system are shown in Fig. 7 for 0.7713 and 1.5426
V/nm, respectively. The cross sections are perpendicular to
the graphene plane and taken along the line defined by the
dark gray atoms in Fig. 1. Since the induced charge mono-
tonically increases, the above fields were primarily chosen to
highlight the increase in induced charge. In both cases, there
is a clear electron charge cloud on the bottom side of the
bilayer graphene and a significant positive charge cloud on
the opposite side of the bilayer. It is also important to note
that the induced charge concentration on the B sites is sig-
nificantly greater than on the neighboring A sites. As ex-
pected, as the electric field increased, the induced charge
increased on both the A and B sites. The higher charge con-
centration on the B sites was observed in the induced charge
distribution for all applied fields considered.

In order to get a better understanding of the induced
charge distribution, we added the effects of applied electric
fields to a previous tight-binding Green’s function model for
bilayer graphene.27 The model consists of nearest neighbor-
ing coupling of �1=3.0 eV and �2=0.4 eV between A sites
in adjacent graphene layers. The on-site energy � for the case
of graphene is zero. The applied electric field induces poten-
tials U1 and U2 in the first and second layers, respectively.
The Hamiltonian in this case is given by

H = 	
� − U1 �1	� �2 0

�1	 � − U1 0 0

�2 0 � − U2 �1	

0 0 �1	� � − U2


 , �4�

where 	=eikya+ei�−�3akx/2−aky/2�+ei��3akx/2−aky/2�.
The Green’s function for a bilayer of graphene for a given

energy, E, and wavevector, k, are given by GR�E ,kx ,ky�
= �E−H+ i
�−1, where 
 is an infinitesimal imaginary com-
ponent to the energy. The total charge at a given site � in the
bilayer can be expressed in terms of the Green’s function as

�� =
A2

4�2�
−�

Ef

dE�
BZ

dk�− 1

�
�Im G��

R �E,k� , �5�

where A=3�3a2 /2 is the area of the graphene unit cell in
real space. The energy integration can be efficiently per-
formed by using a semicircle in the complex plane that starts

FIG. 6. �Color online� The band gap is shown as a function of
the applied field. The black squares denote the band gap measured
at the K point. The red circles indicate the band gap measured at the
higher shoulders in the band structure near the K point. The field
where electric breakdown of SiO2 occurs is denoted by a vertical
dash line and band gap values for higher fields are not achievable in
practical devices.
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FIG. 7. �Color online� Induced charge in xz plane through the
graphene bilayer for �a� 0.7713 V/nm and �b� 1.5426 V/nm. The
position of A and B sublattice carbon atoms is denoted for repre-
sentative atoms in panel �a�.
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below the valence band.28 This model provides a bilayer
band structure consistent with previous works,8,9 exhibiting
the formation of a band gap with applied field and the char-
acteristic Mexican hat band structure near the K point.

By using this tight-binding model, we examined the in-
duced charge on the A and B sites in the top layer of
graphene for a range of on-site potential shifts �Fig. 8�. The
tight-binding model indicates that the induced charge on the
B site increases very rapidly with the applied field. The in-
duced charge on the A sites by contrast shows a small in-
duced charge even for very high on-site potential shifts.
Based on this analysis, the tight-binding model predicts that
charge will primarily be induced on the B sites in the bilayer
graphene systems. This corresponds well with what we have
observed in our first-principles calculations.

The high degree of induced charge on the B sites can be
understood by looking at the local density of states. Exam-
ining the local density of states �LDOS� at the A and B sites
in each graphene layer with no applied field �Fig. 9�a��, we
find that the B sites have a significant density of states at the
Fermi energy, while the LDOS on the A site drops at
E=−�2 and is negligible at the Fermi energy. This indicates
that the valence band at the Fermi energy is primarily com-
posed of wave functions on the B site lattice, while the wave
functions on the A sites are shifted to lower energies due to
the interlayer interactions between neighboring A sites. Ap-
plied fields will affect the bands closest to the Fermi energy
level, which indicates that the electric field will induce
charge initially on the B sites in the graphene levels.

We considered the case where the first graphene layer had
a potential shift of U1=0.2 eV and the second layer had a
potential shift U2=−0.2 eV. The local density of states for
the A and B sites in the first layer is shown in Fig. 9�b�.
There is a clear indication of a van Hove singularity in the
density of states at E=−0.149 eV on the B site atoms. At this
same energy, there is also a much smaller peak in the local
density of states at the A atom site. The peak at the A site is

most likely due to weak coupling with the B sites. The van
Hove singularity in the local density of states at the B site
leads to a high weighting of the density of states at the band
edge. This will also lead to a high induced charge. Very high
fields are required to create a similar situation at the A
sites.

This analysis indicates that the tight-binding model is able
to explain the charge distribution observed in our density
functional calculations. The preferential charging of the B
sublattice sites could be important in determining possible
bonding sites for atomic or molecular absorbants. The fact
that an applied electric field will induce a greater charge on
the B sites could affect the stability of molecules bonded on
bilayer graphene.

IV. CONCLUSION

In this study, we have used first-principles approaches and
tight-binding techniques to examine the effect of applied
electric fields on charge distributions in graphene thin films.
The polarizability for different graphene thin films was cal-
culated from first principles and showed a clear linear rela-
tionship with the number of graphene layers. Based on these
calculations, we determined a bulk dielectric constant for
graphite of 3.328 for fields applied along the c axis. The
surface polarizability for graphene thin films was found to be
0.061 Å3, which is an order of magnitude less than compa-
rable benzene thin films.

The induced charge distribution for bilayer graphene un-
der an applied field was also considered in detail. Our first-
principles calculations demonstrated the characteristic Mexi-
can hat band structure found in previous tight-binding
models.8,9 Similar to a previous study,10 we found that the
band gap saturated at 0.25 eV with applied field. Due to the
electric breakdown of SiO2 at 1 V/nm, a band gap of 0.17 eV

FIG. 8. �Color online� Induced charge predicted by a tight-
binding model for the A sites �black squares� and B sites �red
circles� in the top layer of bilayer graphene for different on-site
potential shifts.

FIG. 9. �Color online� Local density of states for A and B atoms
in layer 1 of a graphene bilayer calculated with the tight binding
model �a� with no applied field and �b� with potential shifts
U1=0.2 eV and U2=−0.2 eV.
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is feasible in actual bilayer graphene devices. In addition,
analysis of the induced charge along the z direction also
indicated that screening increased with the number of
graphene layers in the structure.

Inspection of the charge distribution from first-principles
calculations indicated that for applied fields, the induced
charge was primarily located on the B sites in bilayer
graphene. We also used a tight-binding Green function model
to examine the induced charge on both sites. The tight-
binding model also indicates that the B sites should have the
greatest induced charge for all applied fields. This preferen-
tial charging of B sites could impact the stability of atoms

and molecules absorbed on bilayer graphene under applied
electric fields.
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