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We present an exact analytic result for the time-dependent and steady-state current and the distribution
function in a nonlinear electric field for an electron gas in a one-dimensional superlattice miniband by em-
ploying a relaxation-time approximation for inelastic scattering. Our transparent results clearly show the
condition for the onset of the Bloch oscillations, the field for the peak steady-state current, and the distinct roles
played by elastic and inelastic scattering for the damped oscillations and the steady-state current. The results
are consistent with a recent full microscopic numerical calculation.
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I. INTRODUCTION

Electrons driven by a high electric field E sweep through
a Bloch band and yield oscillations in k space as well as in
real space. The oscillations are damped before the electrons
sweep through the band many times because of scattering,
reaching a steady state and yielding the negative differential
conductance. This fascinating phenomenon has received
much attention in the past for its potential to yield terahertz
generation and also for applications to negative differential
conductance.1–14 Esaki and Tsu1 predicted that negative dif-
ferential conductance can be observed in semiconductor su-
perlattices without applying a huge electric field due to their
large lattice periods, small Brillouin zones, and narrow band-
widths. Investigations of Bloch oscillations were carried out
in terahertz emission,15–18 electro-optic detection,18,19 and a
four-wave mixing experiment.20

In an extremely high field wherein the potential energy
drop between the superlattice cells is larger than the band-
width, a full quantum mechanical approach in terms of
Wannier–Stark ladders is convenient and conduction occurs
through phonon-assisted hopping down the Stark ladder.12,21

In the opposite �but still nonlinear� limit, however, a semi-
classical formalism based on the Boltzmann equation is pref-
erable in studying the scattering effect. It is difficult to con-
sider the interband tunneling effect in this approach. This
effect is negligible if the band gap is very large. In this paper,
we present an exact analytic result for the time-dependent
current and the distribution function in the latter nonlinear
limit for a degenerate and nondegenerate electron gas in a
one-dimensional superlattice miniband by employing a
relaxation-time approximation for inelastic scattering with a
constant �i.e., energy independent� relaxation rate. The cur-
rent model is relevant to a quantum wire with a periodically
modulated potential. The final transparent analytic results
clearly show the distinct roles played by elastic and inelastic
scattering in competition with the driving force for the
damped Bloch oscillations and the steady-state current. They
also quantitatively show how scattering damps the Bloch os-
cillation, the condition for the onset of the oscillations, and
the oscillation frequency. The present approach can serve as
a guide in understanding the results of a more complicated
full numerical treatment. A recent full numerical study that
replaces the present relaxation-time approximation of inelas-

tic scattering by microscopic electron-phonon scattering pro-
cesses yielded results very similar to those predicted here.22

A similar relaxation-time approach based on an iterative
numerical solution10 was employed earlier for a three-
dimensional system for the steady-state current and yielded
results qualitatively similar to those based on a microscopic
treatment.8

The organization of the paper is as follows: The basic
model is introduced in Sec. II, wherein a general formalism
for the steady-state current is presented. The time-dependent
current as well as the steady-state current is obtained in Sec.
III, while the time-dependent distribution function is given in
Sect IV. The numerical studies of the results and discussions
are presented in Sec. V. Finally, a brief summary is given in
Sec. VI.

II. RELAXATION-TIME MODEL

While our model can be generalized to multibands, we
will study only the single-band situation for clarity. The
time-dependent rate equation for the distribution function
f�k , t� is given by

� f�k,t�
�t

−
eE

�

� f�k,t�
�k

= − �in�f�k,t� − f �0���k��

− �el�k��f�k,t� − f�− k,t�� , �1�

where �in is a phenomenological inelastic scattering rate as-
sumed to be a constant,10 f �0���k� is the Fermi function, and
�el�k� is the elastic scattering rate given by

�el�k� �
�

2�
�U�2k��2D��k� . �2�

Here, U�2k� and D��k� are the matrix elements for the back-
scattering and the density of states at an energy �k, respec-
tively. The total particle number is conserved in Eq. �1� at all
times. In this paper, we obtain the steady-state current for an
arbitrary scattering potential U�2k� and the time-dependent
current as well as the distribution function for a constant �el.
In the present one-dimensional lattice, the expression for
elastic scattering in Eq. �1� is exact, in contrast to the past
studies in three dimensions. In the latter case, a similar back-
scattering model �el�f�k , t�− f�−k , t�� was employed by Kti-
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torov el al.2 for a constant �el, neglecting elastic scattering to
other directions. Similarly, Ignatov et al.9 studied the elastic
momentum-relaxation model �el�f�kz , t�− f�−kz , t��, where
�kz is the crystal momentum in the direction of the electric
field.

Defining

F��x,t� = �f�k,t� � f�− k,t��/2, �3�

from Eq. �1� we obtain

�F+�x,t�
�t

−
�F −�x,t�

�x
= − �in�F+�x,t� − f �0���k�� , �4�

and

�F −�x,t�
�t

− �E
�F+�x,t�

�x
= − �̃�k�F −�x,t� , �5�

where �E=eEa /� , x=ka, a is the superlattice period, and

�̃�k� = �in + 2�el�k� . �6�

We now carry out the Laplace transformation for the above
expressions by employing the notation

F��x,s� = �
0

�

F��x,t�e−stdt . �7�

By using the initial conditions F −�x ,0�=0, F+�x ,0�
= f �0���k�, we find

�E

�F −�x,s�
�x

= ��in + s�F+�x,s� − �1 +
�in

s
	 f �0���k� , �8�

and

�E

�F+�x,s�
�x

= ��̃�k� + s�F −�x,s� . �9�

From Eqs. �8� and �9�, we then find

�2F −�x,s�
�x2 = A�x�F −�x,s� − C

� f �0����x��
�x

, �10�

where

A�x� = ��in + s���̃�k� + s�/�E
2 , C = �1 +

�in

s
	/�E. �11�

Equation �10� is solved by expanding

F −�x,s� = 

m=1

�

Fm
−�s�sin�mx� ,

Fm
−�s� =

2

�
�

0

�

F −�x,s�sin�mx�dx , �12�

A�x� = 

m=0

�

Am cos�mx� ,

Am =
2

��1 + �m,0��0

�

A�x�cos�mx�dx , �13�

and

f �0����x�� = 

m=0

�

fm
�0� cos�mx� ,

fm
�0� =

2

��1 + �m,0��0

�

f �0����x��cos�mx�dx . �14�

By inserting Eqs. �12�-�14� in Eq. �10�, we find

F̂ −�s� = − CB̂�s�−1 f̂ �0�, �15�

where F̂ −�s�=col�F1
−�s� ,F2

−�s� ,F3
−�s� , . . .�, f̂ �0�

=col�f1
�0� ,2f2

�0� ,3f3
�0� , . . .� are column vectors and B̂�s� is a

symmetric square matrix given by

B̂�s�n,m = �n2 + A0��n,m +
1

2
�− An+m + A�n−m��1 − �n,m�� ,

m,n = 1,2,3, . . . . �16�

If �el�k�=�el is independent of k, Eq. �16� simply reduces to

B̂�s�n,m= �n2+A0��n,m, yielding

Fn
−�s� = − C

nfn
�0�

n2 + A0
, A0 = ��in + s���in + 2�el + s�/�E

2 .

�17�

For a tight-binding band structure, we consider

��x� = − 

n=0

�

tn cos nx . �18�

The time-dependent current is given by

J�t� = −
e

�
�

−�

�

���x�/�� � x�f�k,t�dx

= −
e

��


n=1

�

ntn�
−�

�

sin nxf�k,t�dx .

By changing the sign x→−x for the interval �−� ,0� and by
using Eq. �3�, we find

J�t� = −
e

�


n=1

�

ntnFn
−�t�, Fn

−�t� =
2

�
�

0

�

sin nxF −�x,t�dx .

�19�

For later numerical applications, we will adopt a single mode
approximation and consider only the fundamental mode n
=1 for simplicity,
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��x� =
	

2
�1 − cos x� , �20�

where t0=−t1=−	 /2 in Eq. �18�. The Laplace transform of
J�t� is given by

J�s� = −
e

�


n=1

�

ntnFn
−�s� . �21�

The steady-state current equals

J�t = �� = lim
s→0

sJ�s� = −
e

�



n

ntn lim
s→0

sFn
−�s� , �22�

which can be found from Eq. �15�,

lim
s→0

sF̂ −�s� = −
�in

�E
B̂�0�−1 f̂ �0�. �23�

For the simple case wherein �el�k�=�el is independent of k,
Eq. �22� reduces in view of Eq. �17� to

J�t = �� =
e

�


n=1

�

n2tn

�in�Efn
�0�

n2�E
2 + �in�tr

, �24�

where �tr=�in+2�el is the total transport relaxation rate.

III. TIME-DEPENDENT CURRENT

In this section, we study the time-dependent current for
the special case wherein the scattering rates are independent
of k. In this case, we find from Eqs. �17� and �21�,

J�s� =
e

�
�1 +

�in

s
	


n=1

�
n2tn�Efn

�0�

n2�E
2 − �el

2 + �s + �t�2 , �25�

where �t=�in+�el is the total scattering rate. We find a
damped nonoscillatory current for the low-field regime
�nE


2 �0 and a damped oscillatory solution for the high-field
regime �nE�

2 �0 defined by

�nE
 = ��el
2 − n2�E

2 , n�E  �el,

�nE� = �n2�E
2 − �el

2 , n�E � �el. �26�

The inverse Laplace transform of Eq. �25� yields

J�t� =
e�E

�


n=1

�

n2tnfn
�0�

�� �in

n2�E
2 + �in�tr

+ exp�− �tt�� sinh��nE
t�
�nE


−
�in

�nE


�t sinh��nE
t� + �nE
 cosh��nE
t�
n2�E

2 + �in�tr
	,

n�E  �el. �27�

By replacing �nE
→ i�nE� in the above expression, we find

J�t� =
e�E

�


n=1

�

n2tnfn
�0�� �in

n2�E
2 + �in�tr

+ exp�− �tt�

�� sin��nE�t�
�nE�

−
�in

�nE�

�t sin��nE�t� + �nE� cos��nE�t�
n2�E

2 + �in�tr
	,

n�E � �el. �28�

The oscillatory contribution to the current in Eq. �28� ap-
pears starting from high values of n for a given electric field.
The steady-state solution represented by the first terms in
Eqs. �27� and �28� is identical to the expression in Eq. �24�.
Damped Bloch oscillations and the steady-state current were
also studied by previous authors in three dimensions.2,9,12–14

In the remaining part of this section, we study some in-
teresting properties of the time-dependent solution and the
steady-state current by employing the single mode approxi-
mation n=1. It is interesting to note that the oscillation of the
current is possible only in the high-field limit �E��el when
the Bloch frequency exceeds the elastic scattering rate. The
condition for the onset of the oscillation depends only on the
elastic scattering rate that tries to prevent the electrons from
completing the cyclic motion in the Brillouin zone by revers-
ing the direction of the motion. Visible oscillations of the
current can be seen only at high fields when the oscillation
rate �1E� is much larger than the damping rate �t. In the limit
E→0, the current reduces to the linear response result J
��tr. For high fields �E���in�tr, Eq. �24� reduces to

J�t = �� =
e�in	

2��E
f1

�0�. �29�

Namely, the steady-state current becomes linear in �in and is
independent of the elastic scattering rate. It can be shown
that, in general, the high-field current is linear in the strength
of the inelastic scattering rate, independent of elastic scatter-
ing, and inversely proportional to the field beyond the
relaxation-time approximation. The proof directly follows
from Eq. �1� as well from a microscopic expression for the
electron-phonon scattering rate for the first term therein. In
the high-field limit and for the steady state at t=�, we note
that the gradient of the distribution function �f�k , t� /�k in Eq.
�1� is very small, yielding a nearly uniform distribution
f�k , t�= f�+O�1 /�E�, where f�= f0

�0� is a constant defined in
Eq. �14�. Equation �1� can then be approximated to the first
order in 1 /�E as

� f�k,t�
�x

� −
�in

�E
�f �0���k� − f0

�0�� ,

yielding Eq. �29� via Eqs. �14� and �19�. The basic argument
for the absence of the effect of the elastic scattering on the
high-field current in general relies on the fact that the initial
equilibrium function fk

�0� as well as the steady-state distribu-
tion function �f� cancels out from the elastic scattering term
of the Boltzmann equation due to energy conservation.

The steady-state current in Eq. �24� becomes maximum at
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�E = ��in/�tr �30�

and equals

Jmax =
e	

4�
f1

�0���in�tr. �31�

The optimum current condition in Eq. �30� requires that the
Bloch frequency equal 1 /2� times the geometric average of
the inelastic scattering rate and the transport relaxation rate.
The maximum current becomes independent of the inelastic
scattering rate for �in��el but decreases as ��in /�el in the
opposite limit. Equations �30� and �31� satisfy the correct
scaling properties of Eq. �1�; multiplying the inelastic and
elastic scattering rates in Eq. �1� by a constant has the effect
of multiplying the field on the left hand side therein and that
of Eq. �30� by the same constant, while there is no other
effect for the steady-state current as in Eq. �31�. A recent full
numerical study that microscopically treated the first �inelas-
tic scattering� term of Eq. �1� in terms of electron-phonon
scattering yielded results numerically similar to those given
by Eqs. �24� and �29�–�31� in their scale dependences on the
inelastic and elastic scattering rates and �E.22

IV. TIME-DEPENDENT DISTRIBUTION FUNCTION

The time-dependent distribution function is given by

f�k,t� = 

n=0

�

�Fn
−�t�sin�nx� + Fn

+�t�cos�nx�� , �32�

where Fn
−�t� was defined earlier and Fn

+�t� is the expansion
coefficients for

F+�x,t� = 

n=0

�

Fn
+�t�cos�nx�,

Fn
+�t� =

2

��1 + �n,0��0

�

F+�x,t�cos�nx�dx .

�33�

From Eqs. �7�, �8�, �17�, and �33�, we find

Fn
+�s� = −

1

s

n2�E
2 fn

�0�

n2�E
2 + ��in + s���in + 2�el + s�

+
1

s
fn

�0�, �34�

and

Fn
−�s� = − �1 +

�in

s
	 n�Efn

�0�

n2�E
2 + ��in + s���in + 2�el + s�

.

�35�

The inverse Laplace transform of Eqs. �34� and �35� pro-
ceeds as before, yielding for the low-field case,

Fn
+�t� = −

n2�E
2 fn

�0�

n2�E
2 + �in�tr

�1 − exp�− �tt�
1

�nE


��t sinh��nE
t�

+ �nE
 cosh��nE
t��	 + fn
�0�,

n�E  �el, �36�

and for the high-field case,

FIG. 1. The current as a function of the time for the inelastic
scattering rate �in=5�1010 s−1 and the bandwidth 	=5 meV for
several values of ��el ,E�, where �el is the elastic scattering rate in
1010 s−1 and E is the electric field in V/cm.

FIG. 2. The steady-state current as a function of the field for
several values of energy-independent scattering rates ��in ,�el� in
units of 1010 s−1 and the bandwidth 	=5 meV. The upper right
inset shows the temperature dependences of f1

�0� �left axis� and the
current J�Z�T� �right axis� at high fields in the negative–
differential-conductance region. The quantity Z�T� is defined in the
text.
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Fn
+�t� = −

n2�E
2 fn

�0�

n2�E
2 + �in�tr

�1 − exp�− �tt�
1

�nE�

��t sin��nE�t�

+ �nE� cos��nE�t��	 + fn
�0�,

n�E � �el. �37�

For the low-field case, we also find

Fn
−�t� = − n�Efn

�0�� �in

n2�E
2 + �in�tr

+ exp�− �tt�� sinh��nE
t�
�nE


−
�in

�nE


�t sinh��nE
t� + �nE
 cosh��nE
t�
n2�E

2 + �in�tr
	,

n�E  �el �38�

and for the high-field case,

Fn
−�t� = − n�Efn

�0�� �in

�t
2 + n2�E

2 − �el
2 + exp�− �tt�� sin��nE�t�

�nE�

−
�in

�nE�

�t sin��nE�t� + �nE� cos��nE�t�
n2�E

2 + �in�tr
	,

n�E � �el. �39�

Note that the last term �fn
�0� in Eqs. �36� and �37� inserted in

Eq. �32� yields the equilibrium Fermi function f �0���k�.
The quantity fn

�0� can be evaluated for a general monoto-
nous band at low temperatures T��b, where �b is the band-
width, yielding

fn
�0� =

2an sin�nx��
n�1 + �n,0�sinh��an�

, �40�

where an=nkBT /���x��, ���x�=d��x� /dx, ��x����, and � is
the chemical potential. The current model yields ���x��
=	 sin�x�� /2.

V. NUMERICAL STUDIES AND DISCUSSIONS

For numerical studies, we consider the energy dispersion
in Eq. �20� for simplicity and assume a=100 nm. The quan-
tities fm

�0� in Eq. �14� are evaluated numerically. We first
present numerical results for the case wherein �el is a con-
stant. The time-dependent current given in Eqs. �27� and �28�
is displayed in Fig. 1 for �in=5�1010 s−1 for several values
of ��el ,E�, wherein �el is in units of 1010 s−1 and the electric
field is in V/cm. A large total scattering rate �t quickly damps
the current oscillation. Therefore, pronounced oscillations
are seen only for small �el and large E, such as, for example,
for ��el ,E�= �1,20� �solid curve�. The role of the lattice pe-
riod in our model is to set the scale of E through the quantity
Ea, which satisfies Ea�	. For the upper two dashed-dotted
and dashed–double-dotted curves, the oscillation is not vis-
ible because the oscillation frequency �1E� �defined in Eq.
�26�� is too small. The asymptotic currents for the lower
three curves corresponding to the high field E=20 V /cm are
similar in magnitude and become nearly independent of �el,

FIG. 3. The steady-state current as a function of the field for the
case wherein the elastic scattering matrix element is independent of
the momentum transfer for several values of the scattering rates
��in ,�el

� � in units of 1010 s−1. Here, �el
� is the elastic scattering rate at

the band center, 	 is the bandwidth, and � is the level damping
introduced to avoid the one-dimensional van Hove singularity in the
density of states.

FIG. 4. The evolution of the distribution function f�k , t� at sev-
eral time points �represented by the symbols, each lying on the
concomitant curve� in units of picosecond for the electric field E
=20 V /cm, the bandwidth 	=5 meV, and the energy-independent
scattering rates �in=5�1010 s−1 and �el=1010 s−1, relevant for the
solid curve in Fig. 1. The symbols in the inset show the current
from Fig. 1 at these time points for ��el ,E�= �1,20� where �el is in
1010 s−1 and E is in V/cm.
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while this is not true for the two upper curves corresponding
to the low field E=5 V /cm. The temperature dependence is
contained in the Fermi factor f1

�0� and also implicitly in �in.
The properties of the steady-state current J��� in Fig. 1

are studied in detail in Fig. 2, which shows the current as a
function of the field for several values of ��in ,�el�, which are
given in units of 1010 s−1. As seen from Fig. 2 and Eq. �24�,
J��� decays as ��in /E at high fields and becomes indepen-
dent of �el and linear in �in. The peak of the current becomes
sharper for smaller �in�tr. Its magnitude depends only on the
ratio �in /�tr as predicted by Eq. �31�, resulting in the same
peak heights for the thin dashed–double-dotted curve for
��in ,�el�= �1,1�, the thin solid curve for �5,5�, and the thick
solid curve for �10, 10�. The position of the peaks shifts as
E���in�tr. The solid curve in the upper right inset of Fig. 2
displays the temperature dependence of the prefactor f1

�0� for
the current on the left axis. At high fields, the IV curves
decay as ��inf1

�0� /E as mentioned above, where �in is propor-
tional to a factor �=1+nph. Here, nph is the phonon occupa-
tion number for the phonon of energy kBTph and is large, viz.
nph�1 at high temperatures T�Tph. The phonon wave num-
ber along the wire for inelastic scattering can be at most q�

=2� /a and is small. The characteristic phonon energy is
then on the order of �csqph�kBTph, where qph=�q�

2+q�
2 .

Here, q��1 /� is the transverse component of the phonon
wave vector and � is the radius of the wire. The quantity Tph
is estimated to be 3.1 K for �=20 nm and cs�5
�105 cm /s. The current then depends on the temperature
through the factor Z�T�=�f1

�0�, which is plotted on the right
axis of the inset of Fig. 2, showing a slow temperature de-
pendence except at low temperatures, similar to the results
obtained by previous authors for three dimensions.12,14

For energy-dependent �el�k�, only the steady-state current
can be readily evaluated in our model. Here, we consider the
case wherein the scattering matrix element U�q� is indepen-
dent of the momentum transfer q relevant for a short-ranged
scattering potential, yielding

�el�k� =
�el

�

�
�

0

� �dx�

�cos x − cos x��2 + �2 , �41�

where �=2� /	�1, � is the level damping introduced to
avoid the one-dimensional van Hove singularity, and �el

� is
the elastic scattering rate at the center of the band �i.e., x
=ka=� /2�. The Fourier coefficients are then given by

�el,n � �
0

�

�el�k�cos�nx�dx

= ��el
� �− 1�n/2�

0

�

J0�t�Jn�t�exp�− �t�dt,

n = even, �42�

where Jn�t� is the nth order Bessel function, and �el,n=0 for
odd integers. We calculate J��� from Eqs. �11�, �13�, �15�,
�22�, and �23�. The results are displayed in Fig. 3 for �
=0.01 for the same set of values of ��in ,�el

� � as those of
��in ,�el� studied in Fig. 2. The results are very similar not
only in the shapes and magnitudes of the curves �considering
the fact that �el

� is somewhat different from �el� but also on
the dependence of the peak heights and the positions on �in
and �el

� .
Figure 4 displays the evolution of the distribution function

f�k , t� in Eq. �32� of an electron gas driven by an electric

time (t, psec)

3.14

0

-3.14
0 10050

ka

1

0.5

0

f(k,t)

(a) (b)

FIG. 5. �Color� �a� An image plot �i.e., the top view of �b�� and �b� a three-dimensional surface plot of the distribution function f�k , t� as
a function of the time �in units of picosecond� for E=20 V /cm, 	=5 meV, N=105 cm−1, T=4 K, and the energy-independent scattering
rates �in=5�1010 s−1 and �el=1010 s−1, relevant for the curves in Fig. 4. The function f�k , t� evolves from the Fermi function f �0��k� at time
t=0 when the field is applied.
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field of 20 V/cm for several time values corresponding to the
time points �represented by the symbols� for the current ver-
sus the time curve �solid line� of Fig. 1 that is repeated in the
upper inset. The system starts in equilibrium �dotted curve�
at t=0. The distribution function is maximally shifted to the
left at t=4.7 ps �indicated by the solid circles in Figure 4
and the inset� as shown by the thick solid curve, yielding a
maximum current indicated by the solid circle in the inset.
The current becomes nearly zero at t=12 ps �hollow square�
and 19.5 ps �hollow triangle�. However, the distribution
functions �thin solid curve and dashed-dotted curve� are not
symmetric with respect to x=0. The dashed–double-dotted
curve represents the steady-state distribution function be-
yond t�100 ps.

Comparing the thin dotted and the thick solid curves, it is
interesting to note that f�k , t� is “rigidly” shifted, roughly
speaking, initially to the left, yielding the maximum current
at t=4.7 ps. During this initial short time period, scattering
plays a minor role compared to the acceleration and the drift
imposed by a strong field. Note that the electron distribution
function already spills over to the other side, i.e., ka�� at
t=4.7, causing the current to decrease and start to oscillate.
However, the maximum �minimum� value of f�k , t� de-
creases �increases� with time, as the electrons are scattered
toward the final steady state, resulting in the flatter distribu-
tion given by the dashed-double-dotted curve.

The oscillations of the distribution function and the decay
of the peak amplitude toward the steady state are clearly
demonstrated by an image plot of f�k , t� in Fig. 5�a� and a
three-dimensional surface plot in Fig. 5�b�. The slanted red
stripes in Fig. 5�a� and slanted ridges in Fig. 5�b� at early
times indicate nearly rigid drift motion of the populated band
of the electrons in k space from the initial Fermi distribution
inside −kF�k�kF toward the zone boundary at ka=−�,
which are spilling over to the other zone boundary at ka
=� with increasing time. These oscillations repeat for a
longer period of time for a smaller total scattering rate �t
according to Eq. �28�. Also, the oscillation frequency �1E�

=��E
2 −�el

2 becomes faster for a larger field and a smaller
elastic scattering rate. The red stripes in Fig. 5�a� and the

ridges in Fig. 5�b� eventually decay into a uniform steady
background due to diffusive scattering with time. The hori-
zontal dark red stripe in Fig. 5�a� and the reddish ridge along
the time axis in Fig. 5�b� in the region near ka�−1.5 for t
�40 ps represent a region with a relatively larger electron
population that emerges toward the steady-state. This region
of enhanced electron population is also seen near ka�−1.5
from the dashed-double-dotted curve in Fig. 4.

VI. CONCLUSIONS

We have presented an exact analytic result for the time-
dependent current and the evolution of the distribution func-
tion in a nonlinear electric field for a degenerate and nonde-
generate electron gas in a one-dimensional superlattice
miniband employing a relaxation-time approximation for in-
elastic scattering. Our results clearly show the distinct roles
played by elastic and inelastic scattering and demonstrate the
dynamics of the competition between the acceleration by the
electric field and scattering by phonons and static impurities
in a transparent way in producing the damped Bloch oscilla-
tions and the steady-state current. They also quantitatively
show how scattering damps the Bloch oscillation, the condi-
tion for the onset of the oscillations, and also the oscillation
frequency. The present approach can serve as a guide in un-
derstanding the results of a more complicated full numerical
treatment. A recent full numerical study that replaces the
present relaxation-time approximation of inelastic scattering
by microscopic electron-phonon scattering processes yielded
results very similar to those predicted here.22
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