
Electronic properties in a two-dimensional disordered electron liquid: Spin-valley interplay

I. S. Burmistrov and N. M. Chtchelkatchev
L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow, Russia

and Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
�Received 14 January 2008; revised manuscript received 8 April 2008; published 16 May 2008�

We report a detailed study of the influence of the spin and valley splittings on such physical observables of
the two-dimensional disordered electron liquid as resistivity and spin and valley susceptibilities. We explain
qualitatively the nonmonotonic dependence of the resistivity on temperature in the presence of a parallel
magnetic field. In the presence of either spin or valley splitting we predict a temperature dependence of the
resistivity with two maximum points.
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I. INTRODUCTION

Disordered two-dimensional �2D� electron systems have
been in the focus of experimental and theoretical research for
several decades.1 Recently, the interest in 2D electron sys-
tems has been renewed because of the experimental discov-
ery of a metal-insulator transition �MIT� in a high-mobility
silicon metal-oxide-semiconductor field-effect transistor
�Si-MOSFET�.2,3 Although during the last decade behavior
of the resistivity similar to that of Refs. 2 and 3 has been
found experimentally in a wide variety of two-dimensional
electron systems,4 the MIT in 2D calls still for a theoretical
explanation.

Very likely, the most promising framework is provided by
the microscopic theory, initially developed by Finkelstein,
that combines disorder and strong electron-electron
interaction.5 Punnoose and Finkelstein6 have shown the pos-
sibility for the MIT existence in a special model of a 2D
electron system with an infinite number of spin and valley
degrees of freedom. The current theoretical results7,8 do not
support the MIT existence for electrons without spin and
valley degrees of freedom. Therefore, it is natural to assume
that the spin and valley degrees of freedom play a crucial
role for the MIT in 2D disordered electron systems.9

Usually, in the vicinity of the MIT, from the metallic side,
i.e., for an electron density higher than the critical one, and at
low temperatures T��tr

−1, the initial increase of the resistivity
��� with lower temperature is replaced by a decrease of � as
T becomes lower than some sample-specific temperature.4

Here, �tr denotes the elastic scattering time. This nonmono-
tonic behavior of the resistivity was predicted from a renor-
malization group �RG� analysis of the interplay between dis-
order and electron-electron interaction in 2D disordered
electron systems.5,10 As a weak magnetic field B is applied
parallel to the 2D plane, the decrease of the resistivity is
stopped at some temperature and � increases again.11 A fur-
ther increase of B leads to monotonic growth of the resistiv-
ity as temperature is lowered, i.e., to an insulating behavior,
in the whole T range. These experimental results suggest the
significance of the electron spin for the existence of the me-
tallic phase in 2D disordered electron systems.

As is well known, in both Si-MOSFETs �Ref. 1� and
n-type AlAs quantum wells,12 2D electrons can populate two
valleys. Therefore, these systems offer the unique opportu-

nity for an experimental investigation of the interplay be-
tween the spin and valley degrees of freedom. In Si-
MOSFETs the spin-valley interplay has been probed by
varying the parallel magnetic field in the metallic region for
relatively large electron concentrations.13,14 Recently, using a
symmetry-breaking strain to tune the valley occupation of
the 2D electron system in an n-type AlAs quantum well, as
well as a parallel magnetic field to adjust the spin polariza-
tion, the spin-valley interplay has been experimentally
studied.15,16 However, the electron concentrations in the ex-
periment were at least three times larger than the critical
one.12 Therefore, the spin-valley interplay has been studied
in the region of a good metal very far from the metal-
insulator transition.

In the present paper we report detailed theoretical results
for the T behavior of a 2D electron system with two valleys
in the vicinity of the MIT. In particular, we study the effect
of a parallel magnetic field and/or valley splitting ��v� on the
transport, and the spin and valley susceptibilities. We find
that in the presence of either a magnetic field or valley split-
ting the metallic behavior of the resistivity survives down to
zero temperature.17 For example, this result implies that at
B=0 the metallic ��T� dependence can be observed experi-
mentally at temperatures T��v. Only if both the magnetic
field and the valley splitting are present does the metallic
behavior of the resistivity cross over to the insulating one.
Next, we predict T behavior of the resistivity with two maxi-
mum points, in the presence of a magnetic field and/or valley
splitting. Finally, we find that as T vanishes the ratio of the
valley ��v� to the spin susceptibility ��s� becomes sensitive
to the ratio of the valley to the spin splitting. At high tem-
peratures the ratio �v /�s is temperature independent and can
be chosen equal to unity. If the spin splitting is larger
�smaller� than the valley splitting, then at low temperatures
the ratio �v /�s� �	� 1. If the spin and valley splittings are
equal to each other, then the ratio �v /�s=1 as the tempera-
ture vanishes.

The presence of the parallel magnetic field and the
symmetry-breaking strain introduces new energy scales
�s=gL
BB and �v in the problem. Here, gL and 
B
stand for the g factor and the Bohr magneton, respectively.
Let us assume that the following conditions hold:
�so

−1 ,�v
−1��v��s��tr

−1, where �so and �v are spin-relaxation
and intervalley scattering times, respectively. These assump-
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tions are relevant for experiments on Si-MOSFETs as dis-
cussed below in Sec. VI.

As is well known,18–20 the spin and valley splittings do
not change the weak-localization �“cooperon”� contribution
to the resistivity in the absence of spin-relaxation processes
and intervalley transitions. However, the interaction
�Altshuler-Aronov� correction21 to the resistivity is affected
by the presence of �s and �v. Due to the symmetry breaking,
the spin and valley splittings set the cutoff for a pole in the
diffusion modes �“diffusons”� with opposite spin and valley
isospin projections. In the temperature range �s�T��tr

−1,
this cutoff is irrelevant and the 2D electron system behaves
as if no symmetry-breaking terms are applied. The tempera-
ture behavior of the resistivity is governed by one singlet and
15 triplet diffusive modes.10 At low temperatures
�v�T��s, eight diffusive modes with opposite spin projec-
tions do not contribute. Then, the ��T� dependence is deter-
mined by the remaining one singlet and seven triplet modes.
As we shall demonstrate below, the behavior of the resistiv-
ity can be either metallic or insulating. Surprisingly, we
found that the seven triplet diffusive modes are not equiva-
lent. They have to split into two groups of six and one modes
for the spin susceptibility be T independent. For temperatures
�so

−1 ,�v
−1�T��v, the next four diffusive modes with opposite

isospin projections become ineffective. In this case, the tem-
perature dependence of the resistivity is determined by one
singlet and three triplet diffusive modes. Although the num-
ber of remaining diffusive modes corresponds formally to
single-valley electrons with spin, the ��T� behavior is insu-
lating.

The paper is organized as follows. In Sec. II we introduce
the nonlinear � model that describes the disordered interact-
ing electron system. Then, we consider the short length
scales at which the system has SU�4� symmetry in the com-
bined spin and valley space �Sec. III�. The behavior of the
system at intermediate and long length scales is studied in
Secs. IV and V, respectively. We end the paper with discus-
sion of our results and with conclusions �Sec. VI�.

II. FORMALISM

A. Microscopic Hamiltonian

To start out, we consider 2D interacting electrons with
two valleys in the presence of quenched disorder and a par-
allel magnetic field at low temperatures T��tr

−1. For the case
of a Si�001�-MOSFET, which is of main interest for us, we
write an electron annihilation operator with the help of one-
electron orbital functions as22,23

���R� = �
�=
��
��r���z��eizQ/2 + �e−izQ/2�/�2, �1�

where z denotes the coordinate perpendicular to the 2D
plane, r the in-plane coordinate vector, and R=r+zez. The
subscript � enumerates the two valleys and ��

� is the annihi-
lation operator of an electron with the spin and isospin pro-
jections equal to � /2 and � /2, respectively. Let us choose the
envelope function ��z� to be normalized, and assume negli-
gible overlap �dz �2�z�sin�Qz�. The vector Q= �0,0 ,Q� cor-

responds to the shortest distance between the valley minima
in the reciprocal space: Q�alat

−1, with alat being the lattice
constant.1

In the path-integral formulation 2D interacting electrons
in the presence of the random potential V�r� are described by
the following grand partition function:

Z =� D��̄,�	eS��̄,�	, �2�

with the imaginary time action

S = �
0

1/T

dt�− �̄�
��r,t��t��

��r,t� − H0 − Hdis − Hint	 . �3�

The one-particle Hamiltonian

H0 =� dr �̄�
��r�
−

�2

2me
− 
 +

�s

2
� +

�v

2
������r� �4�

describes a 2D quasiparticle with mass me in the presence of
the parallel magnetic field and the valley splitting. Here, 

denotes the chemical potential. Next,

Hdis =� dr �̄�1
� �r�V�1�2�r���2

� �r� �5�

involves matrix elements of the random potential

V�1�2�r� =
1

2
� dz V�R��2�z��1 + �1�2 + �1eizQ + �2e−izQ� .

�6�

In general, the matrix elements V�1�2�r� induce both the in-
travalley and intervalley scattering. We suppose that V�R�
has a Gaussian distribution, and

�V�R� = 0, �V�R1�V�R2� = W��r1 − r2�, �z1 − z2�� , �7�

where the function W decays at a typical distance d. If d is
larger than the effective width of the 2D electron system, i.e.,
d� ��dz �4�z�	−1, then one can neglect the z dependence of
V�R� under the integral sign in Eq. �6�. In this case, only the
intravalley scattering survives:

�V�1�2�r�V�3�4�0� = W��r�,0���1�2��3�4. �8�

In the opposite case, d� ��dz �4�z�	−1, one finds24

�V�1�2�r�V�3�4�0� =� dz �4�z����1�2��3�4�W̃��r�,0�

+ �1�3W̃��r�,Q�/2	 + ���1�4��2�3

− ��1�3��2�4�W̃��r�,Q�/2� , �9�

where W̃��r� ,Q�=�dz W��r� , �z��exp�iQz�. The other correla-
tion functions vanish due to integration over the �z1+z2� /2
coordinate. It is the last term in Eq. �9� that contributes to the
intervalley scattering rate 1 /�v. Assuming Q−1�d, one can
neglect the intervalley scattering rate in comparison with the

intravalley scattering rate 1 /�i�W̃�r ,0�. Finally, allowing
for a low electron concentration ne in 2D electron systems,
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we consider the case when the inequality ned
2�1 holds.

Then, both Eqs. �8� and �9� read

�V�1�2�r1�V�3�4�r2� =
1

2���i
��1�2��3�4��r1 − r2� , �10�

1

�i
= 2��� d2r dz1dz2W��r�, �z1 − z2���2�z1��2�z2� ,

Q−1� d, 
� �4�z�dz�−1

� ne
−1/2. �11�

Here, � is the thermodynamic density of states. Under the
conditions �11�, the interaction part of the Hamiltonian is
invariant under global SU�4� rotations of the electron opera-
tor ��

� in the combined spin-valley space:

Hint =
e2

2�
� dr1dr2

�̄�1
�1�r1���1

�1�r1��̄�2
�2�r2���2

�2�r2�

�r1 − r2�
. �12�

The dielectric constant of the substrate is denoted as �. The
low-energy part of Hint can be written as5,25–27

Hint =
1

2
� dr1dr2���r1��s�r1 − r2���r2�

+ ma�r1��t�r1 − r2�ma�r2�	 , �13�

where

��r� = �
��

�̄�
��r���

��r� , �14�

ma�r� = �
�1�2;�1�2

�̄�1
�1�r��ta��1�2

�1�2��2
�2�r� . �15�

Here, �s�q�=U�q�+F0
� / �4�� involves the long-range part

of the Coulomb interaction U�q�=2�e2 / �q�� and �t�q�
=F0

� / �4��. The quantities F0
� and F0

� are the standard Fermi
liquid interaction parameters in the singlet and triplet chan-
nels, respectively. The matrices ta with �xx� are the nontrivial
generators of the SU�4� group.

B. Nonlinear � model

At low temperatures, T�tr�1, the effective quantum
theory of 2D disordered interacting electrons described by
the Hamiltonian �3� is given in terms of the nonlinear �
model. As we have mentioned above, the weak-localization
�cooperon� contribution to the resistivity is independent of
the presence of �s and �v.18–20 Therefore, we shall ignore the
Cooper channel in the intermediate calculations for the sake
of simplicity and shall discuss its role in Sec. IV. Then, the
effective theory involves unitary matrix field variables
Qmn;�1�2
�1�2;�1�2�r� which obey the nonlinear constraint Q2�r�=1.

The integers � j =1,2 , . . . ,Nr denote the replica indices. The
integers m ,n correspond to the discrete set of Matsubara fre-
quencies �n=�T�2n+1�. The integers � j =1 and � j =1
are spin and valley indices, respectively. The effective action
is

S = S� + SF + Ssb + Svb + S0, �16�

where S� represents the free electron part28

S� = −
�xx

32
Tr��Q�2. �17�

Here, �xx denotes the mean-field conductivity in units e2 /h.
The symbol Tr stands for the trace over replicas, Matsubara
frequencies, and spin and valley indices as well as integra-
tion over space coordinates.

The term5

SF = 4�Tz Tr ��Q − �� + �T�� d2r�
�n

tr In
�Q tr I−n

� Q

− �T�2� d2r�
�n

�tr In
�Q� � �tr I−n

� Q� �18�

involves the electron-electron interaction amplitudes which
describe the scattering on small ��� and large ��2� angles and
the quantity z originally introduced by Finkelstein,5 which is
responsible for the specific heat renormalization.29 The inter-
action amplitudes are related to the standard Fermi liquid
parameters as5,25,27 �2=−zF0

� / �1+F0
��, 4�=�2+zF0

� / �1+F0
��,

and z=��� /2 where ��=m� / �2�� with m� being the effec-
tive mass. The case of the Coulomb interaction corresponds
to the so-called “unitary” limit20 F0

�→�.
The symbol tr involves the same operations as in

Tr except for the integration over space coordinates, and
tr A � tr B=Ann;�1�2

��;�1�2Bmm;�2�1
��;�2�1. The matrices �, �, and Ik

� are
given as

�nm
��;�1�2 = sgn��n��nm�

����1�2,

�nm
��;�1�2 = n�nm�

����1�2,

�Ik
��nm
��;�1�2 = �n−m,k�

�������1�2. �19�

In the absence of �s and �v, the action S�+SF is
invariant under the global rotations Qnm;�1�2

��;�1�2�r�
→u�1�3

�1�3 Qnm;�3�4
��;�3�4�r��u−1	�4�2

�4�2 in the combined spin-valley
space for u�SU�4�. The presence of the parallel magnetic
field and the valley splitting generates the symmetry-
breaking terms

Ssb = izs�s Tr �zQ, Svb = izv�v Tr �zQ , �20�

where �z and �z are Pauli matrices in the spin and valley
spaces, respectively. The Q-independent part of the action
reads5,30

S0 = − 2�Tz Tr �� +
Nr

2T
� d2r��s

0�s
2 + �v

0�v
2� , �21�

with �s,v
0 =2zs,v /� being the bare value of the spin �valley�

susceptibility.

C. F algebra

The action �16� involves matrices which are formally de-
fined in the infinite Matsubara frequency space. In order to
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operate with them we have to introduce a cutoff for the Mat-
subara frequencies. Then the set of rules which is called F
algebra can be established.30 At the end of all the calcula-
tions the cutoff should tend to infinity.

The global rotations of Q with the matrix exp�i�̂� where
�̂=��,n�n

�In
� play the important role.30,31 For example, F al-

gebra allows us to establish the following relations:

sp In
�ei�̂Qe−i�̂ = sp In

�Q + 2in�−n
� ,

tr �ei�̂Qe−i�̂ = tr �Q + �
�n

in��n
���1�2
�1�2sp In

�Q�2�1
�2�1

− �
�n

n2��n
���1�2
�1�2��−n

� ��2�1
�2�1, �22�

where sp stands for the trace over replicas and the Matsubara
frequencies.

D. Physical observables

The most significant physical quantities in the theory con-
taining information on its low-energy dynamics are the
physical observables �xx� , z�, and zs,v associated with the
mean-field parameters �xx, z, and zs,v of the action �16�. The
observable �xx� is the dc conductivity, as one can obtain from
the linear response to an electromagnetic field. The observ-
able z� is related to the specific heat.29 The observables zs�
and zv� determine the static spin ��s�� and valley ��v�� suscep-
tibilities of the 2D electron system5,32 as �s,v� =2zs,v� /�. It is
extremely important to recall that the observable parameters
�xx� , zs,v, and z� are precisely the same as those determined by
the background field procedure.33

The conductivity �xx� is obtained from

�xx� �i�n� = −
�xx

16n
�tr�In

�,Q	�I−n
� ,Q	 +

�xx
2

64Dn
� dr�

���tr In
�Q�r� � Q�r�tr I−n

� Q�r�� � Q�r��
�23�

after the analytic continuation to the real frequencies,
i�n→�+ i0+ at �→0. Here, D=2 stands for the space di-
mension, and the expectations are defined with respect to the
theory �16�.

A natural definition of z� is obtained30 through the deriva-
tive of the thermodynamic potential � per unit volume with
respect to T,

z� =
1

2� tr ��

�

�T

�

T
. �24�

The observables zs,v are given by

zs,v� =
�

2Nr

�2�

��s,v
2 . �25�

III. SU(4)-SYMMETRIC CASE

A. F invariance

At short length scales L�Ls ,Lv where Ls,v
=��xx / �16zs,v�s,v�, the symmetry-breaking terms Ssb and Svb
can be omitted and the effective theory becomes SU�4� in-
variant in the combined spin-valley space. Then, Eqs. �17�
and �18� should be supplemented by the important constraint
that the combination z+�2−4� remains constant in the
course of the RG flow. Physically, this corresponds to the
conservation of the particle number in the system.5 In the
special case of the Coulomb or other long-ranged interac-
tions which are of main interest for us in this paper the rela-
tion

z + �2 − 4� = 0 �26�

holds. With the help of Eqs. �22�, one can check that Eq. �26�
guarantees the so-called F invariance30 of the action
S�+SF under the global rotation of the matrix Q:

Q�r� → ei�̂Q�r�e−i�̂, �̂ = �
�n

�n
�In
�. �27�

Here, �n
� is the unit matrix in the spin-valley space. By virtue

of Eq. �26�, it is convenient to introduce the triplet interac-
tion parameter �=�2 /z such that �= �1+��z /4. We notice
that the triplet interaction parameter is related to F0

� as
�=−F0

� / �1+F0
��.

B. Perturbative expansions

To define the theory for the perturbative expansions we
use the “square-root” parametrization

Q = W + ��1 − W2, W = 
 0 w

w† 0
� . �28�

The action �16� can be written as an infinite series in the
independent fields wn1n2;�1�2

�1�2,�1�2 and wn4n3;�1�2
†�1�2,�1�2. We use the con-

vention that the Matsubara frequency indices with odd sub-
scripts n1 ,n3 , . . . run over nonnegative integers whereas those
with even subscripts n2 ,n4 , . . . run over negative integers.
The propagators can be written in the following form:

�wn1n2;�1�2

�1�2;�1,�2�p�wn4n3;�4�3

†�4�3;�4�3�− p� =
16

�xx
��1�3��2�4�n12,n34

���1�3��2�4��1�3��2�4
�n1,n3
Dp��12� −

32�Tz�

�xx
��1�2Dp��12�Dp

t ��12��
+

8�Tz�1 + ��
�xx

��1�2��1�3��2�4��1�3��2�4Dp
s ��12�Dp

t ��12�� , �29�
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where �12=�n1
−�n2

and

Dp
−1��n� = p2 +

16z�n

�xx
, �Dp

s ��n�	−1 = p2,

�Dp
t ��n�	−1 = p2 +

16�z + �2��n

�xx
. �30�

C. Relation of zs,v with z and �

The dynamical spin susceptibility �s�� ,p� can be ob-
tained from5

�s�i�n,p� = �s
0 − Tzs

2�tr In
��zQ�p�tr I−n

� �zQ�− p� �31�

by the analytic continuation to the real frequencies,
i�n→�+ i0+. A similar expression is valid for the valley
susceptibility. Evaluating Eq. �31� in the tree level approxi-
mation with the help of Eqs. �29�, we obtain

�s�i�n,p� =
2zs

�

1 −

16zs�n

�xx
Dp

t ��n�� . �32�

In the case �s=�v=0 the total spin is conserved, i.e.,
��� ,p=0�=0. In order to be consistent with this physical
requirement, the relation

zs = z + �2 � z�1 + �� �33�

should hold. Similarly, the total valley isospin conservation
guarantees that

zv = z + �2 � z�1 + �� . �34�

Being related to the conservation laws, Eqs. �33� and �34� are
valid also for the observables

zs� = zv� = z��1 + ��� . �35�

Therefore, the three physical observables �xx� , z�, and ��
completely determine the renormalization of the theory �16�
at short length scales L�Ls ,Lv.

D. One-loop renormalization group equations

As is shown in Ref. 10, the standard one-loop analysis for
the action S�+SF yields the following renormalization group
functions that determine the zero-temperature behavior of the
observable parameters when the length scale L changes:

d�xx

d�
= �� = −

2

�
�1 + 15f���	 , �36�

d�

d�
= �� =

�1 + ��2

��xx
, �37�

d ln z

d�
= �z =

15� − 1

��xx
. �38�

Here, f���=1− �1+�−1�ln�1+��, �=ln L / l, and we omit
primes for brevity. Physically, the microscopic length l is the
mean free path length. It is the length at which the bare

parameters of the action �16� are defined. The renormaliza-
tion group equations �36�–�38� are valid at short length
scales L�Ls ,Lv.

As is well known,10 the solution of the RG equations �36�
and �37� yields the dependence of the resistivity �=1 /��xx
on �, which has a maximum point and ���� dependence that
monotonically increases with �.

IV. SU(2)ÃSU(2) SYMMETRY CASE

A. Effective action

In this and the next sections we assume that the spin split-
ting is much larger than the valley splitting, �s��v. Then, at
intermediate length scales Ls�L�Lv the symmetry-
breaking term Ssb becomes important. In the quadratic ap-
proximation it reads

Ssb =
izs�s

2
� dr �

nj,�j

�j,�j

��2 − �1�wn1n2;�1�2

�1�2;�1�2w̄n2n1;�2�1

�2�1;�2�1. �39�

The symmetry-breaking term modifies the propagators in Eq.
�29�, e.g., Dq

t ��n� becomes

�Dq
t ��n,�1,�2�	−1 = �Dq

t ��n�	−1 + i
8zs�s

�xx
��1 − �2� . �40�

Hence, the diffusive pole for the modes in Qnm;�1�2
��;�1�2 with

�1��2 is cut off at q�Ls
−1. Therefore, these modes are neg-

ligible at length scales L�Ls. As a result, Q becomes a di-
agonal matrix in the spin space. Then, according to Eqs. �31�
and �32�, the spin susceptibility has no renormalization on
these length scales, i.e.,

d�s

d�
=

dzs

d�
= 0, Ls� L� Lv. �41�

The absence of the spin susceptibility renormalization at
length scales L�Ls can be explained as follows. On the one
hand, �s is renormalized only due to the diffusion modes
with the total spin projection Sz=1 in the particle-hole
channel. On the other hand, these modes cannot typically
diffuse over distances larger than Ls and, therefore, they can-
not lead to infrared singularities in the spin susceptibility.

Let us denote Qnm;�1�2
��;11= �Qnm;�1�2

�� 	. Then, the action
�16� becomes S=S�+SF+Svb where

S� = −
�xx

32 �
�=

� d2r tr��Q��2 �42�

and

SF = 4�Tz�
�
� d2r tr ��Q� − ��

+ �T� d2r�
�n

�
�1,�2=

��1�2
tr In

�Q�1
tr I−n

� Q�2

− �T�2� d2r�
�n

�
�=

�tr In
�Q�� � �tr I−n

� Q�� . �43�

Now, the symbol tr stands for the trace over the replicas, the
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Matsubara frequencies, and the valley indices, whereas Tr
=�d2r tr. The action �43� corresponds to the following low-
energy part of the Hamiltonian describing electron-electron
interactions:

Hint =
1

2
� dr
 �

�1,�2

��1�s
�1�2��2 + ma�tm

a� ,

�� = �
�

�̄�
���
�, ma = �

����

�̄�
��ta����

�����
� . �44�

It is worth mentioning that Eq. �44� is in agreement with the
ideas of Refs. 34 and 35.

The symmetry-breaking part reads

Ssb = izv�v �
�=

� d2r tr �zQ�. �45�

At length scales L�Ls, the couplings ��1�2
are all equal to

each other, ��1�2
�L�Ls�=�= �z+�2� /4. However, the sym-

metry allows the following matrix structure of �̂:

�̂ = 
�++ �+−

�+− �++
� . �46�

As we shall see below, this matrix structure is consistent with
the renormalization group. Physically, �++ and �+− describe
interactions between electrons with the same and opposite
spins, respectively.

The action �42� and �43� is invariant under the global
rotations �Qnm;�1�2

�� 	��r�→u�
�1�3�Qnm;�3�4

��; 	��r��u−1	�
�4�2 in the

valley space for u��SU�2�. In order to preserve the invari-
ance under the global rotations

Q�r� → ei�̂Q�r�e−i�̂, �̂ = �
�n

�n
�In
�, �47�

where �n
� is the unit matrix in the valley space, the following

relation has to be satisfied:

z + �2 − 2�++ = 2�+−. �48�

Physically, this equation corresponds to the particle number
conservation and is completely analogous to Eq. �26�.

B. Perturbative expansions

In order to resolve the constraint Q
2 =1 we use the

square-root parametrization

Q = W + ��1 − W
2 . �49�

Then, the action �42� and �43� determines the propagators as
follows:

��wn1n2

�1�2;�1,�2�q�	��wn4n3

†�4�3;�4�3�− q�	�� =
32

�xx
D̂���, �50�

where

D̂ = ��1�3��2�4�n12,n34

�n1,n3

��1�3��2�4Dq��12,�1,�2�

−
32�T

�xx
�2�

�1�2��1�3��2�4Dq��12,�1,�2�Dq
t ��12,�1,�2�

+
32�T

�xx
�̂��1�2��1�2��3�4D̂q

s��12�Dq
t ��12�� �51�

with

�D̂q
s��n�	−1 = q2 +

16

�xx
�z + �2 − 2�̂��n, �52�

Dq
−1��n,�1,�2� = Dq

−1��n� + i
8zv�v

�xx
��1 − �2� , �53�

�Dq
t ��n,�1,�2�	−1 = �Dq

t ��n�	−1 + i
8zv�v

�xx
��1 − �2� . �54�

In the same way as in Sec. III C, the conservation of the total
valley isospin guarantees the relation zv=z+�2. The conser-
vation of the z component of the total spin, �+−�−, implies
that zs=4�+− �see Eq. �31�	. Therefore,

d ln �+−

d�
= 0 �55�

for the length scales Ls�L�Lv. Equation �55� originates
from the same mechanism as the absence of the renormaliza-
tion for the spin susceptibility �Eq. �41�	. As one can check,
the renormalization of �+− involves the diffusion modes with
the total spin projection Sz=1 in the particle-hole channel.
However, the diffusion pole in these modes is cut off at �s.
Therefore, they cannot lead to infrared singularities for the
�+− coupling.

C. One-loop approximation

Evaluation of the conductivity according to Eq. �23� in the
one-loop approximation yields

�xx� �i�n� = �xx +
28�

D�xx
�

p

p2T �
�m	0

min��m

�n
,1�

�Dp
t ��m�Dp��m + �n�

�
 �
�=

��̂D̂p
s ��m�	�� − 4�2Dp��m�� . �56�

Hence, we find

�xx� �i�n� = �xx +
27�

D�xx
�

p

p2T �
�m	0

min��m

�n
,1�

�Dp��m�Dp��m + �n��zDp
s ��m� − 6�2Dp

t ��m�

− �z + 2�2 − 4�++�D̃p
t ��m�	 , �57�

where
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�D̃q
t �n�	−1 = q2 +

64

�xx
�n�+−. �58�

Performing the analytic continuation to the real frequencies,
i�n→�+ i0+, in Eq. �57�, one obtains the dc conductivity in
the one-loop approximation:

�xx� = �xx −
28�

D�xx
�

p

p2�
0

�

d� Dp
2����zDp

s ��� − 6�2Dp
t ���

− �z + 2�2 − 4�++�D̃p
t ���	 . �59�

In order to compute z� and zv� we have to evaluate the ther-
modynamic potential � in the presence of the finite valley
splitting �v. In the one-loop approximation we find

T2��/T
�T

= 8NrT �
�n	0

�n�z +
4

�xx
�

p

�2�+−D̃p
t ��n�

− �z + �2�Dp
t ��n� + �z + �2� �

�1,�2

Dp
t ��n,�1,�2�

− z �
�1,�2

Dp��n,�1,�2��� . �60�

Following the definitions �24� and �25� of the physical ob-
servables, we obtain from Eq. �60�

z� = z +
8

�xx
�2�2 − �++��

p

Dp�0� �61�

and

zv� = zv�1 + 4�
 16

�xx
�3

�z + �2�T �
�n	0

�n�
p

��zDp
3��n� − �z + �2�Dp

t3��n�	� . �62�

We mention that the results �59�, �61�, and �62� can be ob-
tained with the help of the background field procedure36 ap-
plied to the action �42� and �43�.

D. One-loop RG equations

Using the standard method,37 we derive from Eqs. �59�,
�61�, and �62� one-loop results for the RG equations which
determine the T=0 behavior of the physical observables
when the length scale L changes. It is convenient to define
�v=�2 /z and �s=−1+4�+− /z. Then, for D=2 we obtain

d�xx

d�
= −

2

�
�1 + 6f��v� + f��s�	 , �63�

d�v

d�
=

1 + �v

��xx
�1 + 2�v − �s� , �64�

d�s

d�
=

1 + �s

��xx
�1 − 6�v − �s� , �65�

d ln z

d�
= −

1

��xx
�1 − 6�v − �s� . �66�

Equations �63�–�66� constitute one of the main results of the
present paper and describe the system at the intermediate
length scales Ls�L�Lv. We mention that the length scale l
involved in �=ln L / l is now of the order of Ls.

In Fig. 1 we present the projection of the RG flow in the
three-dimensional parameter space ��xx ,�v ,�s� onto the
��v ,�s� plane. There is an unstable fixed point at �v=0 and
�s=1. However, for the physical system considered the fixed
point is inaccessible since an initial point of the RG flow is
always situated near the line �v=�s. As shown in Fig. 2,
there are possible three distinct types of ���� behavior for
such initial points. Along the RG flow line a �Fig. 1�
that crosses the curve d described by the equation
1+6f��v�+ f��s�=0 the resistance demonstrates metallic be-
havior: � decreases as � grows. If we move along the RG
flow line b which intersects the curve d twice, then the re-
sistance develops a minimum and a maximum. Finally, the
resistance on the RG flow line c which has a single crossing
with the curve d has a maximum. Remarkably, in all three
cases, the behavior of the resistance is of the metallic type

1 2 3
Γs

1

2

3
Γv

�1

�1

a

b

c

FIG. 1. Projection of the RG flow in the three-dimensional pa-
rameter space ��xx ,�v ,�s� onto the ��v ,�s� plane for the
SU�2��SU�2� symmetry case �Eqs. �63�–�65�	. Dots denote the
line at which 1+6f��v�+ f��s�=0. The dashed line indicates the line
�v=�s �see text�.

Ξ

Ρ

a
b

c

FIG. 2. Schematic dependence of the resistance �=1 / ���xx� on
�. Curves a, b, and c correspond to the flow lines a, b, and c in Fig.
1 �see text�.
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for relatively large L. The reason for this metallic behavior
can be understood from the following arguments. At large �,
the coupling �v flows to large positive values whereas �s
→−1. Then, �+− /�++�1 /�v�1 and the RG equations
�63�–�66� transform into equations for a single-valley system
with conductance equal �xx /2. The metallic behavior of this
system is well known.5

V. COMPLETELY SYMMETRY-BROKEN CASE

A. Effective action

At the long length scales L�Lv the symmetry-breaking
term Svb becomes important. In the quadratic approximation
it reads

Svb =
izv�v

2
� d2r�

nj,�j

�j,�

��2 − �1��wn1n2;�1�2

�1�2 	��w̄n2n1;�2�1

�2�1 	�.

�67�

Hence, the modes in �Qnm;�1�2
�� 	� with �1��2 acquire a finite

mass of the order of zv�v. Therefore, they are negligible at
long length scales L�Lv. As a result, the matrix Q becomes
diagonal in the valley isospin space. The valley susceptibility
remains constant under the action of the renormalization
group on these length scales:

dzv

d�
= 0, L� Lv. �68�

The physical origin of Eq. �68� is analogous to the absence
of the renormalization of the spin susceptibility for L�Ls
�cf. Eq. �41�	. Let us define

Qj
�� = ��Q11

��	+,�Q−1−1
�� 	+,�Q11

��	−,�Q−1−1
�� 	−� . �69�

Then the action S=S�+SF reads

S� = −
�xx

32 �
j
� d2r tr��Qj�2 �70�

and

SF = �T� d2r�
j,k

�
�n

tr In
�Qj�̂ jk tr I−n

� Qk

+ 4�Tz�
j
� d2r tr �Qj . �71�

The couplings �̂ jk are elements of the following 4�4 matrix:

�̂ =�
�++ − �2 �̃++ �̃+− �+−

�̃++ �++ − �2 �+− �̃+−

�̃+− �+− �++ − �2 �̃++

�+− �̃+− �̃++ �++ − �2

� . �72�

Initially, at the length scale of the order of Lv, the coupling

�̃++=�++ and �̃+−=�+−. However, the more general structure
�72� is consistent with the renormalization group. It is worth-

while to mention that if the matrix �̂ is diagonal then the
theory �70� and �71� would include four copies of the singlet
U�1� theory studied in Refs. 7 and 8. The action �71� corre-
sponds to the following low-energy part of the electron-
electron interaction Hamiltonian:

Hint =
1

2
� dr �

���;���

��
����s����

��� + �t�ta���
���ta�����

����	��
�,

��
� = �̄�

���
�. �73�

In order to have invariance under the global rotations

Qj → ei�̂Qje
−i�̂, �̂ = �

�n

�n
�In
�, �74�

the following relation has to be satisfied:

z + �2 − �++ − �̃++ = �+− + �̃+−. �75�

B. Perturbative expansions

As above, in order to resolve the constraints Qj
2=1, we

shall use the square-root parametrization for each Qj: Qj

=Wj +��1−Wj
2. Then, the propagators are defined by the

theory �70� and �71� as

��wn1n2

�1�2�q�	 j�wn4n3

†�4�3;�4�3�− q�	k =
32

�xx
D̂ jk, �76�

D̂ = ��1�3��2�4�n12,n34

�n1,n3

Dq��12�

+
32�T

�xx
�̂��1�2Dq��12�D̂q

c��12�� , �77�

where

�D̂q
c��n�	−1 = q2 +

16

�xx
�z − �̂��n. �78�

The conservation of the z components of the total spin,
������

�, and the total valley isospin, ������
�, implies �see Eq.

�31�	 that zs=2�+−+2�̃+− and zv=2�̃+++2�̃+−. Since, for
L�Lv both zs and zv are not renormalized, we obtain

d�̃+−

d�
=

d�+−

d�
=

d�̃++

d�
= 0. �79�

Since both �̃+− and �+− coincide at the length scales L�Lv

and they are not renormalized, we shall not distinguish �̃+−
and �+− from here onward. If we introduce �s and �v such

that �+−= �̃+−=z�1+�s� /4 and �̃++=z�1+2�v−�s� /4 then
both �s and �v coincide with the corresponding couplings of
the previous sections at the length scales L�Lv.

C. One-loop approximation

Evaluating the conductivity with the help of Eq. �23� in
the one-loop approximation, we find
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�xx� �i�n� = �xx +
28�

D�xx
�

p

p2T �
�m	0

min��m

�n
,1�

�Dp��m + �n�Dp��m��
j

��̂D̂p
c��m�	 j j . �80�

Hence,

�xx� �i�n� = �xx +
28�z

D�xx
�

p

p2T �
�m	0

min��m

�n
,1�

�Dp��m + �n�Dp��m��Dp
s ��m�

− 2�vD̄p
t ��m� − �sD̃p

t ��m�	 , �81�

where

�D̄q
t ��n�	−1 = q2 +

32

�xx
��++ + �̃++��n. �82�

Performing the analytic continuation to the real frequencies
in Eq. �82�, we find

�xx� = �xx −
28�z

D�xx
�

p

p2�
0

�

d�Dp
2����Dp

s ���

− 2�vD̄p
t ��� − �sD̃p

t ���	 . �83�

As in the previous section, in order to compute z� we evalu-
ate the thermodynamic potential in the one-loop approxima-
tion. The result is

T2��/T
�T

= 8TNrz �
�n	0

�n�1 +
8

�xx
�

p

 �1 + �s�

2
D̃p

t ��n�

+ �1 + �v�D̄p
t ��n� − 2Dp��n��� . �84�

Hence, we obtain

z� = z +
16

�xx
��2 − �++��

p

Dp�0� . �85�

We mention36 that the results �79�, �83�, and �85� can be
obtained with the help of the background field procedure
applied to the action �70� and �71�.

D. One-loop RG equations

Equations �79�, �83�, and �85� allow us to derive the fol-
lowing one-loop results for the renormalization group func-
tions which determine the T=0 behavior of the physical ob-
servables when the length scale L changes �D=2�:

d�xx

d�
= −

2

�
�1 + 2f��v� + f��s�	 , �86�

d�v

d�
=

1 + �v

��xx
�1 − 2�v − �s� , �87�

d�s

d�
=

1 + �s

��xx
�1 − 2�v − �s� , �88�

d ln z

d�
= −

1

��xx
�1 − 2�v − �s� . �89�

The renormalization group equations �86�–�89� constitute
one of the main results of the present paper. We mention that
the length scale l involved in �=ln L / l is now of the order of
Lv and Eqs. �86�–�89� describe the system at the long length
scales L�Lv.

The projection of the RG flow for Eqs. �86�–�88� on the
�v-�s plane is shown in Fig. 3. There exits a line of the fixed
points that is described by the equation 2�v+�s=1. If the
initial point has large �v or �s then the RG flow line
crosses the curve that is determined by the condition
1+2f��v�+ f��s�=0. Therefore, the ���� dependence along
the RG flow line develops a minimum and will be of the
insulating type shown in Fig. 4.

VI. DISCUSSION AND CONCLUSIONS

The renormalization group equations discussed above
describe the T=0 behavior of the observable parameters
with changing length scale L. At finite temperatures
T��xx / �zLsample

2 �, where Lsample is the sample size, the tem-
perature behavior of the physical observables can be found
from the RG equations stopped at the inelastic length Lin
rather than at the sample size. Formally, it means that one
should substitute �T= 1

2 ln �xx / �zTl2� for � in the RG equa-
tions with �T obeying the following equation:38

1 2 3
Γs

1

2

3
Γv

a

�1

�1

FIG. 3. Projection of the RG flow in the three-dimensional pa-
rameter space ��xx ,�v ,�s� onto the ��v ,�s� plane for the completely
symmetry-broken case �Eqs. �86�–�88�	. Dots denote the line at
which 1+2f��v�+ f��s�=0 �see text�.

Ξ

Ρ

FIG. 4. Schematic dependence of the resistance �=1 / ���xx� on
� along the flow line a in Fig. 3 �see text�.
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d�T

d�
= 1 −

1

2

d ln z

d�
. �90�

Having in mind Eq. �90�, we find that the T behavior of the
resistivity at B=0 is described by Eqs. �36� and �37� for
T��v and Eqs. �63�–�65� with interchanged �v and �s for
�so

−1 ,�v
−1�T��v. The experimental data in Si-MOSFETs

suggest that the valley splitting �v 1 K and it depends
weakly on the electron concentration.13,14,39 The intervalley
scattering rate in Si-MOSFETs has been recently extracted
from the data on the weak-localization magnetoresistance.24

It was found that 1 /�v is of the order of hundreds of mil-
likelvins. However, the experiments of Ref. 24 were limited
to the case of electron concentrations at least four times
larger than the critical one. The estimate for the intervalley
scattering rate for electron concentrations near the metal-
insulator transition is not known at present. The experiments
in Si-MOSFETs on the magnetoresistance in parallel mag-
netic field demonstrate no significant anisotropy for different
bias current orientations with respect to the direction of the
magnetic field.40 This indicates a negligible role of the spin-
orbit interaction and, therefore, spin-relaxation processes for
the two-dimensional electron system in Si-MOSFETs.

In what follows, we assume that �v�Tmax
�I� where Tmax

�I�

denotes the temperature of the maximum point that appears
in ��T� according to the RG equations �36� and �37�. For
example, in Si-MOSFETs the value of Tmax

�I� is about several
kelvins.41 Then, depending on the initial conditions at
T�1 /� two types of ��T� behavior are possible as is shown
in Fig. 5. The curve a represents the typical ��T� dependence
that was observed in transport experiments on two-valley 2D
electron systems in Si-MOS samples2 and n-type AlAs quan-
tum wells.42,43 Surprisingly, other behavior with two maxi-
mum points is possible, as illustrated by curve b in Fig. 5. So
far, this interesting nonmonotonic ��T� dependence has been
neither observed experimentally nor predicted theoretically.
At very low temperatures T��v, the metallic behavior of
��T� dominates even in the presence of the valley splitting.

In the presence of a sufficiently low parallel magnetic
field �s�Tmax

�I� , ��T� behavior of three distinct types is pos-
sible as plotted in Fig. 6. In all three cases, the ��T� depen-
dence has a maximum point at temperature T=Tmax

�I� and is of
the insulating type as T→0. As follows from Fig. 2, in the

intermediate temperature range, when T is between �s and
�v, the metallic �curve a�, insulating �curve b�, and non-
monotonic �curve c� types of ��T� behavior emerge. As a
result, the ��T� dependence with two maximum points has to
exist in the presence of B.

For high magnetic fields such that �s	Tmax
�I� , the maxi-

mum point at T=Tmax
�I� is absent, and two types of ��T� be-

havior are possible as is shown in Fig. 7. If Tmax
�II� ��v, then

the dependence of the resistivity is monotonic and insulating;
see the curve a in Fig. 7. Here, Tmax

�II� denotes the temperature
of the maximum point that appears in the resistivity in ac-
cordance with the RG equations �63� and �64�. In the oppo-
site case Tmax

�II� 	�v, a typical ��T� dependence is illustrated
by the curve b in Fig. 7. Therefore, if the valley splitting is
sufficiently large, i.e., �v	Tmax

�II� , then monotonic insulating
behavior of the resistivity appears in a parallel magnetic field
which corresponds to �s�Tmax

�I� . This is the case for experi-
ments on the magnetotransport in Si-MOSFETs.11,41 How-
ever, if the valley splitting is small, �v�Tmax

�II� , then the maxi-
mum point of the ��T� dependence survives even in high
magnetic fields but shifts down to lower temperatures.

In addition to the interesting T dependences of the resis-
tivity, the theory predicts strong renormalization of the
electron-electron interaction with temperature. In order to
characterize this renormalization, we consider the ratio �v /�s

T

Ρ

T
max

�I�

a

b

�v

FIG. 5. Schematic ��T� dependence in the case of zero parallel
magnetic field �see text�.

T

Ρ

�v�s

a

b

c

T
max

�I�

FIG. 6. Schematic ��T� dependence in the presence of both spin
and valley splitting in the case �s��v. For the opposite case, the
behavior will be similar �see text�.

T

Ρ

�v �s

a

b

FIG. 7. Schematic ��T� dependence in the presence of a strong
parallel magnetic field: �v ,Tmax

�I� ��s �see text�.
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of valley and spin susceptibilities. In Fig. 8, we present the
schematic dependence of �v /�s on T for a fixed valley split-
ting but with varying spin splitting. At high temperatures
T��v ,�s, the ratio of the susceptibilities equals unity,
�v /�s=1. At low temperatures T��v ,�s, we find

�v

�s�
�1, �s��v,

=1, �s = �v,

	1, �s	�v.
� �91�

Therefore, the ratio �v /�s at T→0 is sensitive to the ratio
�v /�s. This can be used for the experimental determination
of the valley splitting in a 2D electron system.

Finally, we recall that we do not consider above the con-
tribution to the one-loop RG equations from the particle-
particle �Cooper� channel. As is well known,18–20 neither the

spin splitting nor the valley splitting changes the weak-
localization �cooperon� contribution to the RG equations
in the one-loop approximation. Therefore, the weak-
localization contribution to the RG equations discussed
above can be taken into account by the substitution of 1+2
for 1 in the square brackets of Eqs. �36�, �63�, and �86�. It
does not change the qualitative behavior of the resistivity, or
the valley and spin susceptibilities discussed above.

To summarize, we have obtained the temperature behav-
ior of such physical observables as the resistivity and spin
and valley susceptibilities in 2D electron liquids with two
valleys in the vicinity of the MIT and in the presence of both
a parallel magnetic field and the valley splitting. First, we
found that the metallic behavior of the resistivity at low tem-
peratures survives in the presence of only a parallel magnetic
field or the valley splitting. If both spin and valley splitting
exist, then the metallic � dependence crosses over to insulat-
ing behavior at low temperatures. Second, we have predicted
the existence of a nonmonotonic dependence of the resistiv-
ity at zero and finite magnetic field in which ��T� has two
maximum points. It would be an experimental challenge to
identify this regime.
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