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We have developed a numerical approach to compute real-time path integral expressions for quantum
transport problems out of equilibrium. The scheme is based on a deterministic iterative summation of the path
integral for the generating function of the nonequilibrium current. Self-energies due to the leads, being non-
local in time, are fully taken into account within a finite memory time, thereby including non-Markovian
effects, and numerical results are extrapolated both to vanishing �Trotter� time discretization and to infinite
memory time. This extrapolation scheme converges except at very low temperatures, and the results are then
numerically exact. The method is applied to nonequilibrium transport through an Anderson dot.
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I. INTRODUCTION

Quantum transport has attracted theoretical and experi-
mental research since it offers the possibility to investigate
quantum many-body properties at as well as out of thermo-
dynamic equilibrium.1 The ongoing improvement in minia-
turization down to the nanometer scale allows us to study
electron transport in ultrasmall devices, e.g., in single mol-
ecules or artificially designed quantum dots.2–7 There is a
broad variety of interesting physical effects, due to interac-
tions or the nonequilibrium conditions arising when a bias
voltage is applied to the source and drain electrodes.8–10

These range from Coulomb blockade via coherent �e.g., reso-
nant tunneling� transport to the Kondo effect, to name but a
few. While on the experimental side, progress stems from an
increased control of fabrication processes, many theoretical
works deal with refined approximation schemes applicable in
different parameter regimes. However, exact theoretical
results—either analytical or numerical—for nonequilibrium
quantum transport systems are rare, mainly because of the
lack of adequate methods allowing us to tackle such ques-
tions. There clearly is a considerable need for numerically
exact methods to describe nonequilibrium quantum transport,
both to check analytical �and usually approximate� ap-
proaches and to connect theory to experiment. Here, we
mean by nonequilibrium transport specifically those phe-
nomena that go beyond the standard approach of linear re-
sponse to the applied bias voltage.

In this work, we propose a numerical scheme denoted as
iterative summation of real-time path integrals �ISPI�, in or-
der to address quantum transport problems out of equilib-
rium. Many-body systems driven out of equilibrium are
known11–13 to acquire a steady state that may be quite differ-
ent in character from their ground-state properties. Details of
the steady state may depend on the nature of the correlations,
as well as on the way in which the system is driven out of
equilibrium. While there are a variety of nonperturbative
techniques in place to study equilibrium systems, many of
these methods cannot be extended to nonequilibrium systems
in a straightforward way.

Different approximations have been previously pursued in
order to tackle nonequilibrium situations. For instance, trans-
port through an Anderson dot in the Kondo regime has been

theoretically described along several different lines, e.g., for
the asymptotic low-energy regime by Fermi liquid theory,14

via interpolative schemes,15 using integrability concepts,16 or
by the perturbative renormalization group.12,17 Transport fea-
tures of the Anderson model have also been discussed by
perturbation theory in the interaction strength.18,19 Sophisti-
cated nonperturbative methods have been developed in order
to extract exact results out of equilibrium for special models,
where integrability is available. For instance, the interacting
resonant level model presently enjoys much interest.20–26

Universal aspects of nonequilibrium currents in a quantum
dot have been discussed in Ref. 21. In various perturbative
regimes, this model has been addressed by field theory
methods.23–26 However, the underlying theoretical concepts
are still under much debate, and partially conflicting results
were reported in literature, cf. Refs. 23–25.

The above discussion shows that precise numerical simu-
lation tools are in great demand in this field. Let us briefly
review the existing numerical methods available for nonequi-
librium transport. Much effort has been directed to the appli-
cation of renormalization group �RG� techniques to this
problem. For instance, a perturbative real-time RG analysis
of nonequilibrium transport has been performed,27 and steps
toward the appropriate generalization of the density matrix
renormalization group technique have appeared.28,29 In addi-
tion, the functional RG approach has been recently general-
ized to nonequilibrium.30 It forms a systematic and fast per-
turbative expansion scheme, yielding reliable results for
small interaction strengths, where the infinite hierarchy of
equations for the self-energy can be cut after the first few
steps. Moreover, a possible extension of Wilson’s numerical
RG approach to nonequilibrium has been discussed.31,32 An-
other line of attack considered numerically exact real-time
quantum Monte Carlo �QMC� simulations �for the corre-
sponding equilibrium case, see Refs. 33 and 34�. Due to the
sign problem, however, these calculations become increas-
ingly difficult at low temperatures. Refined multilevel block-
ing techniques35,36 allow then to achieve further progress, but
numerical simulations remain hard within this approach. �For
recent progress, however, see Ref. 37� Let us also mention
the flow equation method, which has been applied to study
the nonequilibrium Kondo effect.38 Finally, a very recent de-
velopment considers nonstandard ensembles to describe
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steady-state transport, but involves a numerically trouble-
some analytic continuation.39

Our ISPI approach, described in detail below, provides an
alternative and, in principle, numerically exact method to
tackle out-of-equilibrium transport through correlated quan-
tum dots. The method is deterministic and, hence, there is no
sign problem. It is based on the evaluation of the full non-
equilibrium Keldysh generating function, including suitable
source terms to generate the observables of interest. It builds
on the fact that the fermionic leads induce self-energies that
are nonlocal in time, but which decay exponentially in the
long-time limit at any finite temperature. Thus, a memory
time exists such that within this time span, the correlations
are exactly taken into account, while for larger times, the
correlations can be dropped. This permits us to construct an
iterative scheme to evaluate the generating function. An ap-
propriate extrapolation procedure allows us then to eliminate
both the Trotter time discretization error �the Hubbard–
Stratonovich �HS� transformation below requires to dis-
cretize time�, and the finite memory-time error, yielding fi-
nally the desired numerically exact value for the observables
of interest. The extrapolation procedure is convergent for not
too low temperatures, since then memory effects are expo-
nentially small for long times. If the extrapolation converges,
we thereby obtain numerically exact results for nonequilib-
rium quantum transport properties of interacting systems.

The ISPI scheme is implemented here for the example of
the well-known single-level Anderson impurity model,40–44

but appropriately modified, it can be applied to other quan-
tum dot models as well. The nonequilibrium current is cal-
culated from a generating function, represented as a real-time
path integral in the Keldysh formalism. After a Hubbard–
Stratonovich transformation employing an auxiliary Ising
spin field, all fermionic degrees of freedom �of the dot and
the leads� can be integrated out exactly, however, at the price
of introducing time-nonlocal self-energies for the leads and a
path summation over all Ising spin configurations. For this,
an iterative summation scheme is constructed, exploiting that
the time-nonlocal correlations in the lead self-energy effec-
tively decay exponentially at finite temperature T or bias
voltage V, thereby setting the characteristic memory time.
For larger times, the correlations are exponentially small and
will be neglected. The full time-discretized Keldysh Green’s
function �GF� of the dot then assumes a band matrix struc-
ture, where the determinant can be iteratively calculated us-
ing its Schur form. The scheme is constructed such that
within the range set by the memory time, the path integral is
exactly evaluated. The remaining systematic errors are the
Trotter time discretization and the finite-memory error. Both,
however, can be eliminated in a systematic way based on a
Hirsch–Fye-type extrapolation procedure. Based on the
above construction principle, our approach cannot be applied
at very low energies �T ,V→0�, where, fortunately, other
methods are available. For finite temperatures, the require-
ment of not too long memory times can be met, and the spin
path summation remains tractable.

The present paper is organized as follows. In Sec. II, we
introduce the model for the quantum dot coupled to normal
leads. We present the computation of the generating function
for the nonequilibrium Anderson model in Sec. III in the

presence of an external source term, which allows us to cal-
culate the current as a functional derivative. In Sec. IV, we
introduce the numerical iterative path integral summation
method, from which we obtain observables of interest. We
give a detailed discussion of the convergence properties of
our method and describe the extrapolation scheme in Sec. V.
For several sets of parameters, we will present results in Sec.
VI, followed by a discussion in Sec. VII. Throughout the
paper, we set �=kB=1.

II. MODEL

We consider the Anderson model40 given by the Hamil-
tonian

H = Hdot + Hleads + HT

= �
�

E0�n̂� + Un̂↑n̂↓ + �
kp�

��kp − �p�ckp�
† ckp�

− �
kp�

�tpckp�
† d� + H.c.� . �1�

Here, E0�=E0+�B with �= ↑ , ↓ =� is the energy of a single
electron with spin � on the isolated dot, which can be varied
by tuning a back gate voltage or a Zeeman magnetic field
term �B. The latter is assumed not to affect the electron
dispersion in the leads. The corresponding dot electron
annihilation/creation operator is d� /d�

† , with n̂��d�
†d� with

eigenvalues n�=0,1, and U denotes the on-dot interaction.
For later purpose, it is convenient to use the operator identity
n̂↑n̂↓= 1

2 �n̂↑+ n̂↓�− 1
2 �n̂↑− n̂↓�2, thereby introducing the shifted

single-particle energies �0��E0�+U /2, which yields the
equivalent dot Hamiltonian

Hdot = Hdot,0 + HU = �
�

�0�n̂� −
U

2
�n̂↑ − n̂↓�2. �2�

In Eq. �1�, �kp denotes the energies of the noninteracting
electrons �operators ckp�� in lead p=L /R=�, with chemical
potential �p= peV /2. Dot and leads are connected by the
tunnel couplings tp. The observable of interest is the �sym-
metrized� tunneling current I= �IL− IR� /2,

I�t� = −
ie

2 �
kp�

�ptp�ckp�
† d��t − pt

p
*�d�

†ckp��t� , �3�

where Ip�t�=−eṄp�t� with Np�t�= ��k�ckp�
† ckp��t. The station-

ary steady-state dc current follows as the asymptotic long-
time limit, I=limt→� I�t�. We have explicitly confirmed that
current conservation, IL+ IR=0, is numerically fulfilled for
the ISPI scheme. In the presence of a finite bias voltage, V
�0, the Keldysh technique45–47 provides a way to study non-
equilibrium transport. In this formalism, the time axis is ex-
tended to a contour with 	=� branches, see Fig. 1, along
with an effective doubling of fields. The Keldysh GF is
Gij
	
�t	 , t
��=−i�TC��i�t	�� j

†�t
����, where TC denotes the con-
tour ordering of times along the Keldysh contour, and i , j
=L ,R ,0 correspond to fields representing lead or dot fermi-
ons, respectively. We omit the spin indices here, remember-
ing that each entry still is a diagonal 2�2 matrix in spin
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space. In general, the four Keldysh components are linearly
dependent, such that G+++G−−=G+−+G−+. However, the
commonly used Keldysh rotation45,47 seems to offer no ad-
vantages here, and is not employed in what follows.

III. GENERATING FUNCTION

Let us then discuss the generating function, which con-
tains all relevant information about the physics of the sys-
tem. First, we want to integrate out the lead fermion fields,
and, in addition, perform a discrete Hubbard–Stratonovich
transformation. This allows us to integrate out the dot fields
as well, and we are then left with a discrete path summation.
We start with the fermionic path integral representation of
the generating function,

Z�� =	 D
�
�

d̄�,d�, c̄kp�,ckp��eiS�d̄�,d�,c̄kp�,ckp��, �4�

with Grassmann fields �d̄ ,d , c̄ ,c� �note that we use the same
symbols for fermion operators and Grassmann fields
throughout the paper for better readability�. We introduce an
external source term S �defined below in Eq. �6��, which
allows us to compute the current at measurement time tm,

I�tm� =  − i
�

�
ln Z��

=0
. �5�

We note in passing that it is also possible to evaluate other
observables, e.g., the zero-frequency noise, by introducing
appropriate source terms and performing the corresponding
derivatives. The action is S=Sdot+Sleads+ST+S, where

Sdot = Sdot,0 + SU = 	
C

dt
�
�

d̄��i�t − �0��d� +
U

2
�n↑ − n↓�2� ,

Sleads = 	
C

dt�
kp�

c̄kp��i�t − �kp + �p�ckp�,

ST = 	
C

dt�
kp�

tpc̄kp�d� + H.c.,

S =
ie

2 �
kp�

p�tpc̄kp�d� − t
p
*d̄�ckp���tm� . �6�

The interaction term SU in Eq. �6� does not allow us to di-
rectly perform the functional integration. Apart from this, all
other terms are quadratic in the Grassmann fields and thus
define the “noninteracting” �quadratic� part. Note that the

level shift +U /2 is here included in the noninteracting sector.

A. Noninteracting part

Before turning to the interacting problem, we briefly dis-
cuss the Keldysh GF of the noninteracting problem. Let us
first integrate out the lead degrees of freedom. We remain
with an effective action for the dot, which is nonlocal in time
due to the presence of the leads. In particular, after Gaussian
integration, the generating function reads

Zni�� =	 D
�
�

d̄�,d��ei�Sdot,0+Senv� �7�

with

Senv = 	
C

dt	
C

dt��
�

d̄��t���L�t,t�� + �R�t,t�� +
ie

2
��L�t,t��

− �R�t,t������t − tm� − ��t� − tm���d��t�� . �8�

For the source term, the physical measurement time tm can
be taken at one branch of the contour, see Fig. 1. As we fix tm
on the upper ��� branch, the ���� Keldysh element of the
source term self-energy vanishes, see the time-discretized
version below. The �p in Eq. �8� represent the leads, and their
Fourier transforms are explicitly given as 2�2 Keldysh ma-
trices,

�p��� = i�p�2f�� − �p� − 1 − 2f�� − �p�
2 − 2f�� − �p� 2f�� − �p� − 1

� . �9�

Here, we have used the fact that the leads are in thermal
equilibrium, f���=1 / �e�/T+1�. Moreover, we take the stan-
dard wide-band limit, with a constant density of states per
spin channel around the Fermi energy, ���F�, yielding the
hybridization �p=����F��tp�2 of the dot level with lead p. For
the sake of clarity, we assume from now on symmetric con-
tacts, �L=�R�� /2. The generalization to asymmetric con-
tacts is straightforward. In the next step, still for U=0, we
may also integrate over the dot degrees of freedom. We ob-
tain the noninteracting generating function

Zni�� = �
�

det�− iG0�
−1�t,t�� + �J�t,t��� , �10�

where G0�
−1�t , t�� follows from

G0���� = ��� − �0���z − �L��� − �R����−1

=
1

�2 + �� − �0��2

��� − �0� + i��F − 1� i�F

i��F − 2� − � + �0� + i��F − 1�
� ,

where �z is the standard Pauli matrix in Keldysh space, and
F= f��+eV /2�+ f��−eV /2�. Moreover, the self-energy for
the source term is obtained as

t 1

2Ntt 2N−1

t t

t

m N

N+1tt

t 2

_

+...

...

t

8

8
8_

_

FIG. 1. Keldysh contour: Every physical time has two contour
representatives on the branches �. The measurement time tm only
has a single representative on the upper branch.
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�J�t,t�� =
e

2
��L�t,t�� − �R�t,t������t − tm� − ��t� − tm�� .

�11�

Up to this point, we have discussed the noninteracting case.
In order to treat interactions, we now perform a Hubbard–
Stratonovich transformation.

B. Hubbard–Stratonovich transformation

Let us therefore turn back to the real-time action Sdot of
the dot in the presence of interactions, U�0, see Eq. �6�. For
later numerical purpose, it is beneficial to proceed with the
discussion in the time-discretized representation of the path
integral.48 In order to decouple the quartic term, we dis-
cretize the full time interval, t=N�t, with the time increment
�t. On each time slice, we perform a Trotter breakup of the
dot propagator according to ei�t�H0+HT�=ei�tHT/2ei�tH0ei�tHT/2

+O��t
2�, where H0=Hdot+Hleads. By this, we introduce a

Trotter error,49–51 which, however, will be eliminated from
the results in a systematic way,52,53 see below. Next, we use
a discrete Hubbard–Stratonovich transformation50,54,55 for
the interacting part, which introduces Ising-like discrete spin
fields sn

�= �sn
+ ,sn

−� on the 	=� branches of the Keldysh con-
tour �with sn

	=�1� on the nth Trotter slice. For a given Trot-
ter slice, we now use

e�i�tU�n̂↑ − n̂↓�2/2 =
1

2 �
s�=�

e−�t��s��n̂↑−n̂↓�. �12�

For U�0, noting that n↑−n↓=0,�1, the sum can be carried
out and gives the condition

cosh��t��� = cos��tU/2�� i sin��tU/2� .

The solution is ��=��� i�� with

�t�� = sinh−1 �sin��tU/2�, �t�� = sin−1 �sin��tU/2� .

�13�

Note that the overall sign of �� is arbitrarily chosen, but
does not influence the physical result. The uniqueness of this
Hubbard–Stratonovich transformation requires U�t��.
To ensure sufficiently small time discretizations, in all
calculations one should then obey the condition
max�U ,e�V� , ��0� ,T��1 /�t.

C. Total Green’s function and generating function

After the Hubbard–Stratonovich transformation, the re-

maining fermionic Grassmann variables �d̄� ,d�� can be inte-
grated out at the cost of the path summation over the HS
Ising spins �s�,

Z�� = �
�s�

�
�

det �-iG�
−1��s�,�� , �14�

with the total Keldysh GF written in time-discretized
�1�k , l�N� form as

�G�
−1�kl
	
��s�,� = �G0�

−1�kl
	
 + i�kl

J,	
 − i�t�kl�	sk
	�	
,

�15�

where 	 ,
=� labels the Keldysh branches, and the nonin-
teracting GF is

G0�,kl = 	
−�

� d�

2�
ei�t�k−l��G0���� . �16�

Note that G0��t , t�� depends only on time differences due to
time-translational invariance of the noninteracting part.
Moreover, the self-energy kernel stemming from the external
source term follows as

�kl
J,	
 =

e

2
��L,kl
	
 − �R,kl

	
 ���mk�	,+ − �ml�
,+� , �17�

where �p,kl=�p�tk− tl� and the measurement time is tm=m�t.

IV. ITERATIVE PATH INTEGRAL SCHEME

Let us now exploit the property �see, e.g., Ref. 56� that
each Keldysh component of G0�,kl decays exponentially at
long-time differences ��k− l�→�� for finite T, see Eq. �16�.
We denote the corresponding time scale �correlation or
memory time� by �c. In Fig. 2, we show typical examples of
Re G0↑,kl

−− for different bias voltages V. The exponential de-
crease with time is illustrated in the inset of Fig. 2�a� where
the absolute value �Re G0↑,kl

−− � is again plotted for the same
parameters, but in a log-linear representation. For large bias
voltages and low enough temperatures, e.g., at V�� and T
�0.2�, the decay is superposed by an oscillatory behavior,
see Fig. 2. Since the lead-induced correlation function de-
cays as �cos�eV�t− t�� /2� /sinh��T�t− t���, the respective
correlations decay on a time scale given by �c

−1

�max�kBT ,eV�. �The correlation function also has an addi-
tional �0 dependence of the decay characteristics.� Thus, the
exponential decay suggests to neglect lead-induced correla-
tions beyond the correlation time �c. This motivates an itera-
tive scheme, which exactly takes into account the correla-

-0.2

-0.1

0

0.1

0.2

G
--

0↑
(t

-t
’)

eV = 0
eV = 2Γ

eV = 0
eV = 2Γ

-6 -3 0 3 6
(t-t’) Γ

-0.2

0

0.2

G
--

0↑
(t

-t
’)

B = 0
B = 3Γ

-6 -3 0 3 6
(t-t’) Γ

ε0 = Γ
ε0 = 5Γ

eV = 0
eV = 2Γ

T = Γ

T = 0.1 Γ

eV = Γ eV = Γ

(a) (b)

(c) (d)

FIG. 2. �Color online� Real part of the Keldysh GF component
G0↑

−−�t− t�� for �a� �0=0, B=0, T=�, �b� �0=0, B=0, T=0.1�, �c�
�0=0, T=0.1�, eV=�, B=0 and B=3�, and �d� B=0, T=0.1�,
eV=�, �0=� and �0=5�. The inset in �a� shows the absolute values
of the same data in log-linear representation, highlighting the expo-
nential decrease.
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tions within �c, but neglects them outside. The exponential
decay has to be contrasted to the case T=V=0, where corre-
lations die out only algebraically, and our approach is not
applicable.

Let us then face the remaining path sum in Eq. �14�. In the
discrete time representation, we denote with t0=0� tN=N�t
the initial and final time, and tk=k�t, see Fig. 1. The dis-
cretized GF and self-energy kernels for given spin � are then
represented as matrices of dimension 2N�2N. For explicit
calculations, we arrange the matrix elements related to
Keldysh space �characterized by the Pauli matrices �� and to
physical times �tk , tl� as �� �k , l�. In particular, the ordering
of the matrix elements from left to right �and from top to
bottom� represent increasing times. The lead-induced corre-
lations thus decrease exponentially with growing distance
from the diagonal of the matrix. For numerical convenience,
we evaluate the generating function in the equivalent form

Z�� = N�
�s�

�
�

det D���s�,� , �18�

with D�=G0�G�
−1. Explicitly, this reads

D�,kl
	
 ��s�,� = �	
 − i�t�	G0�,kl

	
 sk
	 + i�

j,	�

G0�,kj
		� � jl

J,	�
.

�19�

The normalization prefactor N does not affect physical ob-
servables, and is put to unity. The time local nature of the
on-dot interaction is now present only in disguise, since the
matrix product lets Ising spins appear linewise. By construc-
tion, we have to sum over 2N auxiliary Ising spins, and the
total number of possible spin configurations is 22N.

Next, we exploit the above-mentioned truncation of the
GF by setting Dkl�0 for �k− l��t��c, where

�c � K�t �20�

is the memory time, with K the respective number of Trotter
time slices. The GF matrices then have a K-band structure.
Note that in the continuum limit, where K=N, �t→0 and
N→�, the approach is exact.

To prepare the basis for the iterative scheme, we now
transform the GF matrix to Schur’s form, which then allows
us to calculate the determinant in a straightforward way. In
general, a quadratic block matrix D given as D= � a b

c d �, with a
being invertible, can be represented in its Schur form, i.e.,
after one step of Gaussian elimination. Hence, by multiply-
ing from the left with a lower triangular matrix,

D̃ = LD = � In 0

− ca−1 Im
��a b

c d
� = �a b

0 d − ca−1b
� ,

where In�m� represent unit matrices of dimension n=dim a
�m=dim d�, and b and c do not have to be quadratic them-
selves. Clearly, the determinant is invariant under this trans-
formation. The �2,2� element in this block notation is often
referred to as the Schur complement of the matrix D. This
representation thus permits us to write the determinant as
det�D�=det�a�det�d−ca−1b�. We can now establish the itera-
tive scheme as follows. We start from the full GF in the
matrix representation as defined in Eq. �19�. After the

memory truncation, the N�N matrix �in time space� as-
sumes a band structure represented as

D � D�1,NK� =�
D11 D12 0 0 . . . 0

D21 D22 D23 0 . . . ]

0 D32 D33 D34 . . . ]

0 0 D43 D44 . . . 0

] ] ] ] � DNK−1NK

0 . . . . . . 0 DNKNK−1 DNKNK

� ,

where the single blocks are K�K-block matrices defined as
�l , l�=1, . . . ,NK�,

Dll� = �D�l−1�K+1,�l�−1�K+1 . . . D�l−1�K+1,l�K

] � ]

DlK,�l�−1�K+1 . . . DlK,l�K
� .

The number N of Trotter slices is always chosen such that
NK�N /K is integer. The elements Dkl are given in Eq. �19�,
with their dependence on the Ising spins sk

� kept implicit.
Each Dkl still has a 2�2-Keldysh structure, and a 2�2 spin
structure. Then, we rewrite the generating function �18� as

Z�� = �
s1
�,. . .,sN

�

det�D11�s1
�, . . . ,sK

���det�D�2,NK��sK+1
� , . . . ,sN

��

− D21�sK+1
� , . . . ,s2K

� ��D11�s1
�, . . . ,sK

���−1

�D12�sK+1
� , . . . ,s2K

� �� , �21�

where the NK−1�NK−1−matrix D�2,NK� is obtained from
D�1,NK� by removing the first line and the first column.

In order to set up an iterative scheme, we use the follow-
ing observation: To be consistent with the truncation of the
correlations after a memory time K�t, we have to neglect
terms that directly couple Ising spins at time differences
larger than the memory time. This is achieved by setting

Dl+2,l+1Dl+1,l�Dl,l�−1Dl,l+1Dl+1,l+2 → 0 �22�

within the Schur complement in each further iteration step.
Note that we do not neglect the full Schur complement but
only those parts that are generated in the second-next itera-
tion step. With this, we rewrite the generating function as

Z�� = �
s1
�,. . .,sN

�

det�D11�s1
�, . . . ,sK

���

� �
l=1

NK−1

det�Dl+1,l+1�slK+1
� , . . . ,s�l+1�K

� �

− Dl+1,l�slK+1
� , . . . ,s�l+1�K

� �

��Dl,l�s�l−1�K+1
� , . . . ,slK

� ��−1

�Dl,l+1�slK+1
� , . . . ,s�l+1�K

� �� . �23�

Then, one can exchange the sum and the product, and by
reordering the sum over all Ising spins, one obtains
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Z�� = �
sN−K+1
� ,. . .,sN

�

ZNK
�sN−K+1
� , . . . ,sN

�� , �24�

where ZNK
is the last element obtained from the iterative

procedure defined by �l=1, . . . ,NK−1�,

Zl+1�slK+1
� , . . . ,s�l+1�K

� �

= �
s�l−1�K+1
� ,. . .,slK

�

�l�s�l−1�K+1
� , . . . ,slK

� ,slK+1
� , . . . ,s�l+1�K

� �

�Zl�s�l−1�K+1
� , . . . ,slK

� � . �25�

The propagating tensor �l can be read off from Eq. �23� as

�l = det�Dl+1,l+1�slK+1
� , . . . ,s�l+1�K

� � − Dl+1,l�slK+1
� , . . . ,s�l+1�K

� �

��Dl,l�s�l−1�K+1
� , . . . ,slK

� ��−1

�Dl,l+1�slK+1
� , . . . ,s�l+1�K

� �� . �26�

Note that we use here the notion of tensor in the sense of a
multidimensional array and not in the strict mathematical
sense defined by the transformation properties of this object,
see also Ref. 57. The iteration starts with Z1�s1

� , . . . ,sK
��

=det�D11�s1
� , . . . ,sK

���.
The current is numerically obtained by evaluating Eq. �5�

for a small but fixed value of ; we have taken =0.001 for
all results shown below. By this, we obtain the full time-
dependent current I�tm� as a function of the measurement
time tm �0� tm�N�t�. At short times, this shows a transient
oscillatory or relaxation behavior, which then reaches a pla-
teau value from which we read off the steady-state current I.

V. CONVERGENCE AND EXTRAPOLATION
PROCEDURE

In order to render the scheme exact, we have to eliminate
the two systematic errors, which are still present up to this
point, namely, �i� the Trotter error due to finite time discreti-
zation �t= t /N, and �ii� the memory error due to a finite
memory time �c=K�t. The scheme becomes exact by con-
struction in the limit K→� and �t→0. To perform this limit
in a straightforward way is not possible due to the exponen-
tial dependence of the array sizes on K. However, unless
temperature is very low, we can eliminate both errors from
the numerical data in the following systematic way: �i� We
choose a fixed time discretization �t and a memory time �c. A
reasonable estimate for �c is the minimum of 1 / �eV� and 1 /T
�see above�. With that, we calculate the current I��t ,�c�, and,
if desired, the differential conductance dI��t ,�c� /dV �the de-
rivative is numerically performed for a small �V=0.01��.
The calculation is then repeated for different choices of �t
and �c. �ii� Next, the Trotter error can be eliminated by ex-
ploiting the fact that it vanishes quadratically for �t→0.49–51

For a fixed memory time �c, we can thus extrapolate and
obtain dI��c� /dV=dI��t→0,�c� /dV, which still depends on
the finite memory time �c. The quadratic dependence on �t is
illustrated in Fig. 3 for different values of U. Note that each
line corresponds to the same fixed memory time �c=0.5 /�.
�iii� In a last step, we eliminate the memory error by extrapo-

lating for 1 /�c→0, and obtain the final numerically exact
value dI /dV=dI��c→�� /dV. For the dependence on 1 /�c,
we empirically find a regular and systematic behavior as
shown in Fig. 4. The �c→� value is approached with cor-
rections of the order of 1 /�c, see Fig. 4. However, it should
be stressed that temperature and voltage affect the conver-
gence properties in different ways, as is already clear from
Fig. 2. Importantly enough, when T and V are such that the
extrapolation scheme described above converges, numerical
exactness is warranted.

We have implemented the iterative scheme together with
the convergence procedure on standard Xeon 2 GHz ma-
chines. Computations are then only possible for K�7 due to
the limited memory �random access memory� resources
available. Typical running times for the shown simulation
data are approximately 15 h for K=5. With a second, paral-
lelized version of the code, we have been able to take into
account up to 214 summands in Eq. �25�, corresponding to
K=7, within passable running times of a few days.

VI. RESULTS

Next, we discuss the results obtained by the application of
the iterative procedure to the Anderson model. As pointed
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FIG. 3. �Color online� Quadratic dependence of the Trotter error
as obtained in the convergence procedure for �t→0 for a fixed
memory time �c=0.5 /�. Parameters are �0=0, B=0, T=0.1�. The
extrapolated values are given in the figure.
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figure.
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out before, see Sec. III A, we consider the symmetric case,
�R=�L=� /2, with �L/R=�eV /2. In what follows, we mea-
sure energies in units of �. Unless noted otherwise, all error
bars for the shown data points, which are due to the Trotter
and memory extrapolation scheme, are of the order of the
symbol sizes in the figures. Our scheme yields the full time-
dependent current I�t�, including transients as well as the
asymptotic steady-state value. Figure 5 shows typical results
for the current I�t�, for two parameter sets, namely, �1� U
=4� ,eV=2� ,T=0.1� �black circles�, and �2� U=0.5� ,eV
=0.6� ,T=� �red squares�. The first set is of interest in the
context of the nonequilibrium Kondo effect, where the
Kondo temperature �for �0=0� is TK=��U /2 exp�−�U /8��;
for parameter set �1�, this yields TK=0.29�. For eV�TK,
analytical results for the steady-state current are
available,12,58 shown as a solid line in Fig. 5. This indicates
that the ISPI method is capable of approaching the nonequi-
librium Kondo problem. For both parameter sets, and for
many others not shown here, we observe that after a transient
relaxation behavior, I�t� settles at a plateau value, which then
defines the stationary current discussed in the following.

A. Validation of the algorithm: Comparison with exact
and perturbative results

As a simple warm-up check, let us briefly compare our
numerical results to the exact result for U=0. Figure 6�a�
shows the stationary current �obtained already at tm=10 /��
as a function of �0 for T=0.1� and eV=0.2�. The I-V char-
acteristics is shown in Fig. 6�b� for T=0.1� and �0=0. Both
cases illustrate that the numerical result coincides with the
exact one. Other parameter sets have been checked as well,
and agree with the well-known U=0 analytical solution.

Second, in order to validate the reliability of our code for
finite U, we compare the numerical results to a perturbative
calculation, where the interaction self-energy is computed up
to second order in U.59 In order to respect current conserva-
tion, this calculation is possible only at the electron-hole
symmetric point, �0=B=0.18 First-order terms give then no
contribution, and the self-energy corresponds to just one

diagram.59 For a detailed comparison, we plot mostly the
interaction corrections, �A�A�U�−A�U=0�, with A being
the current I, the linear conductance G, or the nonlinear con-
ductance dI /dV, respectively. Figure 7 shows the results for
�I as a function of the bias voltage for U=0.1� and U
=0.3�. For U=0.1�, we perfectly recover the perturbative
results, which confirms the reliability of our code even in the
regime of nonlinear transport. Clearly, the corrections are
small and negative, which can be rationalized in terms of
Coulomb blockade physics, as transport is suppressed by a
finite interaction on the dot.

For U=0.3�, the current decreases even more, and the
deviations between the ISPI and perturbative results are also
larger. The relative deviation for U=0.3� is already
�30% –35%, illustrating that perturbation theory is already
of limited accuracy in this regime. Although it well repro-
duces the overall tendency, there is significant quantitative
disagreement. The differences are even more pronounced for
U=�, as shown in Fig. 8 for �I �main� and for ��dI /dV�
�inset�. Here, second-order perturbation theory does not even
reproduce qualitative features.
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resentative parameter sets: �1� U=4�, eV=2�, T=0.1� �black
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B. Comparison with master equation approach

Next, we compare our numerical approach with the out-
come of a standard master equation calculation.41 The master
equation is expected to yield reliable results in the incoherent
�sequential� tunneling regime, T��, where a description in
terms of occupation probabilities for the isolated many-body
dot states is appropriate. The transport dynamics is then de-
scribed by a rate equation for the populations, where the
time-dependent rates are obtained from lowest-order pertur-
bation theory in �.41 The results are shown for U=� in Fig.
9, both for the nonlinear and the linear differential conduc-
tance interaction corrections. As temperature is lowered, in-
teraction effects become more important, as seen from the
exact ISPI results. This corresponds to the emergence of co-
herence effects for T��, which are clearly not captured by
the master equation in the sequential tunneling approxima-
tion. However, for T�4�, interaction corrections are washed
out, and the master equation becomes essentially exact, cf.
Fig. 9. Similarly, from our ISPI results, we observe that in-
teraction corrections are suppressed by an increasing bias
voltage as well. To give numbers, for T=1.25�, we find in

the linear regime �G=−0.073e2 /h, whereas ��dI /dV�
=−0.062e2 /h for eV=3�.

C. Small bias: eV™�

For sufficiently small bias voltage, the current is linear in
V, and we can focus on the linear conductance and its inter-
action correction �G. Figure 10 shows �G as a function of �0
for different magnetic fields B, taking U=� and T=0.1 �to
be specific, we have chosen eV=0.05��. For B=0, two
spin-degenerate transport channels contribute, and a single
resonant-tunneling peak at �0=0 results. The interaction cor-
rections are most pronounced on resonance, �0=0. For B
�0, the spin-dependent channels are split by ��=2B, result-
ing in a double-peak structure. The spin-resolved levels are
now positioned at �0�B due to the Zeeman splitting. Again,
the interaction corrections are largest on resonance, and the
double-peak structure of G��0� is transferred to �G��0�, cf.
Fig. 10. We find no evidence for an interaction-induced
broadening of the resonant-tunneling peak compared to the
noninteracting case. The width of the Lorentzian peak profile
for B=0 is determined by � at sufficiently low T, and broad-
ens as T increases. Here, the double-peak structure, with two
clearly separated peaks for finite B, is not yet fully devel-
oped. The two peaks largely overlap, and the distance of the
peaks is below the expected ��=2B, since tunneling consid-
erably broadens the dot levels. We note, however, that for
larger B, the correct peak spacing of ��=2B is reproduced
�data not shown�.

In order to illustrate the role of the interaction U, we show
the dependence of �G on U at �0=0 in the inset of Fig. 10.
For U=0, both levels contribute e2 /h to the conductance at
low temperatures, while for finite U these contributions are
reduced. The reduction increases with growing U, qualita-
tively consistent with previous results. The interaction cor-
rections are smaller away from resonance, see inset of Fig.
10, but they also grow with increasing U.

Next, we address the temperature dependence of the lin-
ear conductance �numerically evaluated for eV=0.05��. In
Fig. 11, we show G�T� for different values of U �up to U
=4�� at �=B=0. For U=1.2�, the deviation from the U=0
result is small in the considered temperature range. For larger
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U, deviations become more pronounced at low temperatures
where interaction becomes increasingly relevant. Up to
present, we have obtained converged results in the regime of
small bias voltages for interaction strengths U�4� for tem-
peratures above or close to the Kondo temperature, T�TK.
The corresponding Kondo temperatures are �see above� TK
=0.38� for U=3� and TK=0.293� for U=4�. In the regime
TK�T�10TK, we can compare our results to the result of
Hamann,60,61

G�T� =
e2

h
�1 −

ln�T/TKH�
�ln2�T/TKH� + 3�2/4�1/2� , �27�

for the linear conductance, where TKH=TK /1.2, see Fig. 11
�solid lines�. In Ref. 60, it has been shown that the results of
the numerical RG coincide with those of Eq. �27� in this
regime. Figure 11 illustrates that the agreement between the
two approaches is satisfactory and shows that the ISPI pro-
vides reliable results in the linear regime above or close to
the Kondo temperature. As already mentioned, convergence
is problematic in the linear regime for temperatures lower
than the Kondo temperature for larger values of U. This im-
plies that the equlibrium Kondo regime is difficult to explore
using the ISPI approach. However, the situation is more fa-
vorable for large bias voltages, where short to intermediate
memory times are sufficient, and we have achieved conver-
gence up to U=4�, see Fig. 5 and the next subsection.

D. Large bias: eVÐ�

Let us then turn to nonequilibrium transport at voltages
eV��. Here, the transport window is �eV, and a double-
peak structure for dI /dV emerges even for B=0, with dis-
tance eV between the peaks. As interaction corrections to the
nonlinear conductance are largest when a dot level is in reso-
nance with one of the chemical potentials of the leads, the
double-peak structure is again transferred to ��dI /dV�. This
can be observed in Fig. 12, where we show results for eV
=3� but otherwise the same parameters as in Fig. 10. For a
finite magnetic field, each peak of the double-peak structure
itself experiences an additional Zeeman splitting, resulting in
an overall four-peak structure. For B=� and the shown val-
ues of U, the two innermost peaks �closest to �0=0� overlap

so strongly that they effectively form a single peak at �0=0
again. The two outermost peaks are due to the combination
of the finite magnetic field and the bias voltage.

Increasing the on-dot interaction U leads to a reduction of
the differential conductance peaks compared to the noninter-
acting case, i.e., the interaction corrections are again largest
when the level energy matches the chemical potential in the
leads. This is observed in the inset of Fig. 12, for B=0 and
�0=−�, which is close to the peak maximum. Away from
resonance, the interaction corrections are reduced. Note that
the four-peak structure is already present in the noninteract-
ing case �with B�0� and, hence, is not qualitatively modi-
fied by U.

In the regime eV TK, we can compare our results to the
perturbative RG result12,58

I�V� =
3�2e2V

8h
ln−2�eV/T̃K� ,

with T̃K=2TK /��. Figure 5 shows the result for the station-
ary current for U=4� �where TK=0.29�� for eV=2�. The
perturbative current amounts to I�=2.28e� /h, while the ISPI
value is IISPI=2.25e� /h. The quite satisfactory agreement
suggests that ISPI is indeed a reliable new method that holds
promise for reaching the nonequilibrium Kondo regime. A
detailed study of the nonequilibrium Kondo effect using ISPI
will be given elsewhere.

Finally, we address the temperature dependence of the
nonlinear conductance dI /dV. ISPI results for eV=2�, �0
=B=0 are shown in Fig. 13. Again, as in the linear regime,
the conductance increases with lower temperatures, and fi-
nally saturates, e.g., at dI /dV=e2 /h for U=0 and eV=2�.
Clearly, the conductance decreases when the bias voltage is
raised. Increasing U renders this suppression yet more pro-
nounced, see also inset of Fig. 13 for the corresponding cor-
rections. At high temperatures, thermal fluctuations wash out
the interaction effects, and the interaction corrections die out.

VII. DISCUSSION AND CONCLUSIONS

In summary, we have introduced a scheme for the itera-
tive summation of real-time path integrals �ISPI�, and ap-
plied it to a prototypical problem of quantum transport
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through an interacting quantum dot coupled to metallic leads
held at different chemical potentials. After integrating out the
leads, a time-nonlocal Keldysh self-energy arises. Exploiting
the exponential decay of the time correlations at finite tem-
perature allows us to introduce a memory time �c beyond
which the correlations can be truncated. Within �c, correla-
tions are fully taken into account in the corresponding path
integral for the current generating function. Then, through a
discrete Hubbard–Stratonovich transformation, interactions
can be transferred to an auxiliary spin field, and an iterative
summation scheme has been constructed to calculate the
transport current. The remaining systematic errors due to the
finite time discretization and the finite memory time �c are
then eliminated by a refined Hirsch–Fye-type extrapolation
scheme, rendering the ISPI numerically exact. From this
construction, it is clear that the calculation is reliable for
temperatures above a certain interaction-dependent tempera-
ture scale. The latter depends also on the computational
power available, and vanishes in the absence of interactions.

The general scheme has been applied to the canonical
example of an Anderson dot with interaction U, for which
many features of the transport characteristics are well under-
stood. This allows us to carefully and systematically check
the algorithm. In the regime of linear transport, we have
recovered results from second-order perturbation theory in U
in the limit of very small interaction strength, but found sig-
nificant deviations already for small-to-intermediate values
of U. In the incoherent sequential regime, we recover results
from a master equation approach. Taking U /�=4, we have
furthermore reproduced the behavior of the linear conduc-
tance above the Kondo temperature and found satisfactory
agreement with numerical RG results. In addition, we have
investigated the regime of correlated nonlinear transport,
where, in our opinion, the presented method is most valu-
able. We have checked that for large voltage, known results
on the nonequilibrium Kondo effect are reproduced as well.

Up to now, we have achieved converged results for small-
to-intermediate U even at rather low temperatures and small
bias voltages. However, the strong-coupling regime of the
Kondo effect has not yet been fully captured, as the required
memory times become quite large, and, at the same time,
small �t are necessary because of the large U. This combined

requirement makes it difficult to reach convergence. Never-
theless, the nonequilibrium Kondo regime, representing an
intermediate-to-weak coupling situation, seems tractable by
the ISPI scheme. The applicability and accuracy of ISPI have
been demonstrated for bias voltages larger than the Kondo
temperature. We will present a detailed study of this interest-
ing regime elsewhere.

Our approach is, in fact, similar in spirit to the well-
established concept of the quasiadiabatic path integral
�QUAPI� scheme, introduced by Makri and Makarov57 in its
iterative version. This method has been developed to de-
scribe the dynamics of a quantum system coupled to a bath
of harmonic oscillators held at equilibrium, in order to obtain
exact results for quantum decoherence and dissipation, see
also Refs. 53 and 62. For a dipole-type system-bath cou-
pling, as it occurs, e.g., in the spin-boson model,56 the bath-
induced correlations are encoded in the Feynman–Vernon in-
fluence functional,63 which is solely a functional of a single
system operator, say x̂, which couples the system to the bath.
The very existence of this functional allows us to perform a
basis rotation to the eigenbasis of x̂ �called the discrete vari-
able representation �DVR��. Then, the influence functional
can be evaluated at the eigenvalues of x̂ during the numerical
calculation of the real-time path integral over x̂�t�. Moreover,
within the QUAPI scheme, the influence functional also gen-
erates correlations, which are nonlocal in time, but also de-
cay exponentially. This allows us to truncate them beyond a
memory time �mem, which conceptually coincides with our
correlation time �c. Then, in practice, numerical convergence
has to be achieved with respect to the memory time.53 After-
ward, the only remaining Trotter error can be completely
eliminated by extrapolation.53 In the present case of nonequi-
librium transport, several fundamental differences occur,
and, in fact, only the strategy of memory truncation can be
taken over. The major difference is that there exists no
simple Feynman–Vernon influence functional. While the lead
fermions can be integrated out, see Eq. �8�, the correspond-
ing Grassmann variables for the dot cannot be transferred to
a practical computational scheme along the lines of the
QUAPI method. Instead, here we integrate out all fermions,
at the expense of introducing auxiliary Ising spins via the HS
transformation. Then, ISPI performs a summation over these
Ising spins. Another difference is the form of the tunnel cou-
pling in the Hamiltonian. As two noncommuting system op-
erators d� and d�

† occur, no analog of DVR can be estab-
lished here.

Finally, we note that we have chosen the Anderson model
as a simple but nontrivial toy model for quantum transport in
order to establish and test the numerical algorithm. We be-
lieve that this approach, or modifications thereof, will be of
importance in numerical calculations of quantum transport
properties. Compared to other approaches, it has several ad-
vantages �e.g., numerical exactness, direct nonequilibrium
formulation, and no sign problem�, but is, on the other hand,
also computationally more costly than most other techniques,
especially for strong correlations and/or low energy scales
�temperature and voltage�. In any case, it goes without say-
ing that other interesting models for quantum transport exist,
and future work will be devoted to apply ISPI to those.
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FIG. 13. �Color online� Nonlinear differential conductance
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Inset: corresponding interaction corrections ��dI /dV�. �The Kondo
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