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We investigate the exotic Peierls state in the one-dimensional organic compound �EDO-TTF�2X, wherein the
Peierls transition is accompanied by the bending of molecules and also by a fourfold periodic array of charge
disproportionation along the one-dimensional chain. Such a Peierls state, wherein the interplay between the
electron correlation and the electron-phonon interaction takes an important role, is examined based on an
extended Peierls–Holstein–Hubbard model that includes the alternation of the elastic energies for both the
lattice distortion and the molecular deformation. The model reproduces the experimentally observed pattern of
the charge disproportionation and there exists a metastable state wherein the energy takes a local minimum
with respect to the lattice distortion and/or molecular deformation. Furthermore, we investigate the excited
states for both the Peierls ground state and the metastable state by considering the soliton formation of
electrons. It is shown that the soliton excitation from the metastable state costs energy that is much smaller than
that of the Peierls state, where the former is followed only by the charge degree of freedom and the latter is
followed by that of spin and charge. Based on these results, we discuss the exotic photoinduced phase found
in �EDO-TTF�2PF6.
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I. INTRODUCTION

The quasi-one-dimensional molecular compound
�EDO-TTF�2PF6 �Refs. 1–5� �where EDO-TTF denotes eth-
ylenedioxytetrathiafulvalene� has been studied as one of the
central topics showing a photoinduced phase transition.6 The
1/4-filled �EDO-TTF�2PF6 system exhibits a Peierls insulat-
ing state, which is accompanied by a charge disproportion-
ation and the bending of the EDO-TTF molecules.4 Several
experiments indicate that this Peierls transition comes from
the cooperation effect of the molecular deformation, charge
ordering, and anion ordering. The charge disproportionation
along the one-dimensional chain exhibits a fourfold period-
icity given by a periodic array of �0, 1, 1, 0�; i.e., the pattern
is an alternation of two charge-rich sites and two charge-poor
sites. A remarkable feature of the insulating state is the large
bending of the EDO-TTF molecules, which does exist even
for the neutral single molecule. The degree of bending de-
pends on the valence of the EDO-TTF molecule. Each mol-
ecule in the high-temperature metallic phase has a valence of
+0.5, while the valences in the insulating state are estimated
as +0.9 and +0.1 for hole-rich and hole-poor sites,
respectively.5 In the insulating state, the degree of bending is
enhanced at the electron-rich site and is suppressed at the
electron-poor site; i.e., the bending �flattening� of the mol-
ecule is observed in the electron-rich �-poor� site. However,
the mechanism beyond the kinetic-energy gain is required in
order to explain the bending and/or flattening of the mol-
ecules.

Recent experimental studies have focused on the phase
transition induced by a weak laser pulse, i.e., the photoin-
duced phase transition, and suggest that �EDO-TTF�2PF6 ex-
hibits a gigantic photoresponse in the low-temperature
phase.1 In the photoinduced phase, the lattice distortion and
the molecular deformation are relaxed and the system shows
a metallic behavior. In addition, it has been discussed that the
photoinduced phase shows an exotic behavior and is differ-

ent from that in the high-temperature metal phase.2 From
these experiments, it has been argued that a new phase,
which is not possible as a ground state and is related to a
metastable state, is achieved by the photoexcitation. There-
fore, it is of particular interest to investigate the mechanism
of a metallic behavior in such a metastable state, which may
be related to the electronic correlation.

A theoretical investigation on the Peierls state in the one-
dimensional �1D� quarter-filled system has been performed
based on the Peierls–Hubbard model including the effect of
the onsite Coulomb repulsion U and the intersite one V.7–10 It
has been clarified that the spatial variation of the conven-
tional charge-density wave at the quarter-filled system is of
the site-centered type; i.e., the charge density takes a maxi-
mum at a site. On the other hand, in the Peierls state of
�EDO-TTF�2PF6, it takes a maximum at the location between
two neighboring sites; i.e., it is of the bond-centered type. It
has been shown, within the mean-field theory, that the ex-
perimentally observed pattern of charge disproportionation
can be reproduced by taking into account the alternation of
the elastic energies.11 It has also been shown that, due to the
effect of the elastic-energy modulation, the Peierls state and
the charge-ordered �CO� state with a twofold periodicity
compete with each other, and there exists the metastable state
wherein the energy takes a local minimum with respect to the
lattice distortion.11 The trigger of such a metastable state
comes from the competition between the electron correlation
and the electron-phonon interaction. The former favors the
CO state with a twofold periodicity, while the latter supports
the charge disproportionation with a fourfold periodicity. In
the present paper, we study both the Peierls ground state and
the metastable state in terms of the phase representation
based on bosonization. Furthermore, we also examine the
two kinds of excitations: �i� the excitation followed by the
lattice relaxation and �ii� the purely electronic excitations. In
§2, our model consisting of an electron-lattice system is
given and a representation based on bosonization is intro-
duced. The Peierls distortion with the bond order is taken by
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considering the alternation of the elastic constant for the lat-
tice distortion. In §3, the ground state is analyzed in terms of
the phase variables of spin and charge to show the condition
for the existence of the metastable state. Using an extended
Peierls–Holstein–Hubbard model treated in terms of the
bosonization method, we demonstrate how the first-order
transition occurs where the result is qualitative the same as
the previous mean-field result.11 In §4, the excitations from
both the Peierls state and the metastable state are examined
by calculating the soliton formation energy. It is shown that
the latter is much smaller than that of the former. Section V
is devoted to the summary and discussions.

II. MODEL FOR THE EDO-TTF COMPOUND

As a system exhibiting the correlated Peierls state, we
consider a tight-binding Hubbard model coupled with lattice
distortion and molecular deformation, through the electron-
phonon interaction. In this section, by focusing on the Peierls
state in �EDO-TTF�2PF6, we first examine the characteristic
features of the molecular deformation and the lattice distor-
tion of the EDO-TTF molecules, based on a quantum-
chemical calculation. Next, we derive the model Hamiltonian
of the 1D quarter-filled Peierls–Holstein–Hubbard model,
and we introduce the “phases” of the lattice distortion and of
the molecular deformation.

A. Molecular deformation in (EDO-TTF)2PF6

It has been confirmed that �EDO-TTF�2PF6 exhibits a
first-order transition at around 280 K.4 The overlap integrals
at room temperature �RT� and at 260 K have been estimated
by an extended Hückel calculation12 based on an x-ray struc-
ture analysis. At room temperature, there is a very weak
dimerization and the overlap integral is almost uniform along
the stacking direction. However, at 260 K, there is a strong
variation among the overlap integrals, given by S1, S2, and
S3, along the stacking direction.4

In order to make the situation clearer, we estimate the
energy levels of the highest occupied molecular orbitals
�HOMOs� for the flat and bent molecules and also estimate
the overlap integrals as a function of the lattice distortion
and/or molecular deformation. Here, we simply perform the
interpolation of the coordinates for the respective atoms in
the EDO-TTF molecules between RT and 260 K by using the

relation �x ,y ,z�= �x ,y ,z�RT+ ��x ,�y ,�z��, where � is the
distortion parameter and ��x ,�y ,�z���x ,y ,z�260 K
− �x ,y ,z�RT. For both cases of RT and 260 K, the y axis is
chosen along the stacking direction �the vertical axis in Fig.
1�a�� and the x axis is set to the projection of the molecular-
long direction to perpendicular to y �the horizontal axis in
Fig. 1�a��. At �=0 �1�, the atomic coordinates at RT �260 K�
are reproduced. Using this relation and the extended Hückel
method,12 we examine the � dependence of the HOMO en-
ergy levels �Fig. 1�b�� and the overlap integral �Fig. 1�c��.
Here, we neglect the flipping disorder of the terminal ethyl-
ene group4 and use only the coordinates of the atoms with a
high occupation rate. We found that the HOMO energy level
for the bent EDO-TTF molecule is sufficiently lowered due
to the molecular deformation and that the overlap integrals
do not change their sign as a function of �. We estimate the
transfer integrals from the overlap integrals by using the em-
pirical relation ti=Si�10 eV.12 At 260 K, the transfer inte-
grals are estimated as t1=442 meV, t2=230 meV, and t3
=131 meV. A notable feature of this compound is that the
electron-rich EDO-TTF molecule tends to bend and the hole-
rich EDO-TTF molecule tends to be flat �Figs. 2�b� and
2�c��,4 where the valence of the former �latter� is 0.1 �+0.9�.
The energy level of the HOMO is �F=−9.222 eV for the flat
EDO-TTF molecule, while �B=−9.442 eV for the bent mol-
ecule. This lattice distortion pattern shows a strong tetramer-
ization ut in addition to the lattice dimerization ud, which are
estimated from

t1 = t + gPut + gPud, �2.1a�

t2 = t − gPud, �2.1b�

t3 = t − gPut + gPud, �2.1c�

where gP is the electron-phonon coupling constant. The lat-
tice distortion parameter ut characterizes a modulation of
fourfold periodicity, i.e., the lattice tetramerization, and the
parameter ud characterizes a modulation of twofold period-
icity, i.e., the lattice dimerization. It can be found that the
strength of the lattice tetramerization is gPut=156 meV,
while that of the lattice dimerization is gPud=29 meV.

We note that the spatial variation of the lattice distortion
corresponds to neither the conventional 2kF charge-density
wave7,8 state nor the dimer-Mott+spin-Peierls �SP� state,9,10
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FIG. 1. �Color online� �a� Crystal structure of
�EDO-TTF�2PF6 at RT and 260 K. �b� The
HOMO energy level of the EDO-TTF molecules
as a function of the distortion parameter � �see
text�. �=0 corresponds to the case at RT and �
=1 to that at 260 K. �c� The overlap integral as a
function of �. At RT, all molecules are equivalent
and S1=S3, while S1�S2.
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in which the lattice tetramerization takes a maximum at t1
�i.e., gPut�0� and the lattice dimerization has a maximum at
t2 �i.e., gPud�0�. In the dimer-Mott+SP state, which occurs
in the presence of the lattice dimerization, the system be-
comes effectively half filling and each electron is localized at
the location of each lattice dimer. When the 2kF Peierls in-
stability is taken into account, such a paramagnetic insulator
changes into the nonmagnetic SP state.9,10 Then, one finds
gPut�0 and gPud�0 in the dimer-Mott+SP state. However,
in the case of �EDO-TTF�2PF6, both the lattice tetrameriza-
tion and the lattice dimerization take the maximum at t1 �i.e.,
gPut�0 and gPud�0�. This lattice distortion pattern in
�EDO-TTF�2PF6 is qualitatively different from that in the
dimer-Mott+SP state and has not been discovered in previ-
ous theoretical studies. In this sense, the Peierls ground state
of �EDO-TTF�2PF6 is quite exotic and is examined in the
present paper by constructing a model that can reproduce
such a ground state.

B. Model Hamiltonian

Based on the above consideration, we introduce a 1D ex-
tended Hubbard model coupled with the lattice through the
electron-phonon interaction. Since there are two molecules
within the unit cell, we introduce two sites referred to as l
=1 and l=2. In this study, we are based on the hole picture;
i.e., there is one carrier per two sites. Our Hamiltonian is
given by

H = He + He-ph + Hph, �2.2�

where the purely electronic part He is �j=1, . . . ,N�

He = − t�
j,s

�cj,1,s
† cj,2,s + H.c.� − t�

j,s
�cj,2,s

† cj+1,1,s + H.c.�

+ U�
j

�nj,1,↑nj,1,↓ + nj,2,↑nj,2,↓�

+ V�
j

�nj,1nj,2 + nj,2nj+1,1� − � �
j,l�=1,2�

nj,l, �2.3a�

the electron-phonon coupling term He-ph is

He-ph = �
j,s

gP�uj,1 − uj,2��cj,1,s
† cj,2,s + H.c.�

+ �
j,s

gP�uj,2 − uj+1,1��cj,2,s
† cj+1,1,s + H.c.�

+ �
j,l�=1,2�

gHv j,l�nj,l −
1

2
� , �2.3b�

and the phonon term Hph is

Hph =
KP

2 �
j

��uj,1 − uj,2�2 + �uj,2 − uj+1,1�2�

+
KH

2 �
j

�v j,1
2 + v j,2

2 � + �
j

F�uj,1,uj,2,v j,1,v j,2� .

�2.3c�

The parameter v j,l represents the degree of molecular defor-
mation wherein the shape of the molecule depends on its
sign; i.e., the molecule is bent for v j,l�0, while the molecule
is flat for v j,l�0. In Eq. �2.3a�, cj,l,s denotes the annihilation
operator of an electron with spin s�=↑ ,↓� at the lth site
within the jth unit cell and nj,l,s=cj,l,s

† cj,l,s, where t is the
transfer energy and � is the chemical potential. The param-
eters U��0� and V��0� denote the magnitudes for the on-
site and nearest neighbor interactions. In Eq. �2.3b�, gH is the
electron-phonon coupling constant of the on-site �Holstein�
type, and the Peierls-type electron-phonon coupling constant
is given by gP. In Eq. �2.3�, the parameters KH and KP are the
conventional elastic constant for the molecular deformation
and the lattice distortion, respectively. The quantity
F�uj,1 ,uj,2 ,v j,1 ,v j,2� represents the specific features in
�EDO-TTF�2PF6, which will be defined in Sec. II C.

Here, we note that the present Hamiltonian can reason-
ably account for the relation between the valence of the mol-
ecule and the molecular deformation v j,l. For simplicity, we
consider the case of the single molecule, wherein the Hamil-
tonian is given by

H1 = gHv�n −
1

2
� +

1

2
KHv2. �2.4�

By minimizing H1 with respect to v, we find that the lattice
distortion depends on the charge on the molecule, e.g.,
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FIG. 2. �Color online� �a� The HOMO energy
difference �	 and the magnitude of lattice tet-
ramerization and dimerization as a function of the
distortion parameter �. �b� Schematic view of
crystal structure of �EDO-TTF�2PF6� at 260 K
and �c� the corresponding energy diagram, where
�	=156 meV, t1=443 meV, t2=230 meV, and
t3=131 meV.
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v = 	+
gH

2KH
for n = 0

−
gH

2KH
for n = 1.
 �2.5�

Thus, we obtain that the neutral molecule �n=0� becomes
bent �v�0�; on the other hand, the ionic molecule �n=1�
becomes flat �v�0�.

C. Modifications of phonon term Hph

Here, we examine the characteristic features of the crystal
structure of �EDO-TTF�2PF6 �Fig. 1�a�� for the model that
reproduces the Peierls ground state. If F�uj,1 ,uj,2 ,v j,1 ,v j,2�
=0 in Eq. �2.3c�, the model reduces to the conventional
Peierls–Holstein–Hubbard model at quarter filling.7–10 Not-
ing two kinds of molecules in the unit cell at the high­-
temperature phase of the EDO-TTF compounds, we intro-
duce two kinds of elastic constants for the lattice distortion
and the molecule deformation, within the unit cell and be-
tween neighboring cells. Such a difference would play im-
portant roles on the low-energy properties. We consider the
term F�uj,1 ,uj,2 ,v j,1 ,v j,2�, given by

F�uj,1,uj,2,v j,1,v j,2�

= −
�KP

4 �
j

��uj,1 − uj,2�2 − �uj,2 − uj+1,1�2�

−
�KH

2 �
j

�v j,1 + v j,2�2, �2.6�

where the �KP term comes from the difference between the
elastic constants for the lattice distortion, within the unit cell
and between neighboring cells. The �KH term represents the
difference in the energy gain of the two-molecular deforma-
tion within the unit cell. The intrinsic property of the bending
of the EDO-TTF molecules would play important roles for
the lattice distortion since a pair of two molecules faces each
other in the unit cell.4 In fact, in the ordered phase, one pair
of molecules shows strong bending and another pair of the
molecules becomes more flat �Fig. 1�a��. Such an effect due
to the pairing of the EDO-TTF molecules can be taken into
account in our model by considering the additional terms of
Eq. �2.6�.

From the mean-field approach,11 it has been pointed out
that the effect of �KP is important to determine the multi-
stable states induced by the lattice distortion. The details of
the effects of �KP and �KH are discussed in Sec. III.

D. Lattice distortion and molecular deformation

In general, the lattice distortion uj,l in quarter-filled sys-
tems can be decomposed into the component with a twofold
periodicity �i.e., dimerization�, ud, and that with a fourfold
periodicity �i.e., tetramerization�, ut.

8,9,13 Even for the free-
dom of the molecular deformation, v j,l, it can be decomposed
into the component with a twofold periodicity, vd, and that
with a fourfold periodicity, vt. We introduce these quantities
by using the relations

uj,1 = + �− 1� j ut

�2
cos 
 −

ud

2
, �2.7a�

uj,2 = − �− 1� j ut

�2
sin 
 +

ud

2
, �2.7b�

v j,1 = + �− 1� j vt

�2
cos � −

vd

2
, �2.7c�

v j,2 = + �− 1� j vt

�2
sin � +

vd

2
. �2.7d�

The phases 
 and � determine the spatial pattern of the tet-
ramerizations ut and vt, respectively.

For convenience, we renumber the site index j as i=2j
+ �l−1�; accordingly, we rewrite cj,l,s→ci,s. By using Eq.
�2.7�, the Hamiltonian �2.2� is rewritten as

H = − �
i,s
�t − gPut cos��

2
i + 
 −

�

4
� + �− 1�igPud
�ci,s

† ci+1,s

+ H.c.� + �
i

gH
vt

�2
cos��

2
i − ���ni −

1

2
� − ��

i

ni

+ U�
i

ni,↑ni,↓ + V�
i

nini+1 + N
KP

4
ut

2 − N
�KP

4
ut

2 sin 2


+ N
KP

2
ud

2 + N
KH − �KH

4
vt

2 − N
�KH

4
vt

2 sin 2
 + N
KH

4
vd

2.

�2.8�

Now, we specify the phases of 
 and �, which reproduce
the Peierls state observed in �EDO-TTF�2PF6. The crystal
structure of �EDO-TTF�2PF6 for the metallic state at high
temperature shows an alternation of the bending of the
molecule, where all of the molecules are identical
crystallographically.4 For the insulating state at low tempera-
ture, the neutral molecule exhibits a large bending and the
ionic molecule becomes rather flat, where the adjacent two
molecules at the neutral sites are oppositely located with the
same degree of bending and becomes convex outside. The
transfer integral between adjacent bent molecules becomes
small, while that between adjacent flat molecules becomes
large. Such a pattern of molecular deformation and lattice
distortion can be reproduced by setting 
=�=� /4. When 

=�=� /4, the transfer-energy modulation is given by

�t3,t2,t1,t2,t3,t2,t1,t2� , �2.9�

for i=0,1 ,2 ,3 ,4 , . . ., where t1, t2, and t3 are the same as
those given in Eq. �2.1�. The schematic view of the modula-
tion pattern is shown in Fig. 3. The site-energy modulation is
given by
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1

2
gH�+ vt, + vt,− vt,− vt, + vt, + vt,− vt,− vt, . . .� ,

�2.10�

for i=0,1 ,2 ,3 ,4 , . . ., where the component of the molecular
deformation with the twofold periodicity vd vanishes for
�EDO-TTF�2PF6 �see also Fig. 3�.

III. BOSONIZATION REPRESENTATION

Here, we represent the Hamiltonian in terms of bosonic
phase variables.14 By setting a as the lattice constant, the
electron density operator can be represented as14

ni

a
=

1

4a
+

1

�

d
�

dx
−

2

�a
sin�2kFx + 
��cos 
�

−
2c

�a
cos�4kFx + 2
�� , �3.1�

where x= ia and c is a nonuniversal constant. The Fermi
momentum is kF=� / �4a�. The quantities 
� and 
� are
bosonic phase variables and Eq. �3.1� is justified by the mi-
croscopic representation of the field operator.

Here, we briefly recall the relation between the lattice
distortion and electron density modulation based on the
phase-variable representation. We tentatively assume c=0. If
the phases are locked at ��
�� , �
���= �� /4,0�, the expecta-
tion value of the charge-density operator are given by

�ni� =
1

4
−

2

�
sin�2kFx + �/4� . �3.2�

The pattern of charge modulation is given by �nj�= �� � � �
�¯� for j=0,1 ,2 ,3 ,4 , . . ., which is compatible with the lat-
tice distortion and molecular deformation given in Eqs. �2.9�
and �2.10�. This means that the tetramerization pattern ob-
served in �EDO-TTF�2PF6 is reproduced if the phases are
locked at 
=�=� /4 and ��
�� , �
���= �� /4,0�.

Based on the phase-variable representation, the bosonized
Hamiltonian14–16 is obtained as H=�dxH, where

H =
v�

4�
� 1

K�

��x
��2 + K���x���2
 +
v�

4�
� 1

K�

��x
��2 + K���x���2
 +
g1/4

2�2a2cos 4
� +
g�

2�2a2cos 2
�

−
2

�a
gPut cos�
� − 
�cos 
� −

1
�2�a

gHvt sin�
� + ��cos 
� +
U

�2ta
gPud sin 2
� +

U

2�2�2ta
gHvd cos 2
�

+
KP

4a
ut

2 −
�KP

8a
ut

2 sin 2
 +
KP

2a
ud

2 +
KH − �KH

8a
vt

2 −
�KH

8a
vt

2 sin 2� +
KH

8a
vd

2, �3.3�

In Eq. �3.3�, �� ��=� and �� is the phase variable which
is canonically conjugate to 
� and �
��x� ,���x���
= i� sgn�x−x��. The parameters v� and v� are the velocity of
the charge and spin excitations, and K� and K� are the
Tomonaga–Luttinger parameters. It is noted that K��1 for
the repulsive interaction and K�=1 for the paramagnetic
state. From the perturbative calculation,16 the coupling g1/4 is
given by g1/4�U2�U−4V�, where it is noticed that g1/4 is
positive for small V but becomes negative for large V. For
small V, the phase 
� is locked at �
��=� /4�mod � /2�;
while for large V, the phase is locked at �
��=0�mod � /2�.

In terms of the bosonized Hamiltonian, we examine the
effect of additional terms including �KP and �KH. First, we
discuss the state in the case of �KP=�KH=0. The locking
position of the phases 
 and � is determined by 
�, i.e., 

=
� and �=� /2−
�. Thus, the total Hamiltonian can be
expressed as

�H��K=0 =
v�

4�
� 1

K�

��x
��2 + K���x���2

+

v�

4�
� 1

K�

��x
��2 + K���x���2
 +
g1/4

2�2a2cos 4
�

+
g�

2�2a2cos 2
� −
2

�a
gPut cos 
�

−
1

�2�a
gHvt cos 
� +

U

�2ta
gPud sin 2
�

+
U

2�2�2ta
gHvd cos 2
� +

KP

4a
ut

2

+
KP

2a
ud

2 +
KH

8a
vt

2 +
KH

8a
vd

2, �3.4�

which can reproduce the previous results �e.g., Fig. 4 in Ref.

ut

vt

FIG. 3. �Color online� The modulation pattern of the transfer
integral induced by the lattice distortion ut and that of the onsite
energy level induced by the molecular deformation vt. In this view,
we have considered only the modulations of tetramerization, i.e., of
fourfold periodicity.
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8� qualitatively. The undistorted state can be obtained for a
small electron-phonon coupling of gP and gH. By increasing
gP only, we obtain a solution where ud becomes finite and the
phases 
� and 
 are locked at 
�=
=� /4�mod �� �if ud
�0� or at 
�=
=3� /4�mod �� �if ud�0�. This state corre-
sponds to the 4kF bond-order wave �BOW� state in Ref. 8.
By further increasing gP, we obtain a state wherein the tet-
ramerizations ut and vt become finite. For ud�0, the lattice
distortion �Eq. �2.7�� is given by

uj,1 = +
�ud�
2

+ �− 1� j ut

2
, �3.5a�

uj,2 = −
�ud�
2

− �− 1� j ut

2
. �3.5b�

Then, the resultant hopping integrals are given by

t1 = t − gP�ud� + gPut, �3.6a�

t2 = t + gP�ud� , �3.6b�

t3 = t − gP�ud� − gPut, �3.6c�

where t1= �t−gP�u1,1−u1,2��, t2= �t−gP�u1,2−u2,1��, and t3
= �t−gP�uj+1,1−uj+1,2��. We note that this state is nothing but
the bond-charge-density wave �BCDW� state in Ref. 8 and
the dimer-Mott+SP state in Ref. 9.

Next, we examine the effect of �KP and �KH. From Eq.
�3.3�, we can immediately find that if �KP�0, the phase 

tends to be locked at 
=� /4�mod ��. In addition, the phase
� also tends to be locked at �=� /4�mod �� due to
�KH��0�. From Eq. �3.3�, we can immediately find that the
most plausible set of the locking pattern of the phases in the
Peierls state is given by �
 ,� ,
� ,
��= �� /4,� /4,� /4,0�.
Thus, the corresponding charge modulation favors the bond-
centered type. In the following analysis, we restrict ourselves
to the case of 
=�=� /4. Another effect of �KP and �KH is to
decrease the elastic energy of the tetramerizations ut and vt;
i.e., a tetramerization is favorable compared to the dimeriza-
tion ud and the alternation vd. Thus, we discard ud and vd in
the following analysis. In this case, the total Hamiltonian can
be simplified as

H =
v�

4�
� 1

K�

��x
��2 + K���x���2

+

v�

4�
� 1

K�

��x
��2 + K���x���2

+

1

2�2a2V�ut,
�,
�� , �3.7�

where the potential term is given by

V�ut,
�,
�� = g1/4 cos 4
� + g� cos 2
�

− ut cos�
� −
�

4
�cos 
� +

Kph

2
ut

2. �3.8�

Here, we have rescaled �4�a��gPut+gHvt / �2�2��→ut and

Kph is evaluated from the variational method as Kph���K̃P

+ K̃H� / �K̃PK̃H�� / �32a�, where K̃P��KP−�KP /2� /gP
2 and K̃H

�4�KH−2�KH� /gH
2 . Hereafter we perform the classical treat-

ment for the qualitative understanding of the metastable state
at zero temperature.

IV. PEIERLS STATE VERSUS CHARGE-ORDERED STATE

In this section, the ground state and the metastable state
are examined by calculating the minimum energy as a func-
tion of ut. Since the phase variables 
�, 
�, and the lattice
distortion ut are spatially uniform, we can focus only on the
potential term V�ut ,
� ,
�� by discarding the first and sec-
ond terms of Eq. �3.7�. The ut dependence of the ground-
state energy is estimated by using the stationary conditions
for the phase variables, which are written as ��=� and ��

�V�ut,
�,
��
�
�

= 0. �4.1�

First, we consider the case of V=0. In this case, the cou-
pling constant of the commensurability energy g1/4 becomes
positive, and then the charge phase 
� is locked at 
�

opt

=� /4. As for the spin phase 
�, the optimized locking posi-
tion is 
�

opt=cos−1�ut /ut
�� for ut�ut

�, and 
�
opt=0 for ut�ut

�,
where ut

��4g�. Then, the minimum energy E0�ut�
�V0�ut ,
�

opt ,
�
opt� / �2�2a2� is given by

E0�ut� = 	
1

2�2a2��g1/4� − g� + �Kph

2
−

1

8g�
�ut

2
 for 0 � ut � ut
�

1

2�2a2��g1/4� + g� − ut +
Kph

2
ut

2
 for ut
� � ut. 
 �4.2�

From the coefficient of ut
2 of Eq. �4.2�, it is found that the

state ut=0 becomes unstable and the Peierls state is obtained
for g��1 / �4Kph�. On the other hand, for g��1 / �4Kph�, the
undistorted state �ut=0� is obtained, leading to the spin-

density-wave �SDW� state. The typical ut dependences of
E0�ut� are shown in Fig. 4.

For the case of large V, the coupling constant of the com-
mensurability energy g1/4 changes its sign �g1/4�0� and fa-
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vors the locking position 
�=0�mod ��, which is nothing
but the CO state with a twofold periodicity, i.e., �nj�
= ��� � �¯�. In this case, the region for the lattice distortion
is divided by two kinds of characteristic values ut

� and ut
�,

which are given by

ut
� � �64�g1/4�g�, ut

� � 4g�. �4.3�

For small ut��ut
� ,ut

��, the phases 
� and 
� are locked at
intermediate values, while the phase 
� takes �
� ,
��
= �� /4,0� , �−3� /4, ��� , . . ., for large ut��ut

� ,ut
��. For

the intermediate value of ut, there are two possibilities: �i�
ut

��ut
� and �ii� ut

��ut
�. In the present paper, we focus on the

former case, ut
��ut

� �which is satisfied for g1/4�0 and
�g1/4��g� /4�, since within the mean-field calculation,11 only
the former case is realized and there would be some subtle-
ties in the case of �g1/4��g� /4.

For case �i�, the locking positions for the phase variables

� and 
� are analytically determined as


�
opt = 	

1

2
sin−1� ut

2

ut
�2� for 0 � ut � ut

�

�

4
for ut

� � ut, 
 �4.4�

and


�
opt =	cos−1� ut

ut
�
�1

2
�1 +

ut
2

ut
�2�
 for 0 � ut � ut

�

cos−1� ut

ut
�� for ut

� � ut � ut
�

0 for ut
� � ut.



�4.5�

The schematic variations of 
�
opt and 
�

opt as a function of ut
are shown in Fig. 5.

Now, we examine the energy as a function of ut. By in-
serting Eqs. �4.4� and �4.5� into Eq. �3.8�, the energy with
fixed ut is given by E0�ut��V0�ut ,
�

opt ,
�
opt� / �2�2a2�, where

E0�ut� =	
1

2�2a2�− �g1/4� − g� + �Kph

2
−

1

16g�
�ut

2 −
ut

4

211�g1/4�g�
2 
 for 0 � ut � ut

�

1

2�2a2�+ �g1/4� − g� + �Kph

2
−

1

8g�
�ut

2
 for ut
� � ut � ut

�

1

2�2a2�+ �g1/4� + g� − ut +
Kph

2
ut

2
 for ut
� � ut.


 �4.6�

Typical ut dependencies of E0�ut� are shown in Fig. 6. For
ut�ut

�, the energy E0�ut� takes a same form given in Fig. 4.
It is noted that in the present case, the energy around ut=0

can become a local minimum; i.e., the undistorted state is
realized as a metastable state. The actual ground state is de-
termined in order to minimize the energy E0�ut� with respect

ut / ut
σ

E
0

/g
σ

−1 0 1

0

−0.1

2−2

FIG. 4. The energy E0�ut� as a function of ut, where ut
�=4g�

�0, and we have set g1/4 /g�= +1 /4. The elastic constant is fixed as
g�Kph=1 /3, 1/4, 1/5, and 1/8, from top to bottom. The critical point
is g�Kph=1 /4.

φρ

φσ

π

π

0

Peierls

CO

−π

−π

FIG. 5. �Color online� Positions of the locked phase fields 
�

and 
� in the limits of the Peierls and CO states. The arrow indi-
cates the schematic variation of the locking potential with increas-
ing ut.
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to ut. From Eq. �4.6�, we find that the Peierls state with finite
ut is obtained in the case of

g� + �g1/4� �
1

4Kph
. �4.7�

The amplitude of the lattice distortion is given by

ut
0 =

1

Kph
. �4.8�

In addition, the condition for the Peierls state with the meta-
stable CO state �ut=0� is given by

g� + �g1/4� �
1

4Kph
� 2g�. �4.9�

By further increasing Kph��1 / �4�g�+ �g1/4����, we find that
the energy at ut=0 becomes lower than that of finite ut; i.e.,
the first-order phase transition from the Peierls state into the
CO state occurs when 1 / �4Kph�=g�+ �g1/4�.

We note that the potential barriers from the Peierls state,
�EP�E0�ut

��−E0�ut
0�, and that from the CO state, �ECO

�E0�ut
��−E0�0�, are respectively given by

�EP =
1

2�2a2�− 2�g1/4� − 2g� +
1

2Kph

+ 29�g1/4�g�
2�Kph

2
−

1

16g�
�2
 , �4.10a�

�ECO =
1

2�2a229�g1/4�g�
2�Kph

2
−

1

16g�
�2

, �4.10b�

where ut
��25�g1/4�1/2g�

�Kph /2−1 / �16g�� is the point at
which the energy takes a local maximum.

Based on the calculation of the ground state energy, we
obtain the phase diagram on the plane of g1/4 and Kph shown
in Fig. 7. For g1/4�0 in which the CO state is absent, the
pure SDW state is obtained for large Kph and the Peierls state
is obtained for small Kph. When g1/4�0, the Peierls state is
obtained for 4Kph�1 / �g�+ �g1/4�� �region I� and the CO state
coexisting with the SDW state is obtained for 4Kph�1 / �g�

+ �g1/4�� �region II�. The metastable state at ut=0 is obtained

for Kph�1 / �8g�� in region I, while the metastable state at
ut�0 is obtained for Kph�1 / �4g�� in region II. By taking
into account the relations g1/4�U2�U−4V� and g��U,16 we
can obtain the ground-state phase diagram on the plane of V
and the elastic constant, which reproduces that of the mean-
field theory.11 In Sec. V, we examine the excited state in
region I where the metastable state exists at ut=0, as shown
in Fig. 6.

V. EXCITATIONS BY SOLITON FORMATIONS

In this section, we examine the excitations due to the
soliton formations. First, we derive the equations for spa-
tially dependent phases, which describe the variation from
those of the Peierls ground state and the metastable state
around ut=0. As shown in Sec. IV, the phase variables are
uniform in space in the ground state. For simplicity, we do
not consider the effect of the quantum fluctuations induced
by �� and ��. Since such effects give rise to a reduction
in the amplitude of the potential V�ut ,
� ,
��, it may be
qualitatively understood by introducing the effective cou-
pling constants given by g1/4

eff =g1/4 exp�−8�
�
2��, g�

eff

=g� exp�−2�
�
2��, and ut

eff=ueff exp�− 1
2 ��
�

2�+ �
�
2���, which

can be estimated using the renormalization group
treatment.13

We examine the classical Hamiltonian given by Hcl
=�dxHcl, where

Hcl =
v�

4�K�
�d
��x�

dx
�2

+
v�

4�K�
�d
��x�

dx
�2

+
1

2�2a2V�ut�x�,
��x�,
��x�� . �5.1�

Minimizing Eq. �5.1� with respect to ut�x�, 
��x�, and

��x�,17 we obtain the following equations:

ut�x� =
1

Kph
cos�
��x� −

�

4

cos 
��x� , �5.2a�

ut / ut
σ

E
0

/g
σ

−1 0 1

0

−0.1

2−2

FIG. 6. The energy E0�ut� as a function of ut, where ut
�=4g�,

and we have set g1/4 /g�=−1 /4, The elastic constant is fixed as
g�Kph=1 /3, 1/4, 1/5, and 1/8, from top to bottom. The transition
point is g�Kph=1 /5.

−0.2 0 0.2

0.1

0.2

0.3 SDW stateSDW+CO state

g1/4 / gσ

g σ
K

ph

Peierls state

FIG. 7. �Color online� Ground-state phase diagram on the plane
of g1/4 /g� and g�Kph. In the shaded region, there appears a meta-
stable state.
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0 =
�v�a2

K�

�2
��x�
�x2 + 4g1/4 sin 4
��x�

− ut�x�sin�
��x� −
�

4

cos 
��x� , �5.2b�

0 =
�v�a2

K�

�2
��x�
�x2 + 2g� sin 2
��x�

− ut�x�sin�
��x� −
�

4

sin 
��x� , �5.2c�

which are self-consistently determined. Note that substituting
Eq. �5.2a� into Eqs. �5.2b� and �5.2c�, we obtain the equa-
tions for the phase variables 
��x� and 
��x�.

In the conventional picture of the soliton excitations from
the Peierls ground state,18 the charge and/or spin solitons are
accompanied with the soliton of lattice distortion which con-
nects the two minima of the potential. Due to this effect, the
midgap state appears in the presence of the lattice distortion.
In the present case, however, we have another excitation due
to the lattice relaxation. As seen in Sec. IV, such an undis-
torted state �ut=0� can be locally stabilized due to the com-
petition between the Peierls state and the CO state. In this
section, first we verify that such a metastable state can be
stabilized within the reasonable choice of parameters. Next,
we also consider the purely electronic excitations by consid-
ering the antiadiabatic limit where the lattice distortion is
assumed to be uniform, and we estimate the magnitude of the
excitation gap. These states are calculated to comprehend the
state relevant to reflectivity measurements in the Peierls
phase and in the photoinduced phase in �EDO-TTF�2PF6.

A. Lattice relaxations: The appearance of the charge-ordered
domain in the Peierls state

We consider the case wherein both the Peierls state and
the CO state become locally stable. Even for the case in
which the true ground state is given by the Peierls state, it is
actually expected that the Peierls state coexists with the
metastable CO state without lattice distortion, in the photo-
excited phase of �EDO-TTF�2PF6�.

Figure 8 shows the coexisting state between the Peierls
state and the SDW+CO state, created by the soliton-
antisoliton formation connecting the different two states,
which is obtained by solving Eq. �5.2�. The parameters are
set as g1/4 /g�=−0.25 and g�Kph=0.2, which correspond to
the values on the boundary �see Fig. 7�. The parameters for
the kinetic part are chosen as K�=0.1, K�=1, and v�=v�

=�2t. There exists a domain of the metastable CO state with
�ut ,
� ,
��= �0,0 ,� /2� in the Peierls state with �ut ,
� ,
��
= �ut

0 ,� /4,0�. Note that the boundary between the Peierls
and the CO states is created by the formation of solitons for
charge, spin, and lattice distortion. Since such a coexisting
state is expected not only for the Peierls phase at finite tem-
perature but also for the state after the photoinduced phase
transition in �EDO-TTF�2PF6,1 it can be expected that such a
domain stays as long as the thermal fluctuations cannot go
over the potential barrier given by Eq. �4.10a�.

B. Purely electronic excitations: The antiadiabatic limit

Now, we examine the excited states induced only by elec-
tronic excitations, i.e., spin and charge soliton-antisoliton ex-
citations, while we assume that the lattice distortion remains
uniform in space. This situation could be related to the elec-
tronic excitations due to the probe light in reflectivity mea-
surements. Such a soliton excitation is also expected to play
crucial roles in the photoinduced phase transition in
�EDO-TTF�2PF6� due to the ultrafast photoresponse within
the order of picoseconds. In general,19 the lattice should lo-
cally relax under friction to the minimum of the adiabatic
potential, when photons are absorbed by electrons at a site.

To this end, we calculate Eqs. �5.2b� and �5.2c� with the
fixed uniform ut, for the Peierls state �ut=ut

0� and the CO
state �ut=0�. In the Peierls state corresponding to finite
ut�=ut

0�, the soliton-antisoliton excitation is characterized as

�
�,
�� = ��

4
,0� → �−

3�

4
,�� → ��

4
,0� . �5.3�

The explicit profile is shown in Fig. 9�a�. Thus, the
soliton-antisoliton excitation in the Peierls state carries the
topological charge Q= �1 and the spin Sz= �1 /2,20 which
is nothing but a single-electron excitation. The simple picture
is the following: A particle at the position of the soliton
moves away from the place of the antisoliton by breaking the
spin-singlet state. Then, one finds an emergence of a local
spin with a hole around the soliton kink and that of a local
spin with an extra electron around the antisoliton kink. On
the other hand, the soliton in the CO state is given by �Fig.
9�b��

0 50 100
0

0

1

u t
/u

0

φφφφρρρρ

φφφφσσσσ

ππππ /2

ππππ /4

x

(b)

(a)

COPeierls Peierls

φφ φφ ρρ ρρ
,φ,φ ,φ,φ

σσ σσ
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e
di

st
or

ti
on

FIG. 8. �Color online� �a� The lattice distortion for the coexist-
ing CO and Peierls states �the schematic view is also shown� and
�b� the corresponding soliton-antisoliton formation in the phase
variables 
� and 
�. We have set g1/4 /g�=−1 /4, Kph=1 / �5g��,
K�=0.1, K�=1, and v�=v�=�2t with g�=2t.
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�
�,
�� = �0,
�

2
� → �−

�

2
,
�

2
� → �0,

�

2
� , �5.4�

which carries the topological charge Q= �1 /2 and Sz=0. A
noticeable feature is seen from the fact that only the charge
excitation occurs. This is a typical domain excitation in the
CO state. The charge increases at the kink of the soliton and
the extra hole appears at the kink of the antisoliton.

As shown in Fig. 5, the locking location of the phase
variables 
� and 
� changes depending on the strength of
the lattice distortion ut. Even though the state with the inter-
mediate values of 0�ut�ut

0 is not stable, we can consider
the purely electronic soliton excitations in such a virtual state
and discuss the “ut dependence” of the soliton excitation
energy. The ut dependence of the ground-state energy and the
soliton-antisoliton energy is shown in Fig. 10. Here, we as-
sumed that the soliton and antisoliton do not form a bound
state �breather� and estimated the soliton-antisoliton forma-
tion energy by doubling the soliton energy in Fig. 9. From
Fig. 10, it is found that the soliton formation energy in the
CO state costs less energy compared with that in the Peierls
state. This is due to the fact that only the charge degree of
freedom participates in for the CO state. From this excitation
energy analysis, it can be found that both the Peierls state

�ut=ut
0� and the CO state �ut=0� have finite energy gaps to

the excited states; i.e., both states are insulators. However, in
the CO state, the system could have a semiconducting fea-
ture since the gap can become very small. The magnitude of
this energy gap depends on the choice of parameters, but it is
discussed by comparing the mean-field results in Sec. VI.

There are many choices of creating solitons in Fig. 9;
however, the present estimation has been done for the soli-
ton, which has the minimum energy for large ut limit and is
adiabatically connected to the small ut case. From this exci-
tation energy analysis, it can be found that the one-particle
excitations in the Peierls state could be related to the domain
excitations in the CO state. Such a connectivity would be
relevant to the photoinduced phase transition mechanism, but
this needs further investigation.

VI. SUMMARY AND DISCUSSIONS

We have examined the exotic Peierls state observed in
�EDO-TTF�2PF6 and analyzed the excitation from the Peierls
ground state and also the excitation from the metastable CO
state. The metastable CO state around the CO state has been
found by considering the modulation of the elastic constants
�KP and �KH and by considering the moderate strength of
the nearest neighbor repulsive interaction. The metastable
state, which coexists with the spin-density wave, exhibits
soliton excitations, having an energy much smaller than that
of the Peierls state. The energy of the ground state and the
excited state, which are obtained as a function of ut, exhibits
a common feature with the adiabatic potential in the
electron-phonon coupled system in one dimension.21 Consid-
ering the correspondence between such a situation to the case
of EDO-TTF, the present metastable state could be relevant
to the state of the photoinduced phase.

Here, we discuss the experimental findings on the reflec-
tivity in the photoinduced phase of �EDO-TTF�2PF6� based
on the present analysis. From the photoconductivity mea-
surement, the photoinduced phase exhibits a metallic behav-
ior, although it is not the same as that of high-temperature
metallic state, as shown by the reflectivity data.2 In the
present analysis, we obtained the metastable state without

0 50 100

φφφφρρρρ

φφφφσσσσ

+ππππ

x

(a) Peierls state
φφ φφ ρρ ρρ

,φ,φ ,φ,φ
σσ σσ φφφφρρρρ

φφφφσσσσ

φφ φφ ρρ ρρ
,φ,φ ,φ,φ

σσ σσ

0

−ππππ

+ππππ

0

−ππππ

(b) CO state

FIG. 9. �Color online� Soliton-antisoliton excitation of the
charge and spin phase variables, with fixed several values of �a�
ut=ut

0 �corresponding to the Peierls state� and �b� ut=0 �correspond-
ing to the CO state�. The soliton and/or antisoliton of 
� and 
�

connects two neighboring minima of V�ut ,
� ,
�� �see Fig. 5�. The
low-energy excitation in the Peierls state is a single-electron exci-
tation, while that in the CO state is a domain excitation. The sche-
matic views of the excitations for the respective cases are also
shown. We have set g1/4 /g�=−1 /4 and Kph=3 / �16g�� with g�=2t,
K�=0.1, and K�=1.
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FIG. 10. �Color online� Ground-state �E0� and soliton-
antisoliton formation �Es� energies as a function of ut, where we
have set g1/4 /g�=−1 /4 and Kph=3 / �16g�� with g�=2t, K�=0.1,
and K�=1.
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lattice distortion, which is not the normal state. Actually, in
such a state, the translational invariance is broken due to the
presence of the CO state, which gives a small soliton exci-
tation gap. Here, we estimate the magnitude of the soliton
gaps. From the mean-field approach,22 the commensurability
potential is estimated as C0 cos 4
�, where the amplitude is
given by C0�−0.03t for �U / t ,V / t�= �4,2�. On the other
hand, the amplitude of the cos 2
� potential23 is about
0.15t�0.3t, which are estimated from �V / t ,V2 / t�
��1.4,1.05���2,0�. Thus, we find g1/4 /g��−0.1�−0.2
and our choice of the parameter g1/4 /g�=−1 /4 in Fig. 10 is
not far from the mean-field results. Actually, we obtain
g� / �2�2a2�=−4g1/4 / �2�2a2�=0.12t from the mean-field re-
sult, C0�V=2t��−0.03t. Here, we note the soliton gap at ut
=0, which is of the order of �E�0�= �Esoliton�0�−E0�0��
�0.01t, and then �E�0��3 meV. On the other hand, the
soliton gap from the Peierls ground state is given by
�E�ut

opt�= �Esoliton�ut
opt�−E0�ut

opt���0.045t�14 meV, which
is much larger than that of the metastable state.

Finally, we comment on the quantum fluctuation on the
lattice distortion, which is not treated in the present calcula-
tion. Such an effect appears when the term � jPj

2 /2M is taken
into account for Eq. �2.3� with �uj , Pj��=� j,j�. The present
calculation corresponds to the limit of a large mass M. If we
naively consider a renormalization by a Debye–Waller
factor,24 the effective coupling constant gph is reduced due to

the quantum fluctuation. Thus, this fluctuation makes the
normalized constant Kph large and the region for CO in Fig.
7 is extended. For the limit of the light mass, which corre-
sponds to the antiadiabatic case, the averaged lattice distor-
tion vanishes but the crossover from the spin-density-wave
state to the spin singlet is expected with an increase in the
electron-phonon coupling constant gph���KphU�.25,26 Thus,
the metastable state, which coexists with the CO and spin-
density-wave states due to the electronic correlations, is ex-
pected to give rise to the conduction by forming the solitary
charge excitation if the quantum fluctuations of both the
electron and the phonon remain moderately small.
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