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We present a group theory analysis of the symmetries of the eigenmodes and eigenvalues of photonic
crystals with either materially or geometrically anisotropic motif. Irreducible Brillouin zone of such a photonic
crystal varies with the parameters of the anisotropic motif. By using coset decomposition of a group, we have
identified the irreducible Brillouin zones of such photonic crystals. We have shown the existence of a funda-
mental zone in the orientations of a motif for which the eigenvalues are found to be unique, and such a zone
is fully described by a set of symmetry elements, which form a new group. In addition, by using a two-
dimensional photonic crystal with hexagonal lattice as an example, we present a full description of the eigen-
mode symmetry in the photonic crystal with an anisotropic motif. A classification of degenerate states, which
is in the absence of a spatial modulation and in the absence of an anisotropy, is shown by using a properly
derived integer system, and the eigenstate splitting �and evolution� in the presence of the anisotropy and the
spatial modulation are described in detail.
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I. INTRODUCTION

Photonic crystals �PCs� is an artificial material, which ex-
hibits periodicity either in permittivity or in permeability.
Such periodicity resembles that of the electrical potential in a
semiconductor and hence enables a PC to control the propa-
gation of photons1,2 in a similar fashion to electrons being
controlled in semiconductors. The ability of PCs to provide a
photonic band gap3 and the extraordinary dispersion
relations4 lead to the invention of novel photonic devices,
such as ultrasmall lasers5 and flat lenses.6,7

A PC may be simply viewed as a lattice with a motif
attached to each lattice point. The term motif refers to the
distribution of the dielectric material within the unit cell of
the lattice. If the reorientation of the motif causes the sym-
metry elements of a PC to change, then the corresponding
PC can be defined as an anisotropic PC, as opposed to an
isotropic ones. Anisotropic PCs can be geometrically or ma-
terially anisotropic. Figure 1 �left� shows the geometry of a
two-dimensional �2D� hexagonal lattice PC with a square
motif. The orientation of the square motif with respect to the
underlying lattice plays a crucial role in determining the op-
tical properties of the 2D PC. In Fig. 1 �right�, instead of a
square motif, we have a circular motif for which the corre-
sponding orientation is irrelevant. If all materials are isotro-
pic, then the geometry in Fig. 1 represents an example of a
geometrically anisotropic and isotropic PCs, respectively. In
the presence of an anisotropic material, the optical properties
of a PC will vary in accordance to the orientation of the
anisotropic material �i.e., the orientation of the principal axes
with respect to the lattice�, and therefore, the corresponding
PC is defined as a materially anisotropic PC. A PC with a
geometry in Fig. 1 �right� constitutes an example to the ma-
terially anisotropic PC, if either the matrix or the circular
cylinders are made of an anisotropic medium. On the other
hand, in the presence of an anisotropic material, a PC with a

geometry, as shown in Fig. 1 �left�, has a mixed anisotropy
�i.e., both geometrical and material’s anisotropy exist�.

Anisotropic PCs have fundamental importance as it is the
general class in which isotropic PCs can be considered as a
special case. Moreover, anisotropic PCs have been widely
used in the design and the applications of PCs. Geometri-
cally, anisotropic PCs have been widely used in exploration
of 2D and three-dimensional �3D� photonic band gaps.8–16

Particularly, in 2D PCs that play a central role in the realiza-
tion of integrated optical chips, motifs with various geometry
have been used to improve the photonic band gap.8–13 On the
other hand, materially anisotropic PCs, apart from their abil-
ity to engineer the band gap,17–20 are found to be extremely
useful in realizing tunable PCs.21–31 Liquid crystal infiltrated
3D21–24 and 2D25–30 PCs and PCs with Pockel or Kerr
materials31 are examples of materially anisotropic PCs.

Although anisotropic PCs occur naturally in the design of
PCs, adequate theoretical tools based on their symmetry are
still lacking. Formal tools for such an analysis can be devel-
oped by using group theory, which has been proven to be
highly valuable especially in understanding the symmetrical
properties of an electronic energy band.32,33 In the context of
a PC, group theory has been employed to investigate mode
couplings,34–37 existence of photonic band gaps,38 descrip-

FIG. 1. �Color online� Examples of geometries of a 2D hexago-
nal lattice PC: square motif �left� and circular motif �right�.
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tion of resonant modes in the defect state of a PC,39 the
symmetrical properties of the eigenmodes of an opal40 and a
metallic photonic crystal,41 and very recently in the under-
standing of cutoff conditions of optical vortices in a 2D PC.42

In this paper, we develop necessary theoretical tools by
using group theory for symmetry analysis of the eigenstates
in anisotropic PCs. A systematic description of the irreduc-
ible Brillouin zone �IBZ� of an anisotropic PC is given. By
using coset decomposition of a group, we have drawn a re-
lationship between the IBZs of isotropic and anisotropic PCs
of the same lattice. Moreover, we have elaborated on the
existence of a fundamental zone in the orientations of the
motif with respect to the lattice. By taking 2D hexagonal
lattice as an example, we first introduce an eigenstate classi-
fication scheme of degenerate states in the absence of a spa-
tial modulation and in the absence of anisotropy by using a
properly derived integer system. We then describe the split-
ting and the evolution of these states in the presence of the
anisotropy and the spatial modulation. The rest of the paper
is organized as follows: In Sec. II, we introduce relevant
symmetry groups and cosets of an anisotropic PC. In Sec. III,
we describe the use of cosets in identifying the IBZs of an
anisotropic PC and outline the derivation of the orientational
group that leads to the fundamental zone of orientations. In
Sec. IV, we give the classification and the evolution of sym-
metry in an anisotropic 2D PC with an hexagonal lattice.
Section V summarizes the key results of the paper and dis-
cusses the applicability of the results in the design of aniso-
tropic PCs. Finally, Sec. VI concludes the paper.

II. SYMMETRY GROUPS

The symmetry of a PC is analyzed in terms of their sym-
metry elements. A collection of symmetry elements that sat-
isfies the group axioms43,44 is called a symmetry group.
Throughout the paper, we denote a symmetry element of a
group by using a capital letter Q, the corresponding symme-
try group by using the same capital letter but with a bar on

top Q̄, and the order of the group by using a small version of
the same letter q.

A PC is comprised of a lattice and a motif attached to
each lattice point. The symmetry operations that leaves the

lattice invariant is given by a space group Ḡ. This group

have a translational subgroup T̄, which contains all primitive

translations of the lattice. As T̄ is an Abelian group, it has
only one-dimensional �1D� irreducible representations �IRs�
with the corresponding basis functions,43,44 which are Bloch
functions of a wave vector k. Hence, a magnetic field distri-

bution in a PC constitutes an example for a basis of T̄. An

action of T� T̄ on the magnetic field function, Hk�r�, can be
illustrated as follows:

THk�r� = ejktHk�r� , �1�

where t is a primitive real lattice vector and ejkt is an IR of
T, which is identified with the wave vector k. Besides the
translational symmetry, the lattice comes along with several
compatible point group symmetries. The point group of a

lattice can be denoted as R̄, and the action of R on T �T
� T̄ and R� R̄� leaves T̄ invariant. Moreover, when R oper-
ates on a Bloch function of a wave vector k, it produces
another Bloch function with a wave vector Rk,40,43,44

RHk�r� = HRk� �r� . �2�

Assuming Ḡ is a symmorphic space group,43,44 any element

of Ḡ can be expressed as a product of an element of T̄ with

an element of R̄. That is, Ḡ= T̄ � R̄, where the sign � indi-
cates the multiplication direction is from the left to right �i.e.,
semidirect product�.43,44 In a symmorphic space group, all
symmetry operations consist of point group operations �i.e.,
rotations, reflections, and inversions� and translations by us-

ing lattice vectors �i.e., belongs to T̄� only. Nonsymmorphic
space group is more complicated, involving translations by

using fractional lattice vectors �not in the group of T̄�, such
as glide reflections and screw rotations; thus, the element of
a nonsymmorphic space group cannot be expressed as a

product of an element of T̄ with an element of the point
group. In this paper, all discussions are limited to symmor-
phic space groups.

Generally, depending on the geometry of the motif and
the materials symmetry, the symmetry elements of a motif
are different from those of a lattice. The symmetry elements
of the motif can be taken as Rgeo�Rmat, where Rgeo and Rmat
is, respectively, the geometrical and material point group of
the motif. The intersection of two groups is always a group.
Thus, the symmetry elements of the motif is also given by a
point group, RB=Rgeo�Rmat. If the material is isotropic, then
RB=Rgeo.

Furthermore, an important group in determining the opti-
cal properties of a PC is the group of symmetry operations
GM. The definition of GM can be understood from the fol-
lowing wave equation, which solves the dispersion relation
in the PC:

MHk�r� = ��k�Hk�r� , �3�

where ��k� is the eigenvalue of a differential operator M.37,45

The group GM is a subgroup of Ḡ and contains the symmetry
operations GM, such that

GMMGM
−1 = M . �4�

Again assuming a symmorphic space group, GM can be ex-

pressed as GM = T̄ � RM, where RM is a point group of M. 2D
PCs with symmorphic and nonsymmorphic GM were theo-
retically previously discussed,46 and holographic method was
proposed for the fabrication.47 The point group RM is given
by

RM = R̄ � RB = R̄ � Rgeo � Rmat. �5a�

If the materials are assumed to be isotropic, then Eq. �5a�
becomes

RM = R̄ � RB = R̄ � Rgeo. �5b�

In 2D PC analyses, the wave vectors of light are confined in
the 2D periodic plane,8–13,17,18,25–31 and therefore, the group
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RM is expressed by a plane point group.34,37,46,47 Table I
shows some examples of RM for various motifs in an 2D
hexagonal lattice PC �R̄=C6v� and the corresponding defini-
tion of symmetry elements in the symmetry group can be
found in Table X.

In a 3D PC, the definition of M takes the most general
form, M =�� �1 / �̃�r���,37,45 with �̃�r� as the position-
dependent dielectric tensor and Eq. �3� as basically a set of
three coupled differential equations. For a 2D PC, there is a
possibility of decoupling these coupled equations into two
independent equations for the two polarizations of light,
namely, H �electric field parallel to the 2D periodic plane�
and E �electric field perpendicular to the 2D periodic plane�
polarizations. Each of these polarizations satisfies Eq. �3�
with a different and independent M.34,45 It is worth mention-
ing that if the 2D PC is made of isotropic materials �i.e., only
geometrically anisotropic�, then we can decouple the two
polarizations of light and the corresponding M operators will
have the same symmetry groups, RM and GM.34,37 On the
other hand, if the 2D PC is made of an anisotropic material
�i.e., uniaxial or biaxial� then, in general, the polarizations
are coupled. However, a great simplification exists when one
of the principal axes of the anisotropic material is perpen-
dicular to the 2D periodic plane, where we can decouple the
polarizations into E and H polarizations.17,18,25,27,28 In this
case, the two M operators for the two polarizations may have
different GM. The electric field in the E polarization is par-
allel to the principal axis that is lying perpendicular to the 2D
periodic plane, the symmetry of the E polarization is there-
fore not affected by the anisotropy of the material, and con-
sequently, the corresponding GM is the same as if the 2D PC
is constructed with isotropic materials �i.e., RM is given by
Eq. �5b��, whereas for the H polarization, the GM is obvi-
ously influenced by the material symmetry �i.e., RM is given
by Eq. �5a��.18,25,27

A subgroup of groups Ḡ, R̄, GM, and RM can be formed
for each wave vector k by considering the corresponding

symmetries in k. From Eq. �1�, each 1D IR of T̄ is given by
ejkt. Since, ejGt=1 �where G is the reciprocal lattice vector�,
two IRs of T̄ identified by wave vectors, k and k+G, are

essentially the same. Thus, the elements of Ḡ, whose action
on k generates k added with multiples of G, form a sub-

group, Ḡ�k�. Similarly, we can form subgroups R̄�k�, GM�k�,
and RM�k� from the main groups of R̄, GM, and RM, respec-
tively, by considering the symmetries in k. Figure 2 depicts

the relationships among the groups R̄, RB, RM, R̄�k�, and
RM�k�. Any symmorphic space group can be written as a

product of T̄ and a point group. For groups of k, this product
is a direct product �i.e., the multiplication direction is irrel-

evant�. For instance, Ḡ= T̄ � R̄ is a semidirect product, but

Ḡ�k�= T̄� R̄�k� is a direct product.43,44

In discussing the properties of a group, a useful tool is a
coset decomposition.43,44 When an element of a group acts
on its subgroup, it produces a set of elements called coset. A
group may have several �an integer number� distinct cosets
depending on the size of the subgroup. Based on the group
properties, all cosets of a group �derived from the same sub-
group� must be the same in size and must be either identical
or totally different sets �i.e., no elements in common between
any two cosets�. Hence, a group can be decomposed into a
sum of distinct cosets. For instance, a coset decomposition
that will be useful in the later discussion,

GM = GM�k�GM1 + GM�k�GM2 + ¯ + GM�k�GM�rm/rm�k��.

�6a�

In the above coset decomposition, GMi�GM�i
=1,2 , . . . ,rm /rm�k��, and GM is decomposed with respect to
its subgroup, GM�k�. GM�k�GMi is said to be a “right coset”
as the action of GMi is on the right to GM�k�. The number of
cosets is given by the ratio of the orders of the group and the

TABLE I. RM for typical motifs in a 2D hexagonal lattice. Any
two principal axes of the anisotropic material are assumed to be
oriented in the 2D periodic plane. Key: sm—geometrical orienta-
tion of the motif �or orientation of the principal axes of the aniso-
tropic media� is symmetrically matched with the lattice and arb—
arbitrary orientation with no symmetry matching.

Geometry �Rgeom� Orientation

Materials

Anisotropic

Isotropic sm arb

Circle �C6v� C6v C2v C2

Square �C4v� sm C2v C2v C2

arb C2 C2 C2

Rectangle/Ellipse
�C2v�

sm C2v C2v C2

arb C2 C2 C2

Triangle �C3v� sm C3v C1h C1

arb C3 C1 C1

Hexagon �C6v� sm C6v C2v C2

arb C6 C2 C2

R

MR

)(kR

)(kMR

BR

FIG. 2. �Color online� Set relationships between R̄, RB, RM,

R̄�k�, and RM�k�.
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subgroup, gm /gm�k�, and it has to be an integer. Since GM

and GM�k� is a product of T̄ with RM and RM�k�, respec-

tively, gm / t=rm /rm�k�. In addition, as the factor group GM / T̄
is isomorphic to RM, Eq. �6a� can be equivalently written as

RM = RM1 + RM2 + ¯ + RM�rm/rm�k��, �6b�

where RMi is taken from each coset of RM decomposed with
respect to RM�k�. An important property of a coset is that if
��r� is a basis for an IR of a subgroup, the function Q��r� is

a basis for a representation of the main group Q̄, provided Q

is chosen from a coset of Q̄ expanded with respect to the
same subgroup.

The coset decomposition of a group will be used in Sec.
III A. Specifically, the coset decomposition of GM with re-
spect to GM�k� will be used in the description of the IBZ of

an anisotropic PC, and the coset decomposition of R̄ with
respect to RM will be used to relate the IBZ of the isotropic
and the IBZ of the anisotropic PC of the same lattice.

III. SYMMETRY IN THE WAVE EQUATION

A. Irreducible Brillouin zones

In this section, we shall present the IBZ formulation of an
anisotropic PC and the relationship between this IBZ and the
IBZ of an isotropic PC of the same lattice. The IBZ of an
isotropic PC is fixed once the lattice is known; therefore, it
can also be called as IBZ of the lattice. Although the IBZ of
an anisotropic PC has previously been inferred for some
simple and specific 2D structures,8,18 the present paper is the
first systematic and general study of IBZ for anisotropic PCs
by using group theory. The formalism in this section will
provide a systematic set of tools in describing IBZ of aniso-
tropic PC and therefore enables to predict IBZ of a more
complex 2D and 3D PC structures.

Consider the symmetry operations that leaves M invariant
in Eq. �3� at a particular k vector. Such a symmetry opera-
tions comes from GM�k�. Operate GM�k�, GM�k��GM�k� on
both sides of Eq. �3�, and as M commutes with GM�k� �Eq.
�4��,

M�GM�k�Hk�r�� = ��k��GM�k�Hk�r�� . �7�

Equation �7� shows that GM�k�Hk�r� is an eigenfunction of
M. By using group representation, we can write GM�k�Hk�r�
as a sum of basis functions of an IR of GM�k�,

GM�k�Hk�r� = �
j=1

d

ajHk
j �r� , �8�

where GM�k��GM�k�, Hk
j �r�, with j=1, . . . ,d, is a basis

function of a d-dimensional IR of GM�k�, and aj is a scalar
coefficient.

A complete set of symmetry operations that leaves M in-
variant is given by the space group GM. From Eqs. �3� and
�4�, for any GM �GM,

M�GMHk�r�� = ��k��GMHk�r�� . �9�

Clearly GMHk�r� is an eigenfunction of M. Hence, as we did
for GM�k�Hk�r� �Eq. �8��, GMHk�r� can be written as a linear

combination of basis functions of an IR of GM. The basis
function of its subgroup, GM�k�, is given by Hk

j �r�, where
j=1, . . . ,d �Eq. �8��; thus, from the coset decomposition
�Eqs. �6a� and �6b��, we know that RMiHk

j �r�, where i
=1, . . . ,s=rM /rM�k�, with RMi belonging to each coset of RM
decomposed with respect to RM�k�, must be a basis function
of a representation of GM. In this particular case it can be
shown that this representation is also irreducible �see pp. 124
and 125 of Ref. 43�. By using Eq. �2�, the basis function of
an IR of GM ,RMiHk

j �r�, can be written as HRMik
j �r�. There-

fore, the eigenfunction of M, GMHk�r� �Eq. �9��, can be writ-
ten as a linear combination of sd-independent basis functions
of an IR of GM, as follows:

GMHk�r� = �
i=1

s

�
j=1

d

bi,jHRMik
j �r� , �10�

where bi,j is a scalar coefficient. Equation �10� shows that the
eigenspace of Eq. �3�, with an eigenvalue of ��k�, is spanned
by sd number of independent basis functions, HRMik

j �r� �i.e.,
sd-fold degeneracy�.

For a general wave vector, RM�k� contains only the iden-
tity element and so only one 1D IR �i.e., d=1� and s=rM.
Thus, the eigenvalue for a general wave vector is rM-fold
degenerate with rM basis functions formed by rM-k vectors
in the first BZ. However, it is sufficient to use only one of
these vectors to obtain the eigenvalue. So, among the zone of
vectors defined in the first BZ, only 1 /rM portion of wave
vectors will have nondegenerate eigenvalue. That 1 /rM por-
tion is the irreducible part of the BZ �IBZ� of the anisotropic
PC. For example, we illustrate the IBZs for a 2D hexagonal
lattice PC in Fig. 3 for various RM. In Fig. 3�a�, we have

RM = R̄=C6v, so rM =12 and the 1 /rM portion of the hexago-
nal BZ is a triangle, as shown in the figure. Figures 3�b�–3�f�
show the IBZs for RM =C3v, C2v,C2, C1, and C2v�, respec-
tively. The definition of the first four groups can be found in
the Table X. The group C2v� is similar to C2v; however, the
two mirror axis are �−30° and �60°, respectively.

As we described in Sec. I, apart from the symmetry of the
lattice, the definition of GM is determined by the materials

(b) (c)

(d) (e) (f)

(a)

�

K’ K’

KK

K’
M

K’ M’

M

M

M’

M

FIG. 3. �Color online� IBZs when RM�k� equals to �a� C6v, �b�
C3v, �c� C2v, �d� C2, �e� C1, and �f� C2v�. Symmetrical points of a
2D hexagonal lattice are labeled in �a�.
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and the geometry of the motif. So, the definition of the IBZ
and the optical properties will vary when the elements of GM
varies. On the other hand, it is always possible to define an
IBZ, which is reduced from the BZ by using the symmetries

of the lattice Ḡ. Such an IBZ is that of the PC when GM

= Ḡ and can be named as IBZ of the lattice �the IBZ of the
lattice refers to that of an isotropic PC of the same lattice�.
Given a lattice, Ḡ is fixed; however, there could be many
possibilities of its subgroup GM. Thus, it is useful to draw a

relationship between Ḡ and GM so that the optical properties

that belongs to GM can be obtained by means of Ḡ. Such a

relationship can be found using a coset decomposition of Ḡ
with respect to its subgroup GM,

Ḡ = GMG1 + GMG2 + ¯ + GMGg/gm
, �11�

where Gi� Ḡ and there are g /gm distinct cosets. Since Ḡ

= T̄ � R̄, factor group Ḡ / T̄ is isomorphic to R̄. Thus, g /gm

=r /rm and for Ri� R̄, equivalently, Eq. �11� can be written as

R̄ = RMR1 + RMR2 + . . . + RMRr/rm
. �12�

Any Rj of the same coset RMRi can be written as Rj =RMjRi,
where RMj �RM, without changing the coset representative
Ri. Since RMj

−1MRMj =M, an operator defined as R−1MR re-
mains unchanged for R belonging to the same coset. If R
belongs to different cosets, R−1MR is essentially different.
Hence, there are r /rm different R−1MR operators with R cho-
sen from each coset, RMRi.

For a wave vector Rk with R� R̄, the corresponding ei-
genvalue is denoted as ��Rk�. From Eq. �3�, we have

MHRk�r� = ��Rk�HRk�r� . �13�

Since HRk�r�=RPk�r� with Pk�r� being another Bloch func-

tion �Eq. �2��, Eq. �13� can be rearranged for any R �R� R̄�,

R−1MR�Pk�r�� = ��Rk��Pk�r�� . �14�

With the absence of the anisotropic motif �i.e., isotropic PC

with RM = R̄�, R−1MR=M for all R. Hence, ��Rk�=��k� for

all R, R� R̄. However, with the presence of anisotropic mo-
tif, there will be r /rM different eigenvalues since there are
r /rM distinct R−1MR operators. This also means that among r
wave vectors Rk that are equivalent with the absence of the
anisotropic motif will split into r /rM sets of in-equivalent Rk
wave vectors. Thus, the size of PC’s IBZ is enlarged by a
factor of r /rM compared to the size of the IBZ of the latttice.
From the coset decomposition, we know that r /rM must be
an integer and this means the size of PC’s IBZ is an integer
multiples of size of the IBZ of the lattice. Furthermore, if the
IBZ of the lattice is denoted as a collection of wave vectors
�k�, then the IBZ of the anisotropic PC is a collection of
R1�k� , . . . ,Rr/rM

�k�, with Ri chosen from each coset in Eq.
�12�.

This result is very useful in identifying the IBZs of com-
plicated 3D anisotropic PCs and a quick verification can be

illustrated by using Fig. 3 for various RM when R̄=C6v. For

instance, when RM =C2v, the IBZ of the PC is r /rM =3 times
bigger than the IBZ of the lattice. The IBZ of the lattice is a
zone of wave vectors �k� shown in a triangle of Fig. 3�a�. If

C2v= �E C2 �0 �90°� �Table X�, the coset decomposition R̄

=C6v with respect to RM =C2v takes the form of R̄=C2vE
+C2vR2+C2vR3, where R2 and R3 are the coset representa-
tives. Hence, the IBZ of the PC with RM =C2v is given by a
collection of wave vectors, E�k�, �30°�k�, and C6�k�, where
E, �30°, and C6 are chosen from each coset of C2v �RM� with

respect C6v �R̄�. Such a collection of wave vectors forms the
shaded region in Fig. 3�c�. It has to be noted that the defini-
tion of an IBZ depends on the explicit definition of RM. For
example, if C2v= �E C2 �−30° �60°� �i.e., C2v��, the definition
of cosets changes and this implies a change in IBZ, as shown
in Fig. 3�f�.

As we have shown, the definition of IBZ of an anisotropic
PC changes with the definition of RM, although the lattice

group R̄ does not change. The IBZ of the anisotropic PC can
be obtained by transforming the wave vectors k in the IBZ of
the lattice by using the operations Rk, where R is selected

from each coset of R̄ expanded with respect to RM. There-
fore, in PCs �2D or 3D� with anisotropic materials, if the
optical properties �i.e., band gaps� are to be monitored as a
function of optic axis, the varying optic axis will change RM
and demands redefinition of IBZ for each orientation of optic
axis. This may not be desired as redefinition of IBZ requires
the knowledge of cosets for each orientation of optic axis. An
alternative way to such a redefinition can be obtained by
using Eq. �14�. Eigenvalue with a wave vector Rk, ��Rk�,
can be obtained from a wave vector k, but with a coordinate
transformed M operator, R−1MR. By selecting R from each

coset of R̄ expanded with respect to RM, we can find the
eigenvalues at all inequivalent Rk vectors from a single k
vector. Thus, regardless of RM, we can fix the IBZ as that of
the lattice; however, the computations has to be repeated
r /rm times with distinct R−1MR operators. This method is
advantageous as it may not require the knowledge of group
theory �cosets� in the numerical implementation. A simple
coding can accomplish the task to find all �r /rm in total�
distinct R−1MR operators. The evaluation of R−1MR is
straightforward from the fact R−1MR=R−1M��̃�r��R
=M�R−1�̃�r�R�, where M��̃�r�� and M�R−1�̃�r�R� represent
M as a function of �̃�r� and R−1�̃�r�R, respectively �see Ref.
37 for a proof�. The task gets further simplified if the prob-
lems involves materially anisotropic PCs with only one iso-
tropic material,17–31 where R−1�̃�r�R becomes R−1�̃aR, where
�̃a is the dielectric tensor of the anisotropic material.

B. Fundamental zone of orientations

The reorientation of the motif with respect to the lattice
will change the symmetry elements of RM. In this section, we
analyze the consequence of such symmetry variation as a
function of an orientational parameter. The orientational pa-
rameter � can be defined by using the angle between two

symmetry axes of R̄ and RM, respectively. As RM is depen-
dent on � �Table I�, it will be useful to denote RM as RM���.
When the orientation of the motif is parallel to the symmetri-
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cal directions of the lattice, RM��� is obviously a larger group
than RM��� of a general orientation for which none of the
symmetrical axis overlaps �Table I�. Moreover, for a general

orientation, RM��� is an invariant subgroup of R̄ �or a normal
subgroup43,44�. For instance, in a 2D PC, the symmetrical
axes are mirror axes �in the periodic plane�, and for a general
orientation, the entire elements in the class43,44 containing
mirror elements are removed. If rotations exist in RM���,
they should exist as a whole class and obviously are not
disturbed by any orientation of the motif in the periodic
plane as the rotational axis is perpendicular to the 2D peri-
odic plane. For instance, considering an hexagonal lattice,

R̄=C6v, a motif with RB=C2v and defining the angle between

the �0 axis in R̄ and the �0 axis in RB to be �, when � equals
to the multiples of 30° �i.e., orientation of the motif matches
symmetrical directions of hexagonal lattice� RM���=C2v, and
for all any other angle, we have a smaller group of RM���
=C2 �Table I�. Thus, for the general orientation, RM���=C2,

which is obviously an invariant subgroup of R̄=C6v.
Assuming that when �=�, M =M� with an eigenvalue of

���k�, Eq. �3� becomes M�Hk�r�=���k�Hk�r�. The reorien-
tation causes � to change to a new value, �=�, M� changes
to M�, M�=R�

−1M�R�, and ���k� changes to ���k�. Thus,
when �=�, the eigenequation becomes

R�
−1M�R��Hk�r�� = ���k��Hk�r�� . �15�

If R��RM���, then R�
−1M�R�=M� and ���k�=���k�. Fur-

thermore, even if R��RM���, however, R�� R̄�k�, following
Eq. �2�, we still have ���k�=���k�. In fact, there could be

more symmetry elements other than RM��� and R̄�k�. It can
be easily shown a set of orientational operations �R�� R�

=RMR, where R�� �R�� �not necessarily belongs to RM��� or

R̄�k��, RM �RM���, and R� R̄�k�, for which Eq. �15� is in-

variant, leading to the same eigenvalue. �R�� is a subset of R̄
whose set order can be written as

�r�� =
r�k�rm���

rm�k�
. �16�

It is worth mentioning that RM�k�= R̄�k��RM��� �Fig. 2�
and RM�k�� R̄�k� �Fig. 2�. In Eq. �16�, �r�� is an integer as
the division of the orders of the group and the subgroup must
be an integer.

The set �R�� does not necessarily form a group, although

mostly it does. If RM��� is a subgroup of R̄�k�, then RM�k�
=RM���, �r��=r�k�, and �R��= R̄�k�. Inversely, if R̄�k� is a

subgroup of RM���, then RM�k�= R̄�k�, �r��=rm���, and

�R��=RM���. If either R̄�k� or RM��� is an invariant sub-

group of R̄, then it can be easily verified that they form a
group with the order given by Eq. �16�. Moreover, if

RM�k�=E, �R�� is a direct product group between R̄�k� and
RM���.

Hence, for a general orientation for which RM��� is an

invariant subgroup of R̄, �R�� is a group and can be denoted
as a group of orientation R�. This group of orientation is

fundamentally important because all orientations have mini-
mum symmetry of R�. The existence of symmetry in the
orientations leads to a fundamental zone of orientations
�FZO�, in which the orientations within the zone have unique
eigenvalues. Such a fundamental zone can be obtained by
considering the symmetry of R�. For example, the groups of
R� for various k vectors of a 2D hexagonal lattice and RM are
listed in Table II. The respective definition of the FZO for R�

is presented in Table III based on the symmetry elements
listed in Table X. Similar to an IBZ definition, the definition
of a FZO depends on the explicit definitions of the symmetry
elements. For instance, when R�=C2v= �E C2 �0 �90��, the
FZO is 0	�	90° �Table III�, where else if the mirror ele-
ments in C2v change to �−30� and �60� �i.e., R�=C2v�

�, then
the FZO changes to −30° 	�	60°.

A clearer representation of a FZO can be accomplished by
using a diagram. If the orientation of the motif is represented
as a unit vector, then the FZO of a 2D PC can be represented
in a unit circle. The FZO of a 2D PC with R�=C3v, C2v, C2v�,
and C6 is shown in Figs. 4�a�–4�d�, respectively. The shaded
region in each circle represents the corresponding FZO. Such
a sketch of FZO is advantageous as the symmetry operations
of R� can be highlighted in the diagram. For example, the
thick lines in Fig. 4�a�–4�c� represent the mirror operations
in R�, whereas the centered ellipse, triangle, and hexagon

TABLE II. R� at various k vectors and for various RM of general
orientations in a 2D hexagonal lattice. The R� groups formed by a

direct product between R̄�k� and a RM of a general orientation are
underlined.

k points �
 /a�

RM

C6 C3 C2 C1

� �0,0� C6v C6v C6v C6v

K �4 /3,0� C6v C3v C 6v C3v

M �1,−1 /�3� C6v C 6v C2v C2v

J �along MK� C 6v C 3v C 2v C1h

T �along �K� C 6v C 3v C 2v C1h

� �along �M� C 6v C 3v C 2v C1h

L �along �J� C6 C3 C2 C1

TABLE III. FZO for various R� that are compatible with a 2D
hexagonal lattice with 
 as an arbitrary positive angle. The defini-
tions are based on the symmetry elements of Table X.

R� FZO

C6v 0	�	30°

C3v 0	�	60°

C2v 0	�	90°

C6 
	�	
+60°

C3 
	�	
+120°

C1h 0	�	180°

C2 
	�	
+180°

C1 
	�	
+360°
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represents the twofold, threefold, and sixfold rotational op-
erations of R�, respectively. Although C3v and C6 may have
the same FZO �Figs. 4�a� and 4�d��, C6 does not have any
mirror operations and this makes the definition of equivalent
orientations in both C3v and C6 different. The equivalent ori-
entations in each case are shown in Figs. 4�a� and 4�d�, re-
spectively.

The concept of FZO is also applicable for 3D anisotropic
PCs. All possible orientations of the motif in the 3D space
can be represented in an unit sphere. Therefore, the existence
of orientational symmetry �given by the group R�� will re-
duce the sphere to a 3D FZO, for which the respective ori-
entations produce unique eigenvalues for Eq. �3�. The corre-
sponding orientational group for the 3D PC must consist of
all symmetry operations, R�=RMR, with RM �RM of general

orientation of the motif in the 3D space and R� R̄�k�. In 3D
anisotropic PCs, instead of the whole 3D space, we could
look for fundamental orientations of the motif within a par-
ticular plane of choice in the 3D space. In such case, the
fundamental orientations of motif in the plane of choice can
be obtained by constructing an orientational group consist of
symmetry operations R�=RMR with RM �RM of general ori-

entation in the plane of interest and R� R̄�k�. It is worth
mentioning that in this case, instead of an unit sphere, we can
use an unit circle to represent the FZO of the 3D anisotropic
PC in the plane of interest.

On the other hand, the effect of the orientation to an
eigenfunction is straightforward. To see this, rearranging Eq.
�15� to M��R�Hk�r��=���k��R�Hk�r��, we can see that when
R��R�, but R��RM�k�, the eigenfunction at �=� is a ro-
tated version of the one at �=�. If R��RM�k�, the eigen-
functions at �=� and �=� remain unaltered. Applications
and examples of FZO appear in Sec. IV B 3.

It is worth mentioning that the definition of IBZ and FZO
is dependent on the symmetry of the point group RM. As we
have mentioned in Sec. II that �see the paragraph after Eq.
�5b�� in a 2D materially anisotropic PC, if the polarizations
can be decoupled, the operator M generally splits into two

independent operators with different RM. Therefore, the cor-
responding IBZ and FZO will be polarization dependent.

IV. SYMMETRY OF THE EIGENMODES

From Eq. �10�, we know that the complete set of indepen-
dent eigenfunctions that span the eigenspace with an eigen-
value � in Eq. �3� is the basis functions of an IR of GM �i.e.,
HRMik

j �r��. Thus, the IR of GM can be used to label and de-
scribe the symmetry of the eigenmode. However, it will be
useful and easy if we can identify the symmetry of the eigen-
mode by using a point group representation. Since GM is a

semidirect product between T̄ and RM, the corresponding IR
of GM cannot be simply associated with those of RM.43,44

If we concentrate on a particular k, then the assignment of
an IR to the eigenvalue becomes more apparent and simple.
Such a representation is called a small representation.44 From
Eq. �8�, we know that the complete set of basis functions at
a particular k that gives the same eigenvalue is given by the
set of basis functions of an IR of GM�k� �i.e., Hk

j �r�, with j

=1, . . . ,d�. As GM�k�= T̄�RM�k� is a direct product, by
group theoretical arguments43 and by using Eq. �1�, we have

��GM�k�� = ��T���RM�k�� = ejkt��RM�k�� , �17�

where GM�k��GM�k�, T� T̄, RM�k��RM�k�, and ��Q� de-
notes a representation of a symmetry element Q. The dimen-
sion of ��T� is one �Sec. II�, thus the dimension of ��GM�k��
is determined by the dimension of ��RM�k��. The eigenmode
symmetry then can be identified with an IR of RM�k�, which
is a point group and the corresponding IRs can be readily
obtained from the standard literatures of crystallographic
group theory.43,44 The IRs of the group C6v and the IRs of the
compatible subgroups are listed in Table X.

Degeneracy of a state is determined by the dimension of
the IR of RM�k�, d, that labels the eigenvalue. This can be
seen from Eqs. �8� and �17�, where at a particular k vector,
the eigenspace is spanned by d-number basis functions.
Therefore, the degeneracy of the state with a d-dimensional
IR of RM�k� must be d. However, there could be additional
degeneracy resulted from the crossing of bands or the ab-
sence of spatial modulation. Such a degeneracy, which can-
not be explained by using the IR dimension, is termed as an
accidental degeneracy.43,44 A systematical method to deter-
mine accidental degeneracy in the absence of spatial modu-
lation will be shown in Sec. IV A for the symmetrical k
vectors of the hexagonal lattice.

In order to illustrate the symmetry of the eigenmodes and
the eigenvalues in a PC, we use an example of a 2D PC with
an hexagonal lattice and circular cylinders with a radius to
period ratio of rc. We assume the cylinders to be isotropic
with a refractive index of 3.5 �silicon� and the matrix me-
dium to be uniaxially anisotropic with an ordinary refractive
index n of 1.6 and a birefringence of �n. Such a uniaxial
medium can be a wide range of materials including organic
materials48 or liquid crystals with �n ranging from 0.02 to
0.8.23,49 The optic axis of the uniaxial medium is assumed to
be oriented parallel to the 2D periodic plane at an angle �
with respect to �-K axis of the hexagonal lattice �Fig. 3�a��.

(c)

C2v’

(b)

C2v

(d)

C6

(a)

C3v

FIG. 4. �Color online� FZO when R� equals to �a� C3v, �b� C2v,
�c� C2v�, and �d� C6. The thick lines represent the symmetrical axes
of R�, whereas the ellipse, triangle, and hexagon represent the two-
fold, threefold, and sixfold rotational operations of R�. The red ar-
rows in �a� and �d� denote the equivalent orientations in each case.
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The definition of RM�k� for an hexagonal lattice for �n=0
and �n�0 is given in Table IV. In the following, we shall
analyze the symmetry when the material’s anisotropy is
switched off ��n=0� and switched on ��n�0�.

Although we choose a materially anisotropic PC to study,
the conclusion also applies for geometrically anisotropic
PCs. In the geometrical anisotropic PC, the geometrical ori-

entation of the motif is equivalent to the optic axis orienta-
tion. A specific example of the symmetry representation in a
geometrically anisotropic 2D PC will be discussed in the end
of Sec. IV B 1.

A. Symmetry in the absence of a spatial modulation

In the absence of a spatial modulation �or a vanishingly
small refractive index modulation�, the photonic band struc-
ture must reduce to a free photon dispersion with the band
folding effect taken into account.34,37,38 Assuming k= �kx ky�
and G= �Gx Gy�, Eq. �3� for H polarization in the absence of
a spatial modulation and �=0 reduces to50

�kx + Gx�2

nx
2 +

�ky + Gy�2

ny
2 = �2


a
�	2

, �18�

where nx=n and ny =n+�n, with �x ,y� as the periodic plane,
a as the period of the PC, and � as the normalized frequency
�i.e., a divide by the free space wavelength�. For E polariza-
tion, Eq. �3� reduces to �kx+Gx�2+ �ky +Gy�2= �2
nz� /a�2,
with nz=n.50 The terms nx, ny, and nz represent the principal
refractive indices of the anisotropic medium.

By using G= �2
n1 /a��1,−1 /�3�+ �2
n2 /a��0,2 /�3�,
where �n1 ,n2� is a pair of integer that indices the reciprocal
lattice point, the dispersion of a free photon with H polariza-
tion, � free�k� can be deduced from Eq. �18�,

� free�k� =
1

ny

�C1Mis + C2�rn
2 − 1�Manis + C3kxMkx

+ C4kyMky
+ C5�rn

2 − 1�kxManis−kx
+ C6, �19�

where rn=ny /nx, whereas C1, C2, C3, C4, C5, and C6, are
k-dependent constants, and Mis, Manis, Mky

, Mky
, and Manis−kx

are discrete integers, which are independent of rn and k. For
E polarization, the dispersion is also governed by an equa-
tion similar to Eq. �19�, but in a simpler form with Manis
=Manis−kx

=0. In order to illustrate the effect of the material’s
anisotropy to the dispersion of the PC, we consider only the
H polarization in the rest of the paper. Nevertheless, the dis-
cussion for E polarization can be manipulated in a similar
manner by setting rn=1.

As degenerate states occur only at the symmetrical points
of the lattice, Eq. �19� for the symmetrical points of the hex-
agonal lattice can be simplified as

� free�k� =
1

ny
�3

�c1mis + c2�rn
2 − 1�manis + �c, �20�

where c1, c2, and �c are constants, whereas mis and manis are
discrete integers. The expressions c1, c2, �c, mis, and manis at
the symmetrical points of the 2D hexagonal lattice ��, K, K�,
M, and M�, Fig. 3�a�� are tabulated in Table V. As we can
see from Table V the distinction between K and K� as well as
M and M� only occurs in their expression for manis. In the
absence of the anisotropy, K and K� �M and M�� are essen-
tially equivalent points. On the other hand, it is worth men-
tioning that the free photon relationship of a 2D square lat-

TABLE IV. RM�k� for various � and �n in a 2D hexagonal
lattice. �o represents an arbitrary orientation that does not coincide
with any symmetrical directions of the lattice. The definition of the
k vectors is similar to that of Table II.

k �n=0

�n�0

�=0 �=60° �=�o

� C6v C2v C2v C2

K C3v C1h C1h C1

M C2v C2 C2v C2

J C1h C1 C1h C1

T C1h C1h C1 C1

� C1h C1 C1h C1

L C1 C1 C1 C1

TABLE V. Definitions of c1, mis, c2, manis, and �c in Eq. �20�.

k c1 mis c2 manis �c

� 4 n1
2+n2

2−n1n2 3 n1
2 0

K, K� 4 n1
2+n2

2−n1n2+n1 1

3
�3n1+2�2�K� 4

3
�3n1+1�2�K��

M, M� 2 2n1
2+2n2

2−2n1n2+2n1−n2 3

4
�2n1+1�2�M� 1

n1
2�M��
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tice with H polarization is also governed by an equation
similar to Eq. �20� and the corresponding details are given in
Appendix A.

In Eq. �20�, both mis and manis are discrete integers that
are independent of rn. Each state at the symmetrical points
can be labeled with these integers. In the absence of an an-
isotropy, i.e., �n=0 �rn=1 in Eq. �20��, � free�k� only de-
pends on mis, and thus, the corresponding frequency levels
can be labeled by using mis only. As a small anisotropy is
introduced �i.e., �n�0 and hence rn�1�, each state with
distinct mis label will split into states with different manis.
Thus, in the presence of the anisotropy, each state has to be
identified by a pair of indices �mis ,manis�. The degeneracy of
a state ns with a frequency of � free�k� can be determined by
finding the number of possible combinations of n1 and n2
that leads to the same �mis ,manis�. As we can see from Table
V manis is a square integer. Thus, we can equivalently use
�mis ,�manis� to identify a state in the presence of the aniso-
tropy. The possible values of mis and manis and the corre-
sponding degeneracy are listed in Tables VI–VIII for k vec-
tors �, K, and M respectively.

For instance, at � point mis=n2
2+n1

2−n1n2 �Table V�,
which is an integer with the first six values of 0, 1, 3, 4, 7,
and 9. The degeneracy �ns� for the first six states is 6 except
for mis=0 and mis=7, where we have ns=1 and ns=12, re-
spectively �Table VI�. Other possible values of ns at � must
be in the multiples of 6. As a small anisotropy is introduced,
each mis state will split into states with different manis=n1

2

�Table V�. For mis=1, the possible values of �manis are 0 and
1 �Table VI�. Hence, the corresponding state with mis=1
�ns=6� splits into two states labeled by manis=0 �ns=2� and
manis=1 �ns=4� �Table VI� as the anisotropy is introduced. If
mis=7, the degeneracy is 12 when �n=0. When �n�0, the
state mis=7 splits into three states, each with degeneracy of 4
and �manis of 1, 2 and 3, respectively �Table VI�.

If � is varied with respect to a parameter p such that ��p�
is a continuous function, then instead of a single state, we
have a continuum of states. A band index37 for �1�p� is lower
than �2�p� provided that �1�p�	�2�p�. If p=�n, the corre-
sponding ��p� given by Eq. �19� can be verified to be a
continuous and a differentiable function of �n for all real
values of �n. The ���n� functions �n=1.6� with the corre-

sponding �mis ,�manis� labels are plotted at � point and K
point in Figs. 5�a� and 5�b�, respectively. As we can see from
the figure, in the absence of the anisotropy, a lower band
essentially has a lower value of mis. However, when an an-
isotropy is introduced, such a correspondence is generally
invalid. For instance, in Fig. 5�a� when �n is between −0.4
and 0, the states �4, 2� have larger frequency than �3, 1�.
When �n=0.4, the two states have a common frequency and
when �n	−0.4, the frequency of �3, 1� leads that of �4, 2�.
The exact value of rn

2 �or �n�, where any two states with
�mis ,�manis� label �ais ,�aanis� and �bis ,�banis� will meet at a
common frequency can be obtained from Eq. �20�,

rn
2 = 1 −

c1�ais − bis�
c2�aanis − banis�

. �21�

It is clear from Eq. �21� that states with the same mis will not
cross unless rn=1 and crossing between states with the same
manis is not allowed.

The eigenmode symmetry of each degenerate state
�mis ,�manis� is described by a reducible representation, and
the characters of such representations �i.e., trace of represen-
tation matrix43,44� are independent of rn. The dimension of
the representation in each state is given by ns of the state and
the corresponding characters of the representation can be
found by using the procedure outlined in Refs. 34 and 37. By
using the standard group theory reduction procedure,43,44 the
representation can be written as a direct sum of IR of RM�k�
�see Table IV for definitions of RM�k��. The result of such an
analysis is presented in Table IX by noting that symbols A1,
A2, B1, B2, A, and B refer to different 1D IRs in Muliken’s
notation, whereas E1 and E2 refer to different 2D IRs in
Muliken’s notation. More detailed information on these sym-
bols can be found in Ref. 33, 43, and 44.

B. Symmetry in the presence of spatial modulation

As the spatial modulation is switched on, the degenerate
states in Tables VI–IX split into states, which can be further
labeled by an IR of RM�k�. If the modulation is increased
such that the symmetry of RM�k� in the absence of the spatial
modulation is retained, then the corresponding state will split
according to the IRs of RM�k� in the absence of spatial

TABLE VI. The discrete values of mis and the corresponding allowed values of manis �Eq. �20�� at � point. The integer in parentheses
indicates ns of the state.

�

mis 0 �1� 1 �6� 3 �6� 4 �6� 7 �12� 9 �6�
�manis= �n1� 0 �1� 0 �2� 1 �4� 1 �4� 2 �2� 0 �2� 2 �4� 1 �4� 2 �4� 3 �4� 0 �2� 3 �4�

TABLE VII. The discrete values of mis and the corresponding allowed values of manis �Eq. �20�� at K point. The integer in parentheses
denotes ns of the state.

K

mis 0 �3� 1 �3� 2 �6� 4 �6� 5 �3�
�manis= �3n1+2� 1 �2� 2 �1� 2 �2� 4 �1� 1 �2� 4 �2� 5 �2� 2 �2� 5 �2� 7 �2� 4 �2� 8 �1�
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modulation. If the increase in the modulation reduces the
number of symmetry elements in RM�k� �i.e., RM�k� in the
presence of modulation is a subgroup of the one in the ab-
sence of spatial modulation�, then the corresponding IR have
to be subduced43,44 from the IRs of RM�k� in the absence of
the spatial modulation.

In the presence of the spatial modulation, the solutions to
Eq. �3� can be obtained by means of a plane wave
expansion,37,45,51,52 in which the eigenfunction is expanded
into a set of basis functions, i.e., plane waves. Eigenvalues
with a particular IR can be obtained by only selecting the
basis functions of this IR.38,43,44,52 If the dispersion relation,
��p� is a continuous and differentiable function of p, and the
group RM�k� does not change as p changes, then a small
change in p only causes a small change in the value of � and
has no effect on the symmetry of the eigenmode. Thus, the
eigenmodes of the ��p� function with the same RM�k� will
have the same IR.

1. Symmetry as a function of spatial modulation

The plot of ��rc� at � point, with n=1.6, �n=0.6, and
�=0, is given in Fig. 6. The figure shows the splitting of
degenerate states �mis=1,�manis=0� and �mis=1,�manis=1�
as a function of rc. The first degenerate state �mis=1,�manis
=0� in Fig. 6 has a representation A1 � B2 �Table IX�. The
symbol � indicates that the representation is reducible and
composes two 1D IRs, A1 and B2. As the spatial modulation
is switched on, the state splits into two states, which form
two continuous and differentiable ��rc� functions as rc is
varied. The symmetry of the eigenmodes at any rc for the
same function is the same, and hence, these two functions
can be written as �A1

�rc� and �B2
�rc� with the symmetry of

the eigenmodes at any rc is given by the IRs, A1 and B2,
respectively.

The definition of a band37 that indices a lower frequency
with a lower index and an higher frequency with an higher
index causes a little confusion. That is, when �A1

�rc� and
�B2

�rc� cross, the two bands interchange the symmetry. For
instance, in Fig. 6, these two functions cross at rc=0.18 and
the respective symmetry at the left and right of the intersec-
tion point for band 1 is B2 and A1, respectively. This can be
further verified by examining the symmetries of the numeri-
cally computed eigenmodes in Figs. 7�a� and 7�b� for rc
=0.1 and rc=0.25, respectively. The intersection point at rc
=0.18 has an accidental40,46 twofold degeneracy with a 2D

TABLE VIII. The discrete values of mis and the corresponding allowed values of manis �Eq. �20�� at M point. The integer in parentheses
denotes ns of the state.

M

mis 0 �2� 1 �2� 3 �4� 4 �2� 6 �4� 9 �4�
�manis= �2n1+1� 1 �2� 1 �2� 1 �2� 3 �2� 3 �2� 1 �2� 3 �2� 3 �2� 5 �2�

TABLE IX. Representations of degenerate states of a 2D hex-
agonal lattice in the absence of spatial modulation.

k mis Representation �manis Representation

� 0 A1 0 A1

1 A1+B2+E1+E2 0 A1+B2

1 A1+A2+B1+B2

3 A1+B1+E1+E2 1 A1+A2+B1+B2

2 A1+B1

K 0 A1+E 1 A+B

2 A

1 A1+E 2 A+B

4 A

2 A1+A2+2E 1 A+B

4 A+B

5 A+B

M 0 A1+B1 1 A+B

1 A1+B2 1 A+B

3 A1+A2+B1+B2 1 A+B

3 A+B

-0.6 0 0.6
0.6

1

1.4

1.8

2.2

�n

�

(1,0)

(1,1)

(3,2)

(3,1)

(4,0)
(4,2)

(7,3)

(7,2)

(7,1)

(a)

-0.6 0 0.6
0.3

0.7

1.1

1.5

�n

�

(0,1)

(0,2)

(1,4)

(1,2)

(2,5)

(2,4)(2,1)

(b)

FIG. 5. �Color online� Splitting of degenerate states in the ab-
sence of a spatial modulation �H polarization�. � versus �n rela-
tionship at �a� � point and �b� K point. The states are labeled by a
pair of indices �mis ,�manis�. Each different color represents a differ-
ent mis.
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reducible representation, A1 � B2. The same analysis can be
done for the second degenerate state when rc=0, �mis

=1,�manis=1�. The representation of this state can be ob-
tained from Table IX to be A1 � A2 � B1 � B2, which contains
four 1D IRs. Hence, there are four ��rc� functions with four
different IRs originating from the second degenerate state
�mis=1,�manis=1�. The ��rc� plot with the symmetry assign-
ments at K point is given in Fig. 8 for the same configuration
of PC as in Fig. 6. The representation of the degenerate states
�rc=0� can be obtained from Table IX, noting the state �mis

=1,�manis=4� has a larger frequency than the state �mis

=2,�manis=1� when �n=0.6 �Fig. 5�b��.
In Fig. 6, all eigenmodes have only 1D IRs as RM���

=C2v for �n�0 and �=0 �Table X�. If RM��� is a higher
order group with 2D IRs �see Table IV, for list of IRs of
various RM groups�, then we will have the twofold degen-
eracy originating from the 2D IR retained. For example,
when �n=0, RM���=C6v �Table IV�, the state with mis=1
�rc=0� has a representation A1 � B2 � E1 � E2 with a sixfold
degeneracy �Table IX� and there are four ��rc� functions
originating from this state, as shown in Fig. 9. The represen-
tation at rc=0 contains two 1D IRs �A1 and B2� and two 2D
IRs �E1 and E2�, and as the increase in rc does not disturb
RM���, the twofold degeneracy in the �E1

�rc� and �E2
�rc� is

retained when rc is varied. The twofold degeneracy can be
lifted up if there is a change in the RM���, which will be
shown in Sec. IV B 2. Figure 9 also shows that as rc in-
creases, the symmetry at a particular band changes, and more

specifically, the occurrence of degenerate band could shift.
Such a shift is easily predicted using plots like Fig. 9. For
instance, in Fig. 9, until rc=0.13, the degenerate bands �at �
point� are bands 1 and 3 �recall that the band index is such
that a lower frequency will have a lower index and a higher
frequency will have an higher index�; however, for rc values
thereafter until rc=0.46, the degenerate bands shift to be
bands 2 and 3.

The � versus rc relationship for an inverse structure, in
which the matrix medium is isotropic and the cylinders are
uniaxially anisotropic, is different with the direct structure, in
which the matrix is anisotropic and the cylinders are isotro-
pic. The ��rc� plot at � point is shown in Fig. 10 for the
inverse structure with �n=0.6 and �=0, which can be com-
pared with Fig. 6 �direct structure�. Unlike the direct struc-
ture where we do not have any sixfold degenerate points for
rc=0, the inverse structure has a sixfold degenerate point
when rc=0. This is because the inverse structure has
RM���=C6v in the limit of zero modulation. Thus, its disper-
sion in the absence of a spatial modulation is similar to that
of an isotropic medium, and hence, the corresponding degen-
erate states for rc=0 can be labeled by using mis only. A
small increase in rc lowers the symmetry of RM��� from C6v
to its subgroup C2v. From Table IX, when mis=1 �rc=0�, we
have a representation A1 � B2 � E1 � E2 �a sum of IRs of

(1,0)

(1,1)

A1

B2

A1
B1

A2
B2

FIG. 6. �Color online� Splitting of states at � point as a function
of rc in a PC made of an isotropic circular cylinders with refractive
index of 3.5 in an uniaxial matrix medium �H polarization, �n
=0.6, n=1.6, and �=0�.

(a) (b)

FIG. 7. �Color online� Magnetic field pattern associated with
eigenmodes of the first band �with nonzero frequency� at � point of
a PC made of isotropic circular cylinders with refractive index of
3.5 in an uniaxial matrix medium �H polarization, �n=0.6, n=1.6,
and �=0� when rc equals �a� 0.1 and �b� 0.25.

0 0.1 0.2 0.3 0.4
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(1,4)
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A

FIG. 8. �Color online� Splitting of states at K point as a function
of rc in a PC made of isotropic circular cylinders with refractive
index of 3.5 in an uniaxial matrix medium �H polarization, �n
=0.6, n=1.6, and �=0�.
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FIG. 9. �Color online� Splitting of states at � point as a function
of rc in a PC made of isotropic circular cylinders with refractive
index of 3.5 in an isotropic matrix medium of refractive 1.6 �H
polarization�. The degenerate state at rc=0 has mis=1.
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C6v�. However, for a very small nonzero rc, this representa-
tion becomes a subduced representation54 and using the re-
duction procedure,43,44 the representation can be written as a
sum of IRs of C2v, 2A1 � 2B2 � A2 � B1. Thus, there are six
��rc� functions �2�A1

�rc�, 2�B2
�rc�, �A2

�rc�, and �B1
�rc�� in

Fig. 10.
It is worth mentioning that for a geometrically anisotropic

2D PC �i.e., no material’s anisotropy�, the splitting of the
states will be similar to the one in Fig. 10 as long as their
RM��� in the presence and the absence of a spatial modula-
tion is C6v and C2v, respectively. For example, considering a
square motif with an area Ac in an hexagonal lattice PC with
the orientation of the motif matching the symmetrical axes of
the lattice �Table I�, if we assume the background to be an
isotropic material, then in the limit of Ac→0, RM���=C6v.
For a very small but a nonzero Ac, we have RM���=C2v.

2. Symmetry as a function of the anisotropy

It can be easily verified that the compatibility of the sym-
metry between Fig. 6 ��n�0, RM���=C2v� and Fig. 9 ��n
=0, RM���=C6v� is somehow missing. For instance, in Fig.
9, when rc=0.25, bands 1, 2, 3 and 4 has an IR of A1, E1, E2,
and B2, respectively. When the anisotropy is switched on,
RM���=C2v, having only 1D IRs �Table X�, and therefore,
the degenerate functions in Fig. 9 �i.e., �E1

�rc� and �E2
�rc��

split, and in total, there are six � functions in Fig. 6. When
rc=0.25, band 1, 2, 3, 4, 5 and 6 has an IR A1, B2, A1, B1, A2
and B2, respectively �Fig. 6�. From the compatibility relation
between groups C6v and C2v �Table XI�, the IR A1 of C6v is
compatible with that of A1 of C2v. This compatibility
matches with symmetry representations at band 1 �rc=0.25�
of Figs. 6 and 9, as both have symmetry labeled by A1.
However, the compatibility between these figures is missing
for bands 2 and 3. From the compatibility relation between
groups C6v and C2v �Table XI�, E1 �IR of C6v� is only com-
patible with B1 and B2 �IRs of C2v�. This means that the
degenerate band, E1 for RM���=C6v will split into bands
with IRs B1 and B2 for RM���=C2v. However, band 2 �rc
=0.25�, with IR, E1 in Fig. 9, seems to be splitted into bands
with IR, B2 �band 2, rc=0.25� and A1 �band 3, rc=0.25� in
Fig. 6. Such a noncompatibility is a consequence of a drastic

change in the anisotropy �i.e., �n=0 in Fig. 9 and �n=0.6 in
Fig. 6�. In order to monitor the symmetry evolution, a plot of
���n� with a continuous variation of �n such as the one in
Fig. 11 is required. From Fig. 11, we can see that the func-
tion �E1

�rc� splits into �B1
�rc� and �B2

�rc� functions. How-
ever, the crossing at �n=0.45 causes the change of the sym-
metry of the third band from B1 to A1.

3. Symmetry as a function of the orientation of the motif

The symmetry of the eigenmodes and the eigenvalues
vary with the orientations of the motif. As an example, the
relationship between � and �, ����, for �n=0.6 and rc
=0.25 is shown in Figs. 12�a�–12�d�, respectively, for �, T,
�, and L points. �The definitions of these k vectors can be
found in Table II.�

TABLE X. The order, symmetry elements, and IRs of the sym-
metry groups compatible with the 2D hexagonal lattice. Notation of
symmetry elements and IRs follows Schonflies’s and Mulliken’s,
respectively �Refs. 37, 43, and 44�. The symmetry element �� re-
fers to a mirror operation along an axis y=x tan��� �where � is
defined along the anticlockwise direction from the +x axis� and Cn

in the symmetry element refers to n-fold rotation �anticlockwise
rotation around the axis perpendicular to the 2D periodic plane�.
The IRs with symbols A1, A2, B1, B2, A, and B are 1D IRs, whereas
E1, E2, E, E�, and E� are 2D IRs. For more detailed explanations on
the IR symbols, please refer to Ref. 43 and 44 or any other crystal-
lographic group theory text.

Group Order Symmetry elements IRs

C6v 12 E, C2, C3, C3
−1, C606, C6

−1,
�−60°, �−30°, �0°, �30°, �60°, �90°

A1, A2, B1, B2, E1, E2

C3v 6 E, C3, C3
−1, �−60°, �0°, �60° A1, A2, E

C2v 4 E, C2, �0°, �90° A1, A2, B1, B2

C6 6 E, C2, C3, C3
−1, C6, C6

−1 A, B, E�, E�
C3 3 E, C3, C3

−1 A, E

C1h 2 E, �0° A, B

C2 2 E, C2 A, B

C1 1 E A

TABLE XI. Compatibility relation between groups C6v, C2v,
and C2. Each column contains IRs of C6v �A1, A2, B1, B2 E1, and
E2�, C2v �A1, A2, B1, and B2�, and C2 �A and B�. The compatibility
between IRs of different groups can be obtained by examining the
rows. Examples: A1 of C6v is compatible with A1 of C2v and A of C2

�row 1�, A of C2 is compatible with A1, A2, or E2 of C6v �rows 1, 2,
and 6�, and A1 or A2 of C2v �rows 1 and 2 or row 6�.

C6v C2v C2

A1 A1 A

A2 A2 A

B1 B1 B

B2 B2 B

E1 B1, B2 B

E2 A1, A2 A

0 0.1 0.2 0.3 0.4

0.35

0.45

0.55

0.65

rc

�
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A2
A1

B2

B2

FIG. 10. �Color online� Splitting of states at � point as a func-
tion of rc in a PC made of uniaxial circular cylinders �H polariza-
tion, �n=0.6, n=1.6, and �=0� in an isotropic matrix medium with
refractive index of 3.5. The degenerate state at rc=0 has mis=1.
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The symmetries of the eigenvalues in Fig. 12�a�–12�d� are
governed by Eq. �15� and the corresponding symmetries are
given by the group R�. The group of RM for a general orien-
tation is given by the group C2 �Table I�, and hence, the
corresponding definition of R� can be found from Table II to
be C6v, C2v, C2v, and C2, respectively, for �, T, �, and L
points �the elements of these groups can be found in Tables

X–XII, except for � point, the group C2v has mirror elements
�−30° and �60°, i.e., C2v��. The FZO of these R� groups can be
identified from Fig. 4 and Table III. As we mentioned in Sec.
III B, only eigenvalues within a FZO are unique and this can
be readily verified from ���� plots in Figs. 12�a�–12�d�.
Similarly, the eigenfunctions remain distinct only for the ori-
entations within a FZO. The corresponding assignment of
IRs to the eigenmodes within a FZO is shown in Figs.
12�a�–12�d�.

As � variation is continuous, the assignment of IR of
RM�k� to the eigenmodes of ���� can be done by using com-
patibility relations. Compatibility relations between groups
C6v, C2v, and C2 are given in Table XI and the complete
tables of compatibility relationships between crystallo-
graphic point groups can be obtained from Refs. 43 and 44.

In Fig. 12�a� �� point� when �=0, RM���=C2v, the corre-
sponding symmetry assignments at each band can be ob-
tained from Fig. 6 at rc=0.25. For a small change in �,
RM���=C2, the corresponding symmetry assignment can be
done with the aid of compatibility relation between C2v and
C2 �Table XI�. For example, when �=0 �RM���=C2v�, the
symmetry representation of the first band is labeled with IR
of C2v A1 �obtained from Fig. 6 at rc=0.25�. For a small
change in � �RM���=C2�, the symmetry representation must
be compatible with the IR of C2v, A1. From Table XI, we
know A1 �IR of C2v� is compatible with the IR A of C2.

0 0.3 0.6

0.45

0.55

0.65

�n

�

B2
E1

E2

B2

A1A1

B1

A2

A1

B2

FIG. 11. �Color online� Splitting of states at � point as a func-
tion of �n in a PC made of isotropic circular cylinders �rc=0.25 and
refractive index=3.5� in a uniaxial matrix medium of birefringence
�n �H polarization, n=1.6, and �=0�.

FIG. 12. �Color online� � as a function of �, in a PC made of isotropic circular cylinders �rc=0.25 and refractive index=3.5� in a uniaxial
matrix medium �H polarization, �n=0.6, and �=0� at k vectors �a� �, �b� T �mid of �K�, �c� � �mid of �M�, and �d� L �mid of �J�.
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Therefore, for a small change in �, the symmetry represen-
tation of the band 1 is labeled with the IR, A of C2. There-
after, a continuous variation of � in 0	�	30° causes the
whole continuous function of ���� �0	�	30° � to possess
the same IR, as such, a variation of � does not alter the
group, RM���. As observed in Fig. 6 for ��rc� functions, if
two ���� functions of different IRs cross, the bands ex-
change the symmetry at the intersection point. When �
=30°, RM���=C2v, the compatibility relations �Table XI�
show that a single IR of a group C2 is compatible with more
than one IR of C2v. Thus, a numerical examination of the
eigenfunction is also necessary in this case. The IR assign-
ment of other k vectors follow a similar approach and is
presented within the FZO in Figs. 12�b�–12�d�. In Fig. 12�d�,
as RM�L�=C1, all eigenmodes have an IR A �Table XI�.

As we have mentioned in Sec. III B, the equivalent orien-
tations have rotated versions of the eigenfunctions, although
the symmetry representation of eigenmodes at equivalent ori-
entations necessarily has the same set of characters, which
refers to the trace of the representation matrix and does not
altered by orthogonal transformations �i.e., rotations�.43,44

The eigenmodes of band 3 at the equivalent orientations, �
=0°, 60°, and 120° are shown in Figs. 13�a�–13�c�, respec-
tively. As we can see from these figures, all equivalent ori-
entations have A1 symmetry, but the eigenfunctions are ro-
tated. When �=180°, R�=C2�RM�k�, R�Hk�r�=Hk�r�, and
hence, we have the same eigenfunction as when �=0.

V. DISCUSSIONS AND IMPLICATIONS

This section summarizes the important results of the paper
and discusses how these results can be applied in the design
of anisotropic PCs. In Sec. II, important symmetry groups
that is relevant to anisotropic PCs were defined. The collec-
tion of all symmetry elements of the operator M in an aniso-
tropic PC with symmorphic space group GM can be ex-

pressed as GM = T̄ � RM, where RM is a subgroup of R̄ �RM

= R̄�RB�.
Section III discusses the symmetries in the wave equation

and contains subsections devoted to theoretical formulations
of IBZ and FZO of anisotropic PCs. Section III A describes
the IBZ of an anisotropic PC. The symmetry elements of

group R̄ reduces the BZ to an IBZ. This IBZ is defined as the
IBZ of the lattice. On the other hand, the symmetry elements
of group RM reduces BZ to the IBZ of the anisotropic PC.
The relationship between IBZ of the lattice and IBZ of the

anisotropic PC is defined through the coset expansion of R̄
with respect to RM and it is shown that the ratio of the size of
the IBZ of the lattice to the size of the IBZ of the anisotropic
PC must be an integer and equals to r /rm. The IBZ of the
lattice is fixed for a given lattice and can be found in the
standard literatures and textbooks.43,53 Once the IBZ of a
lattice is known, we can obtain the IBZ of the anisotropic PC
by transforming the wave vectors in the IBZ of the lattice by
using the r /rm number of symmetry operations R, where R is

chosen from each coset of R̄ expanded with respect to RM.
The usefulness of an IBZ is well known as it defines the
smallest zone of k vectors in the reciprocal space for which

the eigenvalues are unique. The complete information re-
garding photonic band gaps and equal frequency surfaces4

can be obtained by only manipulating the k vectors within
the IBZ. Therefore, the presented method to identify the IBZ
of an anisotropic PC will be useful in the calculation of the
photonic band gaps8–24,26,28,30,31 and equal frequency
surfaces25,27,55,56 of the anisotropic PC.

Section III B introduced the concepts of orientational
group and FZO. Orientational group R� consists of orienta-

(a)

(b)

(c)

FIG. 13. �Color online� Magnetic field pattern associated with
eigenmodes of equivalent orientations at the third band in a PC
made of isotropic circular cylinders �rc=0.25 and refractive index
=3.5� in a uniaxial matrix medium �H polarization, �n=0.6, and
�=0� at � point. �a� �=0 and 180°, �b� �=60°, and �c� �=120°.
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tional symmetry operations, R�=RMR, with RM �RM of gen-

eral orientation and R� R̄�k�. If all possible orientations of
motif are represented as a zone �an unit circle for a 2D PC
and an unit sphere for a 3D PC�, the existence of orienta-
tional symmetry reduces the zone to a FZO, where only the
orientations within the FZO have unique eigenvalues �Eq.
�3��. The difference �and similarity� between IBZ and FZO
of an anisotropic PC is that the IBZ of an anisotropic PC is a
reduced zone of k vectors �because of the symmetries in the
RM�, for which the eigenvalue of Eq. �3� remain unique at a
particular orientation of the motif, whereas FZO is a reduced
zone of orientations �because of the symmetries in the R��,
for which the eigenvalue of Eq. �3� remain unique at a par-
ticular k vector.

In the design of anisotropic PCs, FZO plays an important
role. For example, optical properties such as curvatures of
equal frequency surface near a particular k vector �important
for dispersive effect such as superprism25� and direction de-
pendent band gaps �i.e., k dependant� varies with the motif
orientations, and therefore, the range of orientations for
which the optical properties remain unique is essentially
governed by FZO. Hence, in applications such as optimizing
the band gap with respect to orientations of the anisotropic
motif,11,13,18 FZO limits the unique orientations that could
be explored for optimization. In some materially anisotropic
PCs such as LC infiltrated PCs, the tunability of band
gaps21–24,28,30 or any other dispersive effects25,27 are obtained
by means of reorientating optic axis under an external elec-
tric field. In these applications, the tuning range �the range of
orientations of optic axis for which the tunability is unique�
of direction dependent band gaps varies with different direc-
tions of the lattice. Such a tuning range can be easily ma-
nipulated by finding the FZO at the particular k vector. In-
stead of band gap at a single k vector, if the overall band gap
corresponding to a range of k vectors �with different k vec-
tors have different FZO� is to be monitored as a function of
motif orientation, the corresponding symmetry in the motif
orientation for the overall bandgap will be governed by the
smallest FZO.

Section IV discusses the symmetry of the eigenmodes in a
2D anisotropic PC with hexagonal lattice. In particular, we
choose a structure with the matrix medium being uniaxially
anisotropic with �=0. We started with the discussion of la-
beling the system and symmetry representation in the ab-
sence of spatial modulation. By using Eq. �20�, the degener-
ate states at symmetrical k can be labeled by using an integer
mis in the absence of spatial modulation and material’s an-
isotropy. If material’s anisotropy is present, the state with the
label mis will split into states that can be further identified
with a label of �manis. Symmetry representation of each state
labeled by a pair of integers �mis ,�manis� is described by a
reducible representation, which is independent of the
strength of material’s anisotropy �i.e., independent of rn�.
The definition of mis and manis and the possible values are
described in Tables V–VIII, respectively.

The labeling system provides an analytical guideline in
determining the degeneracy, explicit frequency levels, cross-
ings between states, effect of material anisotropy to the split-
ting of degenerate states, and the representation of a degen-

erate state in the absence of spatial modulation. Apart from
this, the labeling system and the integers �mis and manis� help
in getting analytical description for the evolution of the states
in the presence of spatial modulation.57 Furthermore, these
integers derived from the free photon relationship of a PC
and the corresponding degeneracies allow us to predict dif-
fraction conditions and the number of diffracted spots
�equals to degeneracy of the state� of a very weakly modu-
lated anisotropic PC �i.e., diffraction grating� as the disper-
sion in such a structure is essentially free photon dispersion
with the band folding effect taken into account. In weakly
modulated isotropic PCs, every mis corresponds to a diffrac-
tion order. Following Eq. �20�, we can show that for isotropic
PC �rn=1�, the condition for the first order diffraction �mis
=1� at the symmetrical k point of hexagonal lattice is
3n2�2�2 /3, and there will be six diffracted spots �since the
degeneracy of the state mis=1 is 6�. The details of diffraction
and the experiment for weakly modulated isotropic PCs has
been presented by us based on � point.58 In a weakly aniso-
tropic PC �with uniaxial anisotropic matrix ��=0��, the dif-
fraction order must be identified with �mis ,�manis�, and the
corresponding diffraction condition will be 3ny

2�2�c1mis
+c2�rn

2−1�manis+�c �Eq. �20��, and the degeneracy of the
state �mis ,�manis� �Tables VI–VIII� will equal the number of
diffracted spots.

As the spatial modulation is switched on, the degenerate
states in the absence of spatial modulation split into states
which can be further labeled by the IRs of RM�k�. The de-
generacy in the presence of spatial modulation is determined
by the dimension of the IR that labels the eigenvalue. Un-
derstanding of symmetry representations of the eigenmodes
of a PC has great importance as the coupling efficiency of
light from an external source to the PC essentially depends
on the eigenmode symmetry of PC.34–36 The degeneracy in
the presence of spatial modulation is very useful in engineer-
ing the band gap of an anisotropic PC.18–20 In this paper, we
have presented the details of symmetry representation for a
2D PC with circular air holes in the uniaxial matrix medium
for a continuous variation of spatial modulation �i.e., rc�,
material’s anisotropy �i.e., �n�, and the orientation of the
motif �i.e., ��.

In the 2D PC with a uniaxial anisotropic matrix ��=0�
and circular isotropic holes �i.e., air�, the symmetry represen-
tation in the absence of spatial modulation at each degenerate
state labeled with �mis ,�manis� is expressed by a reducible
presentation �i.e., a sum of IRs of RM�k�, see Table IX�. The
introduction of spatial modulation �i.e., circular air holes�
does not alter the group RM�k�, and the state �mis ,�manis�
splits into states, which can be further labeled by IRs of
RM�k�.

On the other hand, in the 2D PC with isotropic matrix and
circular holes of uniaxial media ��=0�, the symmetry repre-
sentation in the absence of spatial modulation at each degen-
erate state is labeled by mis alone, which is again expressed
by a reducible presentation. However, in this case, the intro-
duction of spatial modulation will change the group RM�k�
�i.e., RM�k� in the presence of modulation is a subgroup of
the one in the absence of modulation� and the symmetry
representation for a nonzero rc therefore has to be subduced
from the IRs of RM�k� in the absence of modulation. The
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same situation applies for any geometrically anisotropic PC
with all isotropic materials. The introduction of geometri-
cally anisotropic motif will lower the symmetry, and conse-
quently, RM�k� in the absence of spatial modulation changes
to its subgroup when the spatial modulation is switched on.

Apart from the symmetry representations of the eigen-
modes, the paper also discusses the degeneracy in the pres-
ence of spatial modulation. In the presence of spatial modu-
lation, when the material anisotropy is varied �i.e., �n�, from
zero to a nonzero value, the RM�k� group is altered. We have
given the details of symmetry representation at � point of the
hexagonal lattice. The group RM��� with �=0 is C6v and C2v,
respectively, for �n=0 and �n�0 �Table IV�. Some IRs of
C6v are 2D, whereas all IRs of C2v are 1D. Therefore, any
double degeneracy when �n=0 is removed, as �n is varied.
In fact, for any k vectors or any � in hexagonal lattice, the
RM�k� groups when �n�0 �Table IV� only have 1D IRs
�Table X�, and consequently all degeneracy, when �n=0 is
removed. However, we still need to be aware of accidental
degeneracies due to the crossing of bands.

VI. CONCLUSION

This work has a fundamental impact in the design and the
application of photonic crystals with anisotropic motifs. The
work provides necessary group theoretical tools in identify-
ing irreducible Brillouin zone, fundamental zone of motif’s
orientations, and the symmetries of the eigenmodes and ei-
genvalues of an anisotropic photonic crystal in the absence

and presence of spatial modulation. The descriptions of IBZ,
orientational group, and FZO of anisotropic PC are general
and therefore can be applied for any 2D and 3D anisotropic
PCs. On the other hand, the labeling states and the symmetry
representations in the absence of presence of spatial modu-
lation were illustrated by using a 2D anisotropic PC. Never-
theless, the labeling system and the analyses of symmetry
representations can be extended for 3D anisotropic PCs as
well.
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APPENDIX A

The free photon dispersion in a 2D hexagonal lattice is
described by Eq. �20�. For a 2D square lattice, the equation
takes a similar form

� free�k� =
1

ny

�c1mis + c2�rn
2 − 1�manis + �c, �A1�

where the expressions for the constants c1, c2, and �c, and
the discrete integers mis and manis are listed in Table XII for
the symmetrical points of a square lattice.
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