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We extend the Hertz–Millis theory of quantum phase transitions in itinerant electron systems to phases with
broken discrete symmetry. By using a set of coupled flow equations derived within the functional renormal-
ization group framework, we compute the second order phase transition line Tc���, where � is a nonthermal
control parameter, near a quantum critical point. We analyze the interplay and relative importance of quantum
and classical fluctuations at different energy scales, and we compare the Ginzburg temperature TG to the
transition temperature Tc, the latter being associated with a non-Gaussian fixed point.
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I. INTRODUCTION

Quantum phase transitions in itinerant electron systems
continue to ignite considerable interest.1–3 These transitions
are usually induced by varying a nonthermal control param-
eter such as pressure or chemical potential at zero tempera-
ture, so that no classical fluctuations occur and the transition
is driven exclusively by quantum effects. In many physical
situations, a line of finite temperature second order phase
transitions in the phase diagram terminates at a quantum
critical point at T=0. In such cases, quantum fluctuations
influence the system also at finite temperatures altering mea-
surable quantities such as the shape of the phase boundary.
Consequently, in a complete description of the system at fi-
nite T, quantum and thermal fluctuations have to be ac-
counted for simultaneously.

The conventional renormalization group �RG� approach to
quantum criticality in itinerant electron systems4,5 relies on
the assumption that it is sensible to integrate out fermionic
degrees of freedom from the functional integral representa-
tion of the partition function and then to expand the resulting
effective action in powers of the order parameter alone. This
approach has been questioned for magnetic phase transitions
associated with spontaneous breaking of continuous spin ro-
tation invariance since integrating the fermions results in sin-
gular interactions of the order parameter field.2,3

In this paper, we focus on quantum phase transitions to
phases with broken discrete symmetry. We analyze quantum
and classical fluctuations in the symmetry-broken phase with
an Ising-type order parameter near a quantum critical point.
Our calculations are based on a set of coupled flow equations
obtained by approximating the exact flow equations of the
one-particle irreducible version of the functional RG. Quan-
tum and classical �thermal� fluctuations are treated on equal
footing. The functional RG has been extensively applied to
classical critical phenomena,6 where it provides a unified de-
scription of O�N�-symmetric scalar models, including two-
dimensional systems. The classical Ising universality class
was analyzed in Refs. 7–9. The functional RG is obviously
also a suitable framework for treating quantum criticality.10

In our approach, we can compute the RG flow in any region
of the phase diagram, including the region governed by non-

Gaussian critical fluctuations. This allows comparison be-
tween the true transition line and the Ginzburg line, which so
far was used as an estimate of the former.3,5 Specifically, we
capture the strong-coupling behavior emergent in the vicinity
of the transition line as well as the correct classical fixed
point for Tc, including the anomalous dimension of the order
parameter field.

Our results may be applied to commensurate charge-
density waves, Pomeranchuk transitions11–13 which sponta-
neously break the discrete point group lattice symmetry, and
to magnetic transitions with Ising symmetry, provided that
the transitions are continuous at low temperatures.

The paper is structured as follows. In Sec. II, we intro-
duce Hertz’s4 effective action, adapted to the symmetry-
broken phase, which serves as a starting point for the subse-
quent analysis. In Sec. III, we describe the functional RG
method and its application in the present context and subse-
quently derive the RG flow equations. In Sec. IV, we present
a solution of the equations in the case T=0. Section V con-
tains numerical results for the finite T phase diagram in the
region with broken symmetry. Different cases are discussed,
distinguished by the dimensionality d and the dynamical
exponent z. In particular, we compare the Tc line with the
Ginzburg line, thus providing an estimate of the critical re-
gion size. In Sec. VI, we summarize and discuss the results.

II. HERTZ ACTION

The starting point of the standard RG approach to quan-
tum critical phenomena in itinerant electron systems is the
Hertz action.4,5 It can be derived from a microscopic Hamil-
tonian by applying a Hubbard–Stratonovich transformation
to the path-integral representation of the partition function
and subsequently integrating out the fermionic degrees of
freedom. The resulting action is then expanded in powers of
the order parameter field, usually to quartic order. The valid-
ity of this expansion is dubious in several physically inter-
esting cases, in particular, for magnetic transitions with
SU�2� symmetry, since the integration over gapless fermionic
modes can lead to singular effective interactions of the order
parameter field, which may invalidate the conventional

PHYSICAL REVIEW B 77, 195120 �2008�

1098-0121/2008/77�19�/195120�9� ©2008 The American Physical Society195120-1

http://dx.doi.org/10.1103/PhysRevB.77.195120


power counting.2,3,14 Such complications probably do not af-
fect transitions in the charge channel and magnetic transi-
tions with Ising symmetry. There are several indications that
singularities cancel in that case, namely, the cancellation of
singularities in effective interactions upon symmetrization of
fermion loops15,16 and the cancellation of nonanalyticities in
susceptibilities.17,18 We, therefore, rely on the usual expan-
sion of the action to quartic order in the order parameter field
and also on the conventional parametrization of momentum
and frequency dependences, which leads to the Hertz
action4,5

S��� =
T

2 �
�n

� ddp

�2��d�p� ��n�
�p�z−2 + p2	�−p + U��� . �1�

Here, � is the scalar order parameter field and �p, with
p= �p ,�n�, its momentum representation; �n=2�nT with
integer n denotes the �bosonic� Matsubara frequencies.
Momentum and energy units are chosen such that the pre-
factors in front of

��n�
�p�z−2 and p2 are equal to unity. The action

is regularized in the ultraviolet by restricting momenta to
�p���0. The value of the dynamical exponent is restricted to
z�2. The cases z=3, applicable to Pomeranchuk instabilities
and Ising ferromagnetism, and z=2, relevant for commensu-
rate charge-density waves and Ising antiferromagnetism, are
of our main interest. Formally, the results of the paper may
be applied to systems with arbitrary z�2. A comprehensive
discussion of the origin of the �n dependence of the action is
given by Millis5 �see also Ref. 19�. Equation �1� is valid in
the limit

��n�
�p�z−2 	1, which is relevant here since the dominant

fluctuations occur only in this regime.
In the symmetric phase, the potential U��� is minimal at

�=0 and is usually parametrized by a positive quadratic and
a positive quartic term.4,5 Since we approach the quantum
critical point from the symmetry-broken region of the phase
diagram, we assume a potential U��� with a minimum at a
nonzero order parameter �0,

U��� =
u

4!
�

0

1/T

d
� ddx��2 − �0
2�2

= �
0

1/T

d
� ddx
u
��4

4!
+ �3u�

��3

3!
+ �

��2

2!
� , �2�

where � and �� are functions of x and 
 with �=�0+��.
The parameter �=u�0

2 /3 controls the distance from critical-
ity. Approaching the phase boundary in the �� ,T� plane from
the symmetry-broken phase gives rise to the three-point ver-
tex �3u�, which generates an anomalous dimension of the
order parameter field already at one-loop level.

Although formally correct as a result of integrating out
the fermions, the Hertz action �Eq. �1�� is not a good starting
point for symmetry-broken phases with a fermionic gap,
such as charge-density wave phases or antiferromagnets. A
fermionic gap leads to a suppression of the dynamical term
�linear in frequency� in the action since it suppresses low
energy particle-hole excitations. If not treated by a suitable
resummation in the beginning, this effect is hidden in high
orders of perturbation theory.20 We do not deal with this

complication in the present paper. However, our results for
the transition temperature should not be affected by a gap in
the symmetry-broken phase since it vanishes continuously at
Tc.

III. METHOD

To analyze the quantum field theory defined by S���, we
compute the flow of the effective action ����� with approxi-
mate flow equations, which are derived from an exact func-
tional RG flow equation.6,21–24 The effective action ����� is
the generating functional for one-particle irreducible vertex
functions in the presence of an infrared cutoff �. The latter is
implemented by adding a regulator term of the form

 1

2�R�� to the bare action. The effective action smoothly
interpolates between the bare action S��� for large � and the
full effective action ���� in the limit �→0 �cutoff re-
moved�. Its flow is given by the following exact functional
equation:21

d

d�
����� =

1

2
Tr

Ṙ�

��2���� + R� , �3�

where Ṙ�=��R� and ��2����=�2����� /��2. In momentum
representation ��p�, the trace sums over momenta and fre-
quencies: Tr=T��n


 ddp
�2��d . For the regulator function R��p�,

we choose the optimized Litim cutoff,25

R��p� = Z��2 − p2����2 − p2� , �4�

where Z is a renormalization factor �see below�.
We approximate ����� by a simplified ansatz with a local

potential of the form of Eq. �2� characterized by cutoff de-
pendent parameters u and �0 �or, alternatively, �� and a
simple renormalization of the momentum and frequency de-
pendences of the quadratic part of the action via Z factors,
leading to an inverse propagator of the following form:

G−1�p,�n� = ��2��� = �0� = Z�

��n�
�p�z−2 + Zp2 + � + R��p� ,

�5�

where the Z factors depend on the scale � only. The regula-
tor function R��p� replaces Zp2 with Z�2 for �p�
�.

Evaluating Eq. �3� for a momentum-independent field �
yields the flow of the effective potential U���,

��U��� =
1

2
Tr

Ṙ��p�

Z�

��n�

pz−2 + Zp2 + R��p� + U����
, �6�

from which we derive the flows of the parameters �0 and u,
following the procedure in Ref. 6. By viewing U as a func-
tion of �= 1

2�2 and using U���0�=0, we can write 0
= d

d�U���0�=��U���0�+U���0����0. By inserting ��U���0�
as obtained by differentiating Eq. �6� with respect to � at �
=�0 and using U���0�= 1

3u, one obtains the flow equation for
�0,
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���0 =
3

2
Tr

Ṙ��p�

�Z�

��n�

pz−2 + Zp2 + R��p� + 2
3u�0�2 . �7�

The flow of u is obtained by differentiating Eq. �6� twice
with respect to �,

��u = 3u2 Tr
Ṙ��p�

�Z�

��n�

pz−2 + Zp2 + R��p� + 2
3u�0�3 . �8�

By inserting the above flow equations into the � derivative
of �= 2

3u�0, we obtain the flow of �. Below, we will analyze
the flow in terms of u and � instead of u and �0.

The Matsubara frequency sums in the flow equations
�Eqs. �7� and �8�� can be expressed in terms of polygamma
functions �n�z�, which are recursively defined by �n+1�z�
=�n��z� for n=0,1 ,2 , . . ., and �0�z�=���z� /��z�, where ��z�
is the gamma function. From the Weierstrass representation
of the gamma function, ��z�−1=ze�z�n=1

� �1+ z
n �e−z/n, where �

is the Euler constant, one can derive the following relation:

�
n=−�

�
1

��n� + z�2 =
1

z2 + 2�1�z + 1� . �9�

Taking derivatives with respect to z yields expressions for
sums involving higher negative powers of ��n�+z� in terms of
polygamma functions of higher order.

For R��p�, we now insert the Litim function defined in

Eq. �4�. Following Ref. 6, we neglect Ż in Ṙ��p� such that

Ṙ��p�=2Z����2−p2�. The neglected terms would yield
corrections to the flow equations that are linear in � and
therefore irrelevant in the quantum part of the flow, where
��0 �see below�. In the classical part of the flow �for �
→0�, these corrections are small as compared to other in-
cluded terms involving � due to the presence of additional
factors involving the interaction coupling and mass. There-
fore, they give rise to only minor corrections to the values of
the fixed-point coordinates and the values of the critical ex-
ponents.

The d-dimensional momentum integrals on the right hand
side of the flow equations can be reduced to one-dimensional
integrals since the integrands depend only on the modulus of
p. Explicit dependences on �, Z factors and lengthy numeri-
cal prefactors in the flow equations can be eliminated by
using the following rescaled variables:

p̃ = �p�/� , �10�

T̃ =
2�Z�

Z�z T , �11�

�̃ =
�

Z�2 , �12�

ũ =
AdT

2Z2�4−du , �13�

with Ad= �2��−dSd−1, where Sd−1=2�d/2 /��d /2� is the area of
the �d−1�-dimensional unit sphere.

The flow equations for �̃ and ũ are then obtained as

d�̃

d log �
= �� − 2��̃ + 4ũ
1

d

1

�1 + �̃�2

+
2

T̃2
�

0

1

dp̃p̃d+2z−5�1�x��
+ 12ũ�̃
1

d

1

�1 + �̃�3
−

1

T̃3
�

0

1

dp̃p̃d+3z−7�2�x�� ,

�14�

dũ

d log �
= �d − 4 + 2��ũ

+ 12ũ2
1

d

1

�1 + �̃�3
−

1

T̃3
�

0

1

dp̃p̃d+3z−7�2�x�� ,

�15�

where x=1+ T̃−1�1+ �̃�p̃z−2 and � is the anomalous dimen-
sion defined as

� = −
d log Z

d log �
. �16�

To complete the system of flow equations, one still needs to
derive the evolution of Z and Z�, which parametrize the mo-
mentum and frequency dependence of the propagator. By
taking the second functional derivative of Eq. �3�, we obtain
the flow equation for the propagator,

��G−1�p� = 3u�Tr�Ṙ��q�G2�q�G�q + p�� , �17�

where G�q� is given by Eq. �5�. Here, we skipped the con-
tribution from the tadpole diagram since it involves no de-
pendence on momentum and frequency and therefore does
not contribute to the flow of the Z factors.

The momentum renormalization factor is given by

Z = � 1

2d
�p�G−1�p,�n = 0���

p=0
, �18�

where �p is the Laplace operator evaluated at constant cutoff
function, that is, �p does not act on R��p�. By inserting Eqs.
�17� and �18� into Eq. �16� and performing the frequency
sum, one obtains the flow equation for the anomalous dimen-
sion as follows:

� =
6

d

ũ�̃

�1 + �̃�5

2�1 + �̃� −

8

d + 2
� −

ũ�̃

d
T̃−5�

0

1

dp̃p̃d+3z−13

��− 6p̃4�z − 2��d + z − 4�T̃2�2�x� − 2p̃2+z�2�8 − d�

��1 + �̃ − p̃2� + ��d − 14��1 + �̃� + 8p̃2�z

+ 3�1 + �̃�z2�T̃�3�x� − p̃2z�2�p̃2 − 1� + �̃�z − 2�

+ z�2�4�x�� . �19�
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The contributions to the flow of �̃, ũ, and � are illustrated in
terms of Feynman diagrams in Fig. 1.

We now turn to the renormalization of Z�. We first con-
sider the case z=2, where Z� can be related to the propagator
by

Z� =
1

2�T
�G−1�p = 0,2�T� − G−1�p = 0,0�� . �20�

Taking the logarithmic derivative with respect to �, inserting
Eq. �17�, and performing the trace yields

�� =
12

d
ũ�̃T̃−1
 T̃ − �1 + �̃�

T̃�1 + �̃�3
+ T̃−3�2�1 +

1 + �̃

T̃
	� .

�21�

From the numerical solution of the flow equation, we ob-
serve that �� is small at all scales and vanishes for �→0.
For example, in two dimensions, �� varies between −0.033
and 0.005 for u=1 at T=e−4 and has practically no influence
on the phase diagram. In three dimensions, the values are at
least 1 order of magnitude lower. For z�2, one expects an
even smaller �� since a larger z reduces the strength of fluc-
tuations near the quantum critical point. Therefore, we set

��=0 and Z�=1 from now on. The scaling variable T̃ then
obeys the following flow equation:

dT̃

d log �
= �� − z�T̃ . �22�

In the flow equations �Eqs. �14�, �15�, and �19��, one iden-

tifies the classical mean-field �involving only one power of �̃

or ũ�, classical non-Gaussian, and quantum �involving T̃�
terms. The quantum contributions vanish as the infrared cut-

off tends to zero at constant nonzero temperature �T̃−1	1�.
On the other hand, the quantum terms dominate the high

energy part of the flow, where T̃−1�1. Our framework al-
lows for a continuous connection of these two regimes of the
flow. The scale �cl below which quantum fluctuations be-
come irrelevant depends on temperature. It vanishes at T=0.
In the absence of a sizable anomalous dimension � in the
quantum regime of the flow, one has

�cl � T1/z, �23�

as follows directly from the definition of T̃. It turns out that �
is indeed negligible down to the scale �cl, except in the case
z=2 in two dimensions �see Sec. V�.

We emphasize that we have used a relatively simple pa-
rametrization of the effective action �����. In particular, we
kept only the dominant term in the derivative expansion6 and
neglected the field dependence of the Z factors. Furthermore,
the simple parametrization of the effective potential �Eq. �2��
allowed us to substitute the partial differential equation �Eq.
�6�� governing the flow of U��� by the two ordinary differ-
ential equations �Eqs. �14� and �15��. The latter approxima-
tion is equivalent to neglecting all higher order vertices gen-
erated during the flow. More sophisticated truncations have
been applied in the context of the classical Ising universality
class, where they lead to improved results for the critical
exponents.7,8

IV. SOLUTION AT ZERO TEMPERATURE

In this section, we present a solution of the flow equations
�Eqs. �14�, �15�, and �19�� in the case of zero temperature,
recovering earlier results for the critical exponents. We also
provide an analytic expression for the value of the control
parameter �0 corresponding to the quantum critical point.

For this purpose, we first take advantage of the asymptotic
properties of the polygamma functions �1�x�=x−1+O�x−2�
for x�1, �n+1�x�=�n��x�, and evaluate the integrals in Eqs.

�14�, �15�, and �19� in the regime T̃	1. We introduce the
variable,

ṽ =
ũ

T̃
=

Ad

4�ZpZ��4−d−zu , �24�

and then pass to the limit T→0. Note that ṽ does not depend
on temperature. The resulting flow equations are

d�̃

d log �
= �� − 2��̃ +

12�̃ṽ

�1 + �̃�2

1

d + z − 2
+

8ṽ

1 + �̃

1

d + z − 2
,

dṽ
d log �

= �d + z − 4 + 2��ṽ +
12ṽ2

�1 + �̃�2

1

d + z − 2
,

� =
6

d

�̃ṽ

�1 + �̃�4

4

3
�1 + �̃�� − 
 �d − 2��z − 2�

3�d + z − 4�
�1 + �̃�2 −

4

d + z
� .

�25�

The above expression for � is valid for d+z�4. The flow
equations for the case d=z=2 are obtained by skipping the
term involving �d−2��z−2� / �d+z−4� in Eq. �25�. Non-
Gaussian contributions to the above equations originate from
the quantum part of Eqs. �14�, �15�, and �19�. The classical
non-Gaussian terms do not survive the limit T→0.

Equation �25� has an infrared stable Gaussian fixed point

in ṽ=0, �̃=0, and �=0. After linearizing the flow equations
around the fixed point, one obtains the solution,

δ̃ :

�

+

�ũ :

�

η :

FIG. 1. Feynman diagrams representing the contributions to the
flow equations �Eqs. �14�, �15�, and �19��.
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�̃��� = ��̃� +
8ṽ�

�d + z − 2�2 ���/�0�d+z−2 − 1����/�0�−2,

ṽ��� = ��/�0�d+z−4ṽ�,

���� = 0, �26�

for d+z�4. Here, �̃� and ṽ� on the right hand sides denote
the initial values of the parameters at �=�0. In the marginal
case d+z=4, one finds logarithmic convergence of ṽ��� and

�̃��� to zero. Expressing the order parameter �0 in terms of

�̃��� and ṽ���, substituting the above solution, and taking
the limit �→0 yields

�0 � �� − �0, �27�

where

�0 =
2Ad

�

�0
d+z−2

�d + z − 2�2u �28�

is the quantum critical point’s coordinate. From Eq. �27�, we
read off the value of the exponent �= 1

2 , which is consistent
with mean-field theory. From Eq. �26�, we can also straight-
forwardly evaluate the correlation length �, using �−2

=lim�→0 ����=lim�→0 Z�2�̃, which yields

� = �� − �0�−1/2, �29�

as expected within mean-field theory.
As anticipated,4,5 the quantum phase transitions studied

here behave similarly to classical transitions with effective
dimensionality D=d+z. For d�2 and z�2, one has D�4,
leading to mean-field behavior governed by a Gaussian fixed
point.4 In Sec. V, we turn to finite temperatures where non-
Gaussian behavior occurs sufficiently close to the phase tran-
sition line.

V. FINITE TEMPERATURES

In this section, we numerically solve the RG flow equa-
tions �Eqs. �14�, �15�, and �19�� for finite temperatures. As
already announced, the analysis is focused on the region of
the phase diagram where symmetry breaking occurs. In our
notation, this corresponds to sufficiently large values of the
control parameter �. First, we treat the case z=3 �in d=2,3�
to which Eqs. �14�, �15�, and �19� are directly applied. The
case z=2, in which additional simplifications occur, is ana-
lyzed in Sec. V B. In all numerical computations, we choose
an initial cutoff �0=1 and an initial coupling constant u=1.

A. z=3

We first solve the coupled flow equations �Eqs. �14�, �15�,
and �19�� with the aim of determining the phase boundary
Tc��� or, equivalently, �c�T�. To this end, for each given tem-
perature, we tune the initial value of � such that at the end of
the flow �for �→0�, one obtains the critical state with
����→0. The tuned initial value is then identified as �c�T�.
Inverting the function �c�T� yields Tc���. In the variables �̃,

ũ, this corresponds to seeking for such values of the initial �

that both �̃��� and ũ��� reach a fixed point as the cutoff is
removed.

The flow of � and ũ as a function of the logarithmic scale
variable s=−log�� /�0� is shown in two exemplary plots in
Figs. 2 and 3, respectively.

The flow is shown for various temperatures T, with �
tuned to values very close to �c�T�. The plateaus in Figs. 2
and 3 correspond to non-Gaussian fixed-point values of the
flowing parameters. These values are not altered by the quan-
tum terms in the flow equations. From Fig. 2, where d=2,
one reads off the value of the anomalous dimension �
�0.48. The exact value from the Onsager solution to the
Ising model is 1

4 . For the case d=3, we find ��0.08 within
our truncation, which is also about twice as large as accurate
estimates of the exact value.26 These results can also be com-

0
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4 14

FIG. 2. �Color online� Anomalous dimension ���� plotted as
function of s=−log�� /�0� for different values of temperature in the
case z=3 and d=2. The function ��s� exhibits crossover from the
mean-field value �=0 to the non-Gaussian result ��0.48. The
crossover scale �G is shifted toward smaller values of � �larger s�
as temperature is reduced.
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FIG. 3. �Color online� Quartic coupling ũ��� plotted as function
of s=−log�� /�0� for different values of temperature in the case z
=3 and d=3.
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pared to earlier classical �4 RG studies using similar though
more sophisticated truncations. In Ref. 7, a derivative expan-
sion to order �2, retaining the general form of U��� and field
dependence of wave function renormalization, was applied
in dimensionality 1
d
4, yielding ��0.08 in d=3 and
��0.4 in d=2. In Ref. 8, a derivative expansion to order �4

yielded ��0.033 in d=3. To obtain a scaling behavior in the
range of a few orders of magnitude, one needs to fine tune
the initial conditions with an accuracy of around 15 digits.
The breakdown of scaling behavior observed for very small
� is due to the insufficient accuracy of the initial value of �
and numerical errors. The plateaus are more extended as we
go on fine tuning the initial condition. Only exactly at the
critical point true scale invariance manifested by plateaus of
infinite size is expected.

The figures also reveal the Ginzburg scale �G at which
non-Gaussian fluctuations become dominant such that the
exponent � attains a nonzero value. By fitting a power law,
we observe �G�Tc for d=3 and �G��Tc for d=2 with non-
universal proportionality factors. As expected, �G vanishes
at the quantum critical point because at T=0, the effective
dimensionality D=d+z is above the upper critical dimension
dc=4. At finite temperatures, �G is the scale at which ũ is
promoted from initially small values �of order T� to values of
order 1. From the linearized flow equations, one obtains

�G � Tc
1/�4−d�, �30�

which is in agreement with the numerical results for d=2 and
d=3. Note that �G	�cl since �cl�Tc

1/3 for z=3 �see Eq.
�23��. Hence, anomalous scaling �finite �� is indeed absent in
the regime where quantum fluctuations contribute, and non-
Gaussian fluctuations appear only in the classical regime.

As already mentioned, the quantum contributions influ-
ence the flow only at relatively large � for T�0. In particu-
lar, they do not alter any fixed-point values. However, at the
beginning of the flow, they dominate over the classical part
and, therefore, are crucial for a correct computation of the
initial value of � leading to a scaling solution in the infrared
limit.

Results for the transition line Tc��� for d=2 and d=3 are
shown in Fig. 4. In both cases, we recover the shape of the
transition line as derived by Millis,5 who used the Ginzburg
temperature in the symmetric phase as an estimate for Tc.
Namely, we find

�� − �0� � Tc log Tc, �31�

for d=2,27 and

Tc � �� − �0�3/4, �32�

for d=3. The exponent 3/4 in the three-dimensional case
matches with the general formula for the shift exponent, �
= z

d+z−2 , for arbitrary z in dimensions d�2.5 Note that the
phase boundary Tc��� approaches the quantum critical point
with vanishing first derivative for d=2 and with singular first
derivative in the case d=3. In Ref. 28, functional RG meth-
ods in a different truncation were applied to calculate the
shift exponent in the context of chiral symmetry breaking
with the control parameter being the number of fermion fla-
vors.

An advantage of the present approach is that one can also
follow the RG flow into the strong-coupling regime, where
non-Gaussian critical behavior occurs. This, in turn, allows
an estimate of the critical region’s size as a function of tem-
perature or the control parameter �. To evaluate the Ginzburg
line in the symmetry-broken phase, one solves the flow equa-
tions �Eqs. �14�, �15�, and �19�� for fixed T and at different
values of ���c�T�, observing the behavior of fixed-point
values of the average order parameter �0 �or, alternatively,
the correlation length �� as � approaches �c. Typical results
are plotted in Fig. 5 from which we read off the value of the
exponent � describing the decay of the order parameter upon
approaching the transition line �0� ��−�c��. In the truly
critical region �for �−�c small enough�, one obtains �
�0.11 for d=2 and ��0.30 for d=3. These results come
out close to the correct classical values of 0.125 and 0.31,
respectively. This is unlike the other critical exponents ��
and the correlation length exponent �� which within our trun-
cation differ by factors close to 2 from their correct values.
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FIG. 4. �Color online� The transition lines Tc��� obtained for �a� z=3, d=2 and �b� z=3, d=3. The phase with broken symmetry is located
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Indeed, as discussed in Refs. 7 and 8, to obtain accurate
values of the critical exponents in the Ising universality class
and, in particular, in d=2, one not only needs to consider the
full partial differential equation governing the RG flow of the
effective potential U��� but also the field dependence of the
wave function renormalization and higher orders in the de-
rivative expansion of the effective action.6

From Fig. 5, we can extract the Ginzburg value �G below
which a true critical behavior is found at the chosen tempera-
ture T. Around �G, the exponent � exhibits a crossover from
its mean-field value �=0.5 to a non-Gaussian value. In other
words, �G marks the boundary of the non-Gaussian critical
region at a given T. At zero temperature, �G coincides with
the quantum phase transition point �0 since there the fluctua-
tions are effectively d+z�4 dimensional, leading to a mean-
field behavior. Several Ginzburg points in the �−T plane are
plotted as TG��� in Fig. 4, where they can be compared to the
phase transition line. In three dimensions, TG and Tc almost
coincide such that TG provides an accurate estimate for Tc. In
two dimensions, a sizable region between TG and Tc appears
in the phase diagram. In this region, non-Gaussian classical
fluctuations are present.

We stress that accounting for the anomalous exponent � is
necessary to describe the classical scaling regime, that is, to
obtain the plateaus in Figs. 2 and 3. Upon putting �=0, the
scaling plateaus do not form. On the other hand, the shapes
of the phase boundaries and the Ginzburg curves become
very similar at T→0 in the present cases, where d+z�4.
Therefore, our results for Tc��� are consistent with earlier
studies,5 where non-Gaussian critical fluctuations were not
captured and the calculations were performed in the symmet-
ric phase.

B. z=2

In the case z=2, the flow equations �Eqs. �14�, �15�, and
�19�� are significantly simplified, as all the integrals can be
analytically evaluated. One obtains

d�̃

d log �
= �� − 2��̃ + 2ũ
2

d

1

�1 + �̃�2
+

4

d
T̃−2�1�y��

+ 3ũ�̃
4

d

1

�1 + �̃�3
−

4

d
T̃−3�2�y�� , �33�

dũ

d log �
= �d − 4 + 2��ũ + 3ũ2
4

d

1

�1 + �̃�3
−

4

d
T̃−3�2�y�� ,

�34�

and for the anomalous dimension,

� =
6

d

ũ�̃

�1 + �̃�5

2�1 + �̃� −

8

d + 2
�

+
4ũ�̃

d
T̃−5
T̃�3�y� +

1

d + 2
�4�y�� , �35�

where the argument of the polygamma functions is given by

y=1+ �1+ �̃� / T̃.
The procedure to evaluate the phase diagram and the Gin-

zburg line is the same as in the previously discussed case z
=3. In Fig. 6, we show results for the transition line Tc��� in
two and three dimensions. We also show the Ginzburg tem-
perature TG for various choices of �. In two dimensions, the
transition line is consistent with the almost linear behavior,
��−�0��Tc log log Tc / log Tc, previously derived for the
Ginzburg temperature in the symmetric phase.5 However, a
sizable region with non-Gaussian fluctuations opens between
Tc and TG. In three dimensions, Tc��� obeys the expected5

power law Tc���� ��−�0�� with shift exponent �=2 /3, and
the Ginzburg temperature is very close to Tc for any �.

VI. SUMMARY

We have analyzed classical �thermal� and quantum fluc-
tuations in the symmetry-broken phase near a quantum phase
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FIG. 5. �Color online� Order parameter �0 as a function of ��−�c� at T=e−5 for �a� z=3, d=2 and �b� z=3, d=3. The exponent �
governing the decay of �0 upon approaching �c exhibits a crossover from a mean-field value �=0.5 to a non-Gaussian ��0.11 for d=2 and
��0.30 for d=3. The intersection of the straight lines determines �G.
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transition in an itinerant electron system. The analysis is re-
stricted to the case of discrete symmetry breaking where no
Goldstone modes appear. Following Hertz4 and Millis,5 we
use an effective bosonic action for the order parameter fluc-
tuations as a starting point. The renormalization of the Hertz
action by fluctuations is obtained from a system of coupled
flow equations, which are derived as an approximation to the
exact flow equation for one-particle irreducible vertex func-
tions in the functional RG framework. In addition to the
renormalization of the effective mass and the four-point cou-
pling, we also take the anomalous dimension � of the order
parameter fields into account. In the symmetry-broken phase,
contributions to � appear already at the one-loop level.
Quantum and thermal fluctuations are captured on equal
footing. The flow equations are applicable also in the imme-
diate vicinity of the transition line at finite temperature,
where fluctuations strongly deviate from Gaussian behavior.

We have computed the transition temperature Tc as a
function of the control parameter � near the quantum critical
point, approaching the transition line from the symmetry-
broken phase. Explicit results were presented for dynamical
exponents z=2 and z=3 in two and three dimensions. In all
cases, the functional form of Tc��� agrees with the behavior

of the Ginzburg temperature above Tc previously derived by
Millis.5 We have also computed the Ginzburg temperature TG
below Tc, above which non-Gaussian fluctuations become
important. While TG and Tc almost coincide in three dimen-
sions, a sizable region between TG and Tc opens in two di-
mensions.

It will be interesting to extend the present approach to the
case of continuous symmetry breaking. In this case, Gold-
stone modes suppress the transition temperature more
strongly, and more extended regions governed by non-
Gaussian fluctuations in the phase diagram appear.

ACKNOWLEDGMENTS

We are grateful to B. Delamotte, J. Pawlowski, A. Rosch,
and M. Salmhofer for valuable discussions, and to J. Bauer
for a critical reading of the manuscript. We also like to thank
M. Kircan for her pleasant collaboration at the initial stage of
the project. P.J. acknowledges support from the German Sci-
ence Foundation through the research group FOR 723 and
the Foundation for Polish Science. P.S. acknowledges kind
hospitality of G. Lonzarich and the Quantum Matter group at
Cavendish Laboratory, University of Cambridge.

*p.jakubczyk@fkf.mpg.de
1 S. Sachdev, Quantum Phase Transitions �Cambridge University

Press, Cambridge, U.K., 1999�.
2 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Rev. Mod. Phys. 77,

579 �2005�.
3 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod.

Phys. 79, 1015 �2007�.
4 J. A. Hertz, Phys. Rev. B 14, 1165 �1976�.
5 A. J. Millis, Phys. Rev. B 48, 7183 �1993�.
6 For a review of the one-particle irreducible version of the exact

RG with a broad range of applications, see J. Berges, N. Tetra-
dis, and C. Wetterich, Phys. Rep. 363, 223 �2002�.

7 H. Ballhausen, J. Berges, and C. Wetterich, Phys. Lett. B 582,
144 �2004�.

8 L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys. Rev.
B 68, 064421 �2003�.

9 A. Sinner, N. Hasselmann, and P. Kopietz, J. Phys.: Condens.
Matter 20, 075208 �2008�.

10 C. Wetterich, Phys. Rev. B 77, 064504 �2008�.
11 W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91,

066402 �2003�.
12 L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 �2006�.
13 P. Wölfle and A. Rosch, J. Low Temp. Phys. 147, 165 �2007�.
14 A. Abanov and A. V. Chubukov, Phys. Rev. Lett. 93, 255702

0

0.02

0.06

0.08

0.12

0.03 0.05 0.06

T

δ

a
T

C
T

G

0

0.02

0.06

0.08

0.1

0.12

0.005 0.006

T

δ

b
T

C
T

G

0.1

0.14

0.04 0.04

0.04 0.004

0.14

FIG. 6. �Color online� The transition lines Tc��� obtained for �a� z=2, d=2 and �b� z=2, d=3. The phase with broken symmetry is located
below the line. For d=2, the phase boundary Tc��� is consistent with the relation ��−�0��Tc log log Tc / log Tc derived by Millis �Ref. 5�.
For d=3, it follows the expected power law Tc���� ��−�0�2/3. The crosses indicate the Ginzburg temperature TG for various choices of �.

JAKUBCZYK et al. PHYSICAL REVIEW B 77, 195120 �2008�

195120-8



�2004�.
15 A. Neumayr and W. Metzner, Phys. Rev. B 58, 15449 �1998�.
16 C. Kopper and J. Magnen, Ann. Henri Poincare 2, 513 �2001�.
17 A. V. Chubukov and D. L. Maslov, Phys. Rev. B 68, 155113

�2003�, and references therein.
18 J. Rech, C. Pepin, and A. V. Chubukov, Phys. Rev. B 74, 195126

�2006�.
19 N. Nagaosa, Quantum Field Theory in Strongly Correlated Elec-

tronic Systems �Springer, Berlin, 1999�.
20 A. Rosch, Phys. Rev. B 64, 174407 �2001�.
21 C. Wetterich, Phys. Lett. B 301, 90 �1993�.
22 B. Delamotte, D. Mouhanna, and M. Tissier, Phys. Rev. B 69,

134413 �2004�; B. Delamotte, arXiv:cond-mat/0702365 �unpub-
lished�.

23 W. Metzner, Prog. Theor. Phys. 160, 58 �2005�.
24 H. Gies, arXiv:hep-ph/0611146 �unpublished�.
25 D. F. Litim, Phys. Rev. D 64, 105007 �2001�.
26 N. Goldenfeld, Lectures on Phase Transitions and the Renormal-

ization Group �Perseus, Oxford, 1992�.
27 Note that the shape of the Ginzburg curve drawn in Fig. 3 of Ref.

5 does not correspond to the formula for TG��� derived in the
same paper.

28 J. Braun and H. Gies, J. High Energy Phys. 6, 24 �2006�.

RENORMALIZATION GROUP FOR PHASES WITH BROKEN… PHYSICAL REVIEW B 77, 195120 �2008�

195120-9


