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We develop the plane-wave-based transfer-matrix method, which is a formalism that has been extensively
used to calculate the scattering of electromagnetic waves by usual linear photonic crystals, to solve the
quasi-phase-matched �QPM� second-harmonic generation �SHG� in two-dimensional �2D� nonlinear photonic
crystals. Using this method, we can calculate the conversion efficiency of high-order collinear and noncollinear
QPM second-harmonics. We apply this method to evaluate the SHG conversion efficiency in the 2D periodi-
cally poled LiNbO3 crystal with rectangular lattice. The high-order collinear and noncollinear QPM SHGs are
observed. The wavelengths at which various orders of QPM SHGs occur and their relative conversion effi-
ciencies predicted by the current theoretical method are in fairly good agreement with those found in experi-
ments. This indicates that the developed method is effective and efficient in handling nonlinear light diffraction
in nonlinear photonic crystals.
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I. INTRODUCTION

Since the experiment on the periodic reversion of the non-
linear susceptibility was demonstrated in 1991,1 there has
been increasing interest in the development of quasi-phase-
matched materials. Originally, the conception of quasi-phase-
matching �QPM� was restricted to one-dimensional �1D�
geometries,2–6 in which only reciprocal vectors in one direc-
tion exist; therefore, the frequency conversion of a single
sample is severely limited. In 1998, Berger proposed two-
dimensional �2D� nonlinear photonic crystal,7 which gives
out more reciprocal lattices than 1D structure. Afterward,
several experimental demonstrations of harmonic generation
in 2D nonlinear photonic crystals were successfully
presented.8–10

However, very few rigorous theoretical approaches have
been developed to quantitatively calculate the conversion ef-
ficiency in the 2D nonlinear photonic crystals. We have de-
veloped transfer-matrix method �TMM� to analyze the prob-
lem of second-harmonic generation �SHG� in a 1D
multilayer nonlinear optical structure.11 Wang and Gu12

solved the wave equation for small-signal sum-frequency
process in the 2D nonlinear photonic crystals by the Green’s
function method. However, the theory employs a free-space
Green’s function and thus cannot handle a finite length
sample with light scattering at its front and back surfaces. In
this paper, we will develop the plane-wave-based TMM,
which has been used to calculate the photonic band struc-
tures for 2D and three-dimensional photonic crystals,13 to
deal with frequency conversion in quasi-phase-matched ma-
terials. We will investigate in detail the plane-wave-based
TMM that can efficiently deal with SHG problem in 2D
nonlinear quasi-phase-matched materials and apply this ap-
proach to calculate the conversion efficiency for 2D periodi-
cal nonlinear photonic crystals with rectangular lattice. Com-
parison will be made between the theoretical results
calculated by this method and experimental results.

II. PLANE-WAVE-BASED TMM FOR SECOND-
HARMONIC GENERATION IN TWO-DIMENSIONAL
PERIODICAL NONLINEAR PHOTONIC CRYSTALS

We now consider a 2D nonlinear photonic crystal. The
nonlinear susceptibility ��2� of the sample is periodically
modulated on the yz plane, and the polarization direction of
the domains is along the x axis or inverse. The nonlinear
sample is a finite-thickness slab along the z-axis direction.
The extension in the lateral direction �y axis� is much larger
and is assumed to be infinite in our simulation. Here, we only
consider orthogonal-lattice structures. The formalism can be
readily extended to other lattice structures. Figure 1 illus-
trates a microscopic picture of the 2D poled nonlinear pho-
tonic crystal with rectangular lattice. The circular areas in the
picture are reversed domains, in which the polarization di-
rection of the domains is along the anti-x-axis, while in the
background area, the polarization direction of the domains is
along the x axis. The primitive lattice of the nonlinear pho-
tonic crystal has two unit vectors a1 and a2 along the z axis
and y axis, respectively. The corresponding reciprocal lattice
G has two unit vectors of b1 and b2. It is assumed that a
plane-wave laser beam is launched upon the sample from its
left side along the z-axis direction. We will consider a gen-
eral situation beyond the usual normal-incidence condition.
The inclined incident angle is denoted by � with respect to

x

y

z

FIG. 1. Optical micrograph of the etched 2D poled nonlinear
photonic crystal with rectangular lattice. The periods of the rectan-
gular lattice are, respectively, 13.64 and 8.48 �m.
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the z axis; thus, the incident wave vector is k10= �k10,y ,k10,z�.
When �=00, we return to the usual experimental situation of
normal incidence. The polarization of the incident electric
field is along the x axis. In the following, we solve the con-
version efficiency of this structure by the transfer-matrix
method.

In a nondepleted pump wave approximation, the electric
field of fundamental field �FW� in the medium can be ex-
pressed as

E1�y,z� = E1�z�exp�ik1,yy� = ��+ exp�ik1,z�z − z0��

+ �− exp�− ik1,z�z − z0���exp�ik1,yy� , �1�

where k1,y
2 +k1,z

2 =k1
2, k1=n1k10, and k10=� /c. � is the fre-

quency of FW. n1 is the refractive index of the material at the
FW frequency and c is the group velocity of light in vacuum.
z0 is the boundary of the sample and we set z0=0. �+ ��−�
represent the amplitude of the forward �backward� FW
within the nonlinear crystal slab.

Using the transfer-matrix method, which is described in
detail in Ref. 11, we can get the following relationship be-
tween the amplitudes of the electric field of FW on the right
and left sides of the structure,

��t
+

�t
− � = D0

−1D1P1D1
−1D0��0

+

�0
− � , �2�

where �0
� and �t

� denote the amplitudes of the electric field
of FW on the left and right sides of the structure, respec-
tively. The matrices in Eq. �2� are defined as

D0 = 	1 1

k10,z

k10
−

k10,z

k10

, D1 = 	 1 1

k1,z

k10
−

k1,z

k10

,

P1 = �exp�ik1,zd� 0

0 exp�− ik1,zd�
� ,

where d is the thickness of the structure.
From Eq. �2�, we can solve the relative amplitudes �� for

FW within the nonlinear crystal slab. Then, the fundamental
wave inside medium at arbitrary position can be determined
as

E1�y,z� = E1�z�exp�ik1,yy� , �3�

with

E1�z� = ��+ exp�ik1,zz� + �− exp�− ik1,zz�� . �4�

We now turn to consider the second harmonic wave
�SHW�. In the case of two dimensions, the propagation equa-
tion for the electric field of SHW is

��2/�z2 + �2/�y2�E2�y,z� + k2
2E2�y,z� = − k20

2 ��2��r��E1�y,z��2,

�5�

where k2=n2k20 and k20=2� /c. n2 is the refractive index of
the material at the SHW frequency and ��2��r� is the periodi-
cal nonlinear susceptibility of the nonlinear photonic crystal.
Here, the SI units are adopted.

In the case of two dimensions, the nonlinear susceptibility
periodically varies in the 2D plane. In order to solve the

unknown electromagnetic fields of SHW, we divide each pe-
riod of the nonlinear photonic crystal into a number of thin
slices �M slices in total, for example� along the wave propa-
gation direction �namely, the z axis�, as shown in Fig. 2�a�.
Each slice can be approximated as a lamellar 1D grating,
within which the nonlinear susceptibility is constant along
the z-axis direction. We further imagine that each slice is
surrounded by an infinitely thin film of air in both hand
sides. With a zero thickness, these artificial air thin films will
generate no impact. Inclusion of these auxiliary air films will
bring much convenience to solve the SHG problem by the
transfer-matrix method since the background material for the
nonlinear crystal slab is air. In addition, the geometric con-
figuration will allow us to handle more complicated structure
where both the linear n�r� and the nonlinear susceptibilities
��2��r� are periodically modulated in a very convenient
way.13,14

For the lth slice, we can write down the plane-wave ex-
pansion expression of the nonlinear susceptibility,

�l
�2��r� = �

j

� j,l exp�iGj,yy� , �6�

where Gj,y = jb2 and � j,l is the expansion coefficients, which
can be calculated by the inverse Fourier Transform. The elec-
tric field of SHW at an arbitrary point r can also be written
into the superposition of Bragg waves �or plane waves�,

E2�y,z� = �
j

Ej�z� exp�ik2j,yy� , �7�

where the Bragg wave vector k2j,y =k2,y + jb2=2k1,y +Gj,y,
which is the QPM condition for the transverse wave vector.
Ej�z� is the unknown expansion coefficient of the electric
field and b2 is the unit vector of reciprocal lattice along the y
axis. In principle, the indices j should run from −� to +�,
but in numerical practice, truncation over a certain order is
necessary.

(a)
+

−
)2(

1,niE

−
−
)2(

1,niE

+)2(
,niE

−)2(
,niE

nth period

…

1 2 3 4 M-1 M…

+)2(
,liE+

−
)2(
1,liE

−
−
)2(
1,liE

1−lz lz

slice l

−)2(
,liE

(b)

FIG. 2. �a� One period of nonlinear photonic crystal, which is
divided into a number of thin films along the propagation direction.
�b� An individual slice, around which the electromagnetic field con-
sists of forward and backward propagating waves.
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Substituting Eqs. �6� and �7� into Eq. �5� yields the propa-
gation equation for the electric field of SHW in the lth slice
as

�2Ej,l�z�/�z2 + k2j,z
2 Ej,l�z� = − k20

2 � j,l�E1,l�z��2, �8�

where Ej,l�z� is the electric field of SHW, which is equivalent
to Ej�z� in Eq. �7� and the subscript l denotes the lth slice.
k2j,z is given by k2j,z= �k2

2−k2j,y
2 �1/2 for k2

2−k2j,y
2 �0 and

k2j,z= i�k2j,y
2 −k2

2�1/2 for k2
2−k2j,y

2 	0. Substituting Eq. �4� into
Eq. �8�, we can get an equation just like Eq. �9� in Ref. 11,
and so we can get the expression of electromagnetic field in
2D structure through the same step to achieve Eq. �12� in
Ref. 11,

�Ej,l�z�
Hj,l�z� � = Gj�Uj,l

+ �z�
Uj,l

− �z�
� + BA�j,l����+�2�z�

��−�2�z� �
+ �1

0
�C�j,l�2�+�−, �9�

with the expressions

Uj,l
��z� = Uj0

� exp��ik2j,z�z − zl−1��,

����2�z� = ����2 exp��i2k1,zz� ,

Gj = 	 1 1

k2j,z

k20
−

k2j,z

k20

, B = 	 1 1

2k1,z

k20
−

2k1,z

k20

,

A�j,l� =
− k20

2 � j,l

k2j,z
2 − 4k1,z

2 , C�j,l� =
− k20

2 � j,l

k2j,z
2 ,

where Uj0
+ and Uj0

− represent the unknown amplitudes of the
forward and backward SHWs at the boundary.

Having written down the electromagnetic fields inside the
grating slice, we need to further solve the electromagnetic
fields in the air thin films around the slice. As shown in Fig.
2�b�, the electric field of SHW in the two air thin films
around the lth slice is both consisting of forward- and
backward-propagating plane waves. The electric field on the
right-hand-side air film can be written into

El
�2��z� = �

j

�Ej,l
+ �z� + Ej,l

− �z��exp�ik20,yy� , �10�

where Ej,l
��z�=Ej,l

�2�� exp��ik20,z�z−zl��=Ej,l
�2�� since z=zl.

The electric and magnetic fields of SHW in the air films
can also be written into a concise form, just as Eq. �9�,

�Ej,l�z�
Hj,l�z� � = 	 1 1

k20,z

k20
−

k20,z

k20

�Ej,l

�2�+

Ej,l
�2�− � = G0�Ej,l

�2�+

Ej,l
�2�− � .

�11�

The electromagnetic fields on the left-hand-side air film have
the same form.

Considering the continuous condition of the electric and
magnetic fields at the interfaces of the lth slice z=zl and z
=zl−1, we can get the relation of the second-harmonic �SH�
field through the lth slice,

�Ej,l
�2�+

Ej,l
�2�− � = G0

−1TG0�Ej,l−1
�2�+

Ej,l−1
�2�− � + G0

−1�BF − TB�A�j,l�


���+�2�zl−1�
��−�2�zl−1� � + G0

−1�1 − T��1

0
�C�j,l�2�+�−,

�12�

where

T = GjQjGj
−1, Qj = �exp�ik2j,zhl� 0

0 exp�− ik2j,zhl�
�,

F = �exp�i2k1,zhl� 0

0 exp�− i2k1,zhl�
� ,

hl=zl−zl−1 is the thickness of the lth slice.
Considering M slices in one period of the nonlinear struc-

ture, we can cascade Eq. �12� M times and get the overall
transfer matrix of the SH signal for one period of nonlinear
structure as

�Ej,n
�2�+

Ej,n
�2�− � = S�Ej,n−1

�2�+

Ej,n−1
�2�− � + �Ej,n

t

Ej,n
r � , �13�

where

�Ej,n
t

Ej,n
r � = �

l=1

M

G0
−1TM−l��BF − TB�A�j,l����n,l

+ �2

��n,l
− �2 � + �1 − T�


�1

0
�C�j,l�2�+�− ,

��n,l
� �2= ����2 exp��i2k1,z��n−1�a1+ �l−1�hl−z0�� and S

=G0
−1TMG0. n denotes the nth period and l denotes the num-

ber of slice in one period.
As a recursive equation, Eq. �13� serves as the unit trans-

fer matrix of the SH field for the nth period. From this equa-
tion, we can get the overall transfer matrix of the SH signal
for the whole nonlinear structure. Considering the periodicity
of the structure, we get the forward and backward radiations
of the SH fields radiated from a nonlinear structure com-
posed of N periods along the propagation direction by the
following recursion formalism:

�Et,j
�2�+

0
� = SN�0

E0,j
�2�− � + �

n=1

N

SN−n�Ej,n
t

Ej,n
r � . �14�

From Eq. �14�, we can calculate Et,j
�2�+ and E0,j

�2�− and the con-
version efficiencies of the forward and backward waves are
evaluated, respectively, by

�forth =

�
j

�Et,j
�2�+�2

��0
+�2

and �back =

�
j

�E0,j
�2�−�2

��0
+�2

.

III. FREQUENCY CONVERSION IN 2D
RECTANGULAR LATTICES

We now investigate a simple 2D nonlinear photonic crys-
tal with rectangular lattice of poled circular cylinders, which
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has been studied by experiment.15,16 Figure 1 is the micro-
scopic picture of the etched sample. The lattice constants of
the nonlinear photonic crystal are 13.64 and 8.48 �m, the
same as the values in Ref. 15. The corresponding reciprocal
lattice vectors are, respectively, 0.461 and 0.741 �m−1. The
radius of poled circular cylinder is set to 3.51 �m. The
sample is chosen as LiNbO3 crystal. Its nonlinear coefficient
d33 is 47.0 pm /V,17 and its refractive index for extraordinary
light is given by the following dispersion formula:18

ne
2 = a1 + b1f +

a2 + b2f

�2 − �a3 + b3f�2 − a4�2,

where a1=4.5820, a2=0.099 21, a3=0.210 90, a4
=0.021 940, b1=2.2971
10−7, b2=5.2716
10−8, b3
=−4.191 43
10−8, f = �T−T�0�T+T0+546�, and T0
=24.5 °C. At room temperature, the value of variable f is set
to zero. � is the wavelength in the vacuum and the unit is
micrometer.

The effective QPM SHG in a 2D nonlinear crystal must
satisfy the momentum conservation k2�−2k�−Gm,n=0,
where Gm,n is the reciprocal lattice vector of the nonlinear
photonic crystals and �m ,n� is the order of QPM. The
�m ,n�-order QPM in 2D periodic structure means that the
total m basic vectors along one basic direction and n basic
vectors along another direction are adopted. As an example,
G0,1 or G1,0 and G0,2 or G2,0 are, respectively, called first-
and second-order QPMs, in which the fundamental and
second-harmonic wave vectors are collinear. In the case of

m�0 and n�0, the corresponding QPM becomes noncol-
linear.

We first study the ��m ,2�-order �m=0,1 ,2 ,3 , . . .� QPM
along the longer period direction in the rectangular lattice,
which has been experimentally studied in Ref. 15. The
sample we studied contains 300 periods �about 4 mm� along
the propagation direction. The pump light is a continuous
wave and is normally incident upon the nonlinear crystal slab
sample. As a comparison, in experiment,15 the sample is 8
mm long and the pump light is pulse. In our numerical cal-
culation, we have tuned the wavelength of the incident fun-
damental wave and solve the conversion efficiencies for dif-
ferent incident waves. The results are shown in Fig. 3�a�.
When we tune the wavelength of the incident wave, the in-
cidental direction is unchanged. There are several peaks of
SH outputs in Fig. 3�a�. The corresponding wavelengths of
peaks are 1.065,1.061, 1.05, 1.034, and 1.013 �m, which is
basically in agreement with the results in Ref. 15. The SH
output in the experiment correspond to the input wavelengths
of 1.069, 1.062, 1.052, 1.037, and 1.013 �m. The slight dif-
ferences between our results and experimental results in re-
gard to the SHG wavelength is attributed to the short range
structural disorder unintentionally introduced during the fab-
rication process in the experiment. When the intensity of the
incident fundamental wave sets I=84.94 GW /m2, corre-
sponding to �E1�2=64 V2 /�m2, the conversion efficiencies
of these SHs are about 1.99, 0.91, 0.79, 0.51, and 0.06%,
respectively. These numbers of conversion efficiencies are
lower than those in Ref. 15. However, the original conditions
we used are power of the pump light and square of the length
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FIG. 3. �a� Calculated conversion efficiency of ��m ,2�-order
QPM second-harmonic wave as a function of the incident funda-
mental wavelength. �b� The relative intensities of SH outputs
against the order of transverse reciprocal lattice vector m.
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of the sample. So, by using high power input and increasing
the length of the sample, we can get higher conversion effi-
ciencies.

The phase matching of these SH outputs with different
wavelengths must be realized by different reciprocal lattice
vectors. There are not only the collinear SHGs but also the
noncollinear ones, in which the high-order transverse recip-
rocal lattice vectors must be used. Using the method we de-
veloped, we can find which transverse reciprocal lattice vec-
tors are used for a certain input fundamental wave. Figure
3�b� illustrates the relative intensities of those peaks in Fig.
3�a� and the abscissa denotes the order of transverse recipro-
cal lattice vectors. From Fig. 3�b�, we can clearly see that the
reciprocal lattice vectors, corresponding to the QPM SH out-
puts of 1.065, 1.061, 1.05, and 1.034 �m, are G0,2, G�1,2,
G�2,2, and G�3,2, respectively. Combining Figs. 3�a� and
3�b�, we can find that the less the value of �m ,n�, the larger
the conversion efficiency of SH, which is also consistent
with the conclusion in Ref. 15.

We also present the results of ��m ,1�-order QPM in Fig.
4. Figure 4�a� is the conversion efficiency as a function of
wavelengths of incident FW. Figure 4�b� illustrates the rela-
tive intensities of different incident waves and the abscissa
gives the order of transverse reciprocal lattice vectors used in
the process of QPM SHG. Figure 4 indicates that we can
achieve the QPM SHG for the wavelengths of 1.352, 1.337,
and 1.299 �m, and the corresponding reciprocal lattice vec-
tors are G0,1, G�1,1 and G�2,1. Considering the disorder of
structure unintentionally introduced in the experiment, our
results and experimental results are in fairly good agreement.
When the intensity of the incident fundamental wave is set to
be I=11.94 GW /m2, corresponding to �E1�2=9 V2 /�m2,
the conversion efficiencies of these SHs are about 6.62, 1.9,

and 0.42%, respectively. The conversion efficiencies can also
be enhanced by increasing the length of the sample and the
power of input fundamental wave. High-order QPM third
harmonics are not present in our results, which was gener-
ated in the experiment, because we do not consider the cas-
cading processes in our theoretical method.

IV. CONCLUSIONS

In summary, we have extended the plane-wave-based
TMM from its routine service as a powerful tool to solve
electromagnetic wave scattering by a general multilayer grat-
ing and photonic crystal slab to handle the QPM SHG in the
2D nonlinear photonic crystals. Using this method, we can
calculate the conversion efficiency of SH and find out which
transverse reciprocal lattice vector is used to realize the QPM
for a certain input fundamental wave. We have applied this
method to evaluate the QPM SHG conversion efficiency in
the 2D periodically poled LiNbO3 crystal with rectangular
lattice. The high-order collinear and noncollinear QPM
SHGs have been observed. The theoretical results calculated
with the current method agreed well with the experimental
results in regard to the wavelengths at which various orders
of QPM SHG occur and their relative conversion efficien-
cies. This indicates that the developed method is effective
and efficient in handling nonlinear light diffraction in non-
linear photonic crystals.
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