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We present in detail the bosonization-refermionization solution of the anisotropic version of the two-channel
Anderson model at a particular manifold in the space of parameters of the theory, where we establish an
equivalence with a Fermi-Majorana biresonant-level model. The correspondence is rigorously proved by ex-
plicitly constructing the new fermionic fields and Klein factors in terms of the original ones and showing that
the commutation properties between original and new Klein factors are of semionic type. We also demonstrate
that the fixed points associated with the solvable manifold are renormalization-group stable and generic, and
therefore representative of the physics of the original model. The simplicity of the solution found allows for the
computation of the full set of thermodynamic quantities. In particular, we compute the entropy, occupation, and
magnetization of the impurity as functions of temperature, and identify the different physical energy scales. In
the absence of external fields, two energy scales appear and, as the temperature goes to zero, a nontrivial
residual entropy indicates that the model approaches a universal line of fixed points of non-Fermi-liquid type.
An external field, even if small, introduces a third energy scale and causes the quenching of the impurity
entropy to zero, taking the system to a corresponding Fermi-liquid fixed point.

DOI: 10.1103/PhysRevB.77.195113 PACS number�s�: 71.27.�a, 72.10.Fk, 75.20.Hr, 73.23.�b

I. INTRODUCTION

The ideas that motivated the introduction of the two-
channel Anderson model started with an attempt to describe
the non-Fermi-liquid physics of the UBe13 compound and
other U-based heavy fermions.1 The model can be thought of
as a mixed-valence model that, in certain regimes, has the
two-channel Kondo model2 as its low-energy theory. In that
regard, the relation between the two models is as in the case
of the single-channel Kondo and Anderson models; the
Anderson model captures the local-moment physics and pro-
vides a physical mechanism for moment formation, while at
the same time describes also higher temperature and
degenerate-level regimes for which mixed valence prevails
and there are no localized moments. The study of models
that capture such regimes is important, since there exist a
growing number of compounds that are believed to display
mixed valence �besides the large number of U-based com-
pounds, recently, a number of new Pr-based heavy fermions
were proposed as experimental candidates for the realization
of quadrupolar-Kondo ground states; for instance, La-doped
PrPb3 �Ref. 3��. Hence, improving our comprehension of the
Anderson model physics is important for the phenomeno-
logical description of all these compounds.4 The peculiarity
of U or Pr ions compared to the ions in other typical heavy-
Fermion compounds is that, in a cubic crystal field, the 5f2

configuration of U+4 ions or the 4f2 configuration of Pr+3 are
projected into a non-Kramers �3 doublet with a quadrupolar
moment. Fluctuations out of this state will hybridize with
Kramers-degenerate states and provide a competition be-
tween magnetic and quadrupolar �i.e., flavor� moments. A
minimal model in the case of the uranium compounds, that
takes into account spin-orbit and crystal-field effects, leads to
modeling those two states with �3 �flavor� and �6 �spin�
doublets that hybridize with �8 conduction electrons and
give rise to a description in terms of the two-channel Ander-

son model.4 The situation is similar in the case of praseody-
mium compounds.5,6

For the case of UBe13, it was originally speculated that
the �3 doublet would constitute the lowest-energy ionic con-
figuration. This opened the possibility of a quadrupolar route
to two-channel Kondo physics, in which a local quadrupolar
moment would be screened by conduction electrons whose
spin degree of freedom would provide the two degenerate
channels.1 Nonlinear susceptibility measurements disfavored
such scenario,7 however, and indicated instead the possibility
of a mixed-valence state.8 The latter was also supported by
de Haas–van Alphen measurements of uranium-doped
samples of ThBe13.

9 The new scenario necessitates the study
of the full two-channel Anderson model away from its local-
moment regimes, where a low-energy Kondo-Hamiltonian
description is not available. Subsequent theoretical studies of
the model firmly established the persistence of local non-
Fermi-liquid physics over its whole parameter regime, in-
cluding at mixed valence.10–12 For a contrast, one could call
this the mixed-valence route to two-channel Kondo physics.
In contradistinction, the quadrupolar route, practically dis-
missed for uranium compounds, recently acquired new rel-
evance in the context of certain praseodymium compounds.
Measurements on PrPb3,3,13 PrOs4Sb12,

14,15 and other Pr-
based skutterudite compounds are consistent with the possi-
bility of nonmagnetic ionic ground states and either onsite or
offsite �antiferro�quadrupolar fluctuations. For a summarized
account of some of these experimental results, put in the
context of Kondo physics, see, for instance, Ref. 16.

In parallel, the Kondo effect became an important subject
of study in the field of mesoscopics and there are many pro-
posals and experiments for realizing two-channel Kondo sys-
tems using tunable setups such as quantum dots.17–21 Experi-
mental realizations based on the two-channel Anderson
model may be more robust and allow for the observation of
Kondo physics at higher temperatures, since the Kondo scale
increases exponentially as the system goes into the mixed-
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valence regime; the Kondo physics should still be observable
in quantities like the charge fluctuations encoded in the mea-
surements of capacitance line shapes.22

Since the original work of Kondo,23 the study of quantum
impurity models evolved rapidly. It quickly became evident
that new methods going beyond perturbation theory were
required in order to access the low-temperature physics of
these models. The most conspicuous achievements in this
front were the numerical renormalization group developed
by Wilson24 and the Bethe ansatz solution obtained indepen-
dently by Andrei and Wiegmann.25,26 Another important de-
velopment was the identification by Toulouse27,28 of a solv-
able line on which an anisotropic version of the model is
mapped into a fermionic resonant-level model.29 These non-
perturbative techniques are required in order to study the
crossover regimes and allow the unambiguous identification
of the strongly coupled fixed point of the quantum impuri-
ties. Numerical renormalization group and Bethe ansatz were
both applied successfully to Hamiltonians that incorporate
valence fluctuation physics,30 but mappings like the one dis-
covered by Toulouse remained mostly restricted to exchange
models with fixed valence �cf. Ref. 31�. In the present work,
we address this missing link.32

As compared to other nonperturbative techniques applied
to quantum impurity problems,24,33,34 bosonization—or Cou-
lomb gas—based mappings are complementary and espe-
cially valuable in that they provide us with simple alternative
ways of visualizing the physics,35 and, in particular, the dif-
ferent crossovers. In this paper, we examine a mapping be-
tween the anisotropic two-channel Anderson impurity model
and a particularly simple biresonant-level Hamiltonian. Our
work generalizes the results of the Emery–Kivelson mapping
for the two-channel Kondo Hamiltonian36–40 to a more in-
volved and descriptive model that contains, as well, the
physics of charge fluctuations. After the mapping, it becomes
simpler to identify the different crossover energy scales of
the problem and to infer the existence of a line of non-Fermi-
liquid fixed points that governs the low-energy physics.41,42

Using a renormalization group analysis, we establish the ge-
neric nature of our low-temperature results and their rel-
evance for the original two-channel Anderson model. We
show how to calculate all the dynamical and thermodynami-
cal quantities of interest pertaining to the impurity over the
full range of parameters and connect explicitly all the differ-
ent temperature regimes of the system. We rederive, in a
compellingly compact language, all the results obtained pre-
viously for the model using a variety of other nonperturba-
tive techniques,10,12,43,44 and obtain a number of new results
for the situation when external fields are present and the
character of the infrared fixed points is modified.

The rest of the paper is organized as follows. In Sec. II,
we introduce the anisotropic two-channel Anderson model,
including possible external fields acting on the impurity. In
Sec. III, we establish the mapping, for a set of couplings
belonging to a certain manifold, onto a noninteracting Fermi-
Majorana biresonant-level model. The mapping is carried out
in a bosonized language and particular emphasis is put on the
careful treatment of Klein factors. In Sec. IV, we perform a
renormalization group analysis of the stability of the fixed
points contained in the soluble manifold. In Sec. V, we iden-

tify the three crossover scales of the model and compute
thermodynamic quantities in the entire temperature range
and for arbitrary values of the external fields. Finally, in Sec.
VI, we provide a summary of our conclusions and an outlook
of the applications of the mapping to other problems involv-
ing two-channel Anderson model physics.

II. ANISOTROPIC TWO-CHANNEL ANDERSON MODEL

We shall consider a generalized version of the two-
channel Anderson model to which we add terms that break
the rotation invariance in spin and flavor spaces. This is akin
to the standard practice in the case of the single-channel
Kondo model of considering an exchange coupling constant
that acquires a different value along the z axis. We denote the
Hamiltonian as

H = Hhost + Himp + Hhyb + Hfield + H3. �1�

The first term describes the dynamics of the band electrons
����

† where �= ↑ ,↓ and �= + ,− correspond to the spin and
flavor degrees of freedom, respectively� in the standard ap-
proximation of a linearized band dispersion around the Fermi
level fixed by the normal order prescription,

Hhost = �
��
� dx:���

† �x��− ivF�x�����x�: . �2�

The second and third terms contain the isolated-impurity
contribution and the band-impurity hybridization, respec-
tively,

Himp = �s�
�

X�� + � f�
�

X�̄�̄, �3a�

Hhyb = V�
��

�X��̄����0� + ���
† �0�X�̄�� . �3b�

Here, we have used Hubbard-operator notation to describe
the impurity degrees of freedom �Xab= �a�	b� where a ,b
=� , �̄ and the bar stands for the complex-conjugate repre-
sentation�. As compared to slave-operator notation, the use
of Hubbard operators automatically restricts the Hilbert
space of the impurity to the physical one.44 These first three
terms constitute the standard two-channel Anderson model.
The fourth term describes the coupling to external fields:

Hfield = hs�X↓↓ − X↑↑� + hf�X+̄ +̄ − X−– −–� , �4�

where, for the sake of generality, we included two fields: one
coupling to the impurity spin and the other one coupling to
its flavor. Finally, the fifth term provides the generalized an-
isotropy and can be written as a sum over charge �c�, spin
�s�, flavor �f�, and spin-flavor �sf� sectors �as will be seen
below, these sectors arise naturally after bosonizing the
model�,

H3 = �
�=c,s,f ,sf

H3
�, �5�

with each term taking the form of a density-density interac-
tion between the different impurity densities with the corre-
sponding ones from the band,
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H3
� = J�

3X�	�, �6�

where 	�
	��x=0�,

	��x� = �
������

:���
† �x�
��,����

� ������x�: �7�

and


��,����
c = ��������, 
��,����

s = �����
3

���
, �8a�


��,����
f = �3

���
����, 
��,����

sf = �3
���

�3
���

�8b�

�here �3 is the third Pauli matrix�. The impurity densities
involved are

Xs = �
�

�X��, �9a�

Xf = �
�

�X�̄�̄, �9b�

Xc = Xsf = �
�

X�� − �
�

X�̄�̄. �9c�

Since the impurity Hilbert space contains four states, we can
define only three independent densitylike operators apart
from the identity; we find it convenient to define the spin-
flavor density to coincide with the charge one.

III. BOSONIZATION BASED MAPPING

Bosonization is a well known technique that renders more
accessible the study of 1+1 dimensional models.35,45–47

When combined with refermionization procedures, the
bosonic language can be used to find nontrivial mappings
between different fermionic models. The idea is that, many
times, a mapping that results highly nonlinear in the fermi-
onic language can be written as a simple canonical transfor-
mation in terms of the bosons.

A. Bosonization

We shall employ the standard bosonic representation of
the fermionic fields,

����x� =
1

�2a
F��e−i����x�, �10�

in which a is a regulator that plays the role of an inverse
bandwidth and ��� are bosonic fields that describe the
particle-hole excitations around the Fermi sea. Finally, F��

are the so called Klein factors, responsible for recovering the
correct anticommutation relations among different fermionic
species and necessary for describing processes in which the
number of fermions changes. They act as ladder operators in
the fermionic Hilbert space63 and commute with the �’s.
Additionally, they satisfy the following algebra:

F��
† F�� = F��F��

† = 1, �11a�

F��
† F���� = − F����F��

† for ���� � ������ , �11b�

F��F���� = − F����F�� for ���� � ������ �11c�

and they obey the following �anti�commutation relations
with the impurity Hubbard operators:

�F��,X�̄��̄�� = �F��,X����� = 0, �12a�

�F��,X���̄� = �F��,X�̄��� = 0. �12b�

In terms of the bosons, the Hamiltonian for the band takes
the form

Hhost =
vF

4
�
��
� dx:��x����2:. �13�

Following Emery and Kivelson, it is natural to introduce a
rotated basis for the bosons ��=c ,s , f ,sf�

�� =
1

2�
��


��,��
� ��� �14�

or

��� =
1

2
��c + ��s + �� f + ���sf� , �15�

where � ,�=� when entering as multiplying factors. The
form of Hhost remains the same in the new basis:

Hhost = �
�=c,s,f ,sf

H0
� 


vF

4
�

�=c,s,f ,sf
� dx:��x���2:. �16�

Notice that the Klein factors disappeared from the bosonized
version of the first term, but they will enter explicitly in the
hybridization term:

Hhyb =
V

�2a
�
��

X��̄F��e−i��c+��s+��f+���sf�/2 + H.c.

�17�

Last, the terms involving only impurity operators stay un-
changed and the terms involving exchange are bosonized
according to the standard prescription for densities:

H3
� = J�X�	� = −

J�


X��x���0� . �18�

The difficulty for studying this model is contained in the
highly nontrivial form of the hybridization with the impurity.
Therefore, the strategy is to look for a canonical transforma-
tion that simplifies this term. We define the following generic
transformation U=UcUsUfUsf with

U� = ei�����0�X�. �19�

For transforming Hhyb, we first notice that U commutes with
the vertex operators and the Klein factors. Thus, we only
need to compute expressions of the form U�X��̄U�

†. Using

�X��̄,Xs� = − �X��̄, �X��,X�� = 0, �20a�

�X��̄,Xc� = − 2X��̄, �X�̄�̄,X�� = 0, �20b�
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�X��̄,Xf� = �X��̄ �20c�

�note that the two identities on the right imply that Himp and
Hfield are not affected by the transformation�, we obtain

UsX��̄Us
† = X��̄e�i�s�s, �21a�

UfX��̄Uf
† = X��̄e−�i�f�f , �21b�

UcX��̄Uc
† = X��̄e2i�c�c, �21c�

UsfX��̄Usf
† = X��̄e2i�sf�sf . �21d�

Therefore, we can transform the hybridization Hamiltonian

as H̃hyb=UHhybU
†, with

H̃hyb =
V

�2a
�
��

�X��̄F��e−i�1/2−2�c��c

�e−i��1/2+�f��fe−i��1/2−�s��se−i���/2−2�sf��sf + H.c.� .

�22�

Next, we use the freedom of choosing the particular transfor-
mation that will simplify the form that this term takes. Such
a choice is given by taking �c=1 /4, � f =−1 /2 and �s=1 /2,
and thus decoupling the impurity from the corresponding
sectors in the band. The transformed expression is

H̃hyb =
V

�2a
��X↑+F↑+ + X↓−F↓−�e−i�1/2−2�sf��sf

+ �X↑−F↑− + X↓+F↓+�e−i�−1/2−2�sf��sf + H.c.� �23�

�where we have omitted the bar over the values taken by the
�̄ subindex�. We can further simplify this term by choosing
�sf = �1 /4. The two choices are equivalent and we choose
�sf =1 /4; in this way, we kill the vertex in the first term
while giving the second one fermionic dimensions:

H̃hyb =
V

�2a
��X↑+F↑+ + X↓−F↓−� + �X↑−F↑− + X↓+F↓+�ei�sf

+ H.c.� . �24�

The spin-flavor band and the impurity remain coupled, but
the form of their hybridization is now much simpler. Before
studying this term further, let us indicate what happens to the
remaining terms in the Hamiltonian upon the same transfor-
mation:

U�Hhost + H3�U† = Hhost +
1


�

�

�vF�� − J���x���0�X�.

�25�

We define for future reference the couplings

�� = vF�� − J�, �26�

which can be set to be zero by tuning the values of J�

→vF��; thus rendering the model particularly simple, as it
will be seen below.

B. Refermionization

Inspired by the classic results by Toulouse and by Emery
and Kivelson in which they map the single- and the two-
channel Kondo models, respectively, into different types of
resonant-level models and find particular values of the aniso-
tropy for which those resonant-level models are noninteract-
ing and therefore exactly solvable, we find it compelling to
seek a similar mapping for the two-channel Anderson model.
However, while in the Kondo model the interactions between
the band electrons and the impurity are exchange terms that
involve only fermionic bilinears, it is not the case for the
Anderson model in which the hybridization term allows for
the flow of charge between the band and the impurity. This is
an important difference that gives rise to a much richer pa-
rameter regime, in the case of the Anderson model, that in-
cludes not only local-moment phases but also mixed-valence
ones. From the technical point of view, it becomes important
to keep track of the charge transfer processes while bosoniz-
ing, which requires a proper treatment of the Klein factors.

1. New fermions

In order to find a mapping to a new fermionic model, we
need to refermionize the version that was already simplified
by the canonical transformation just discussed. The first step
is to introduce a new set of Klein factors that allow us to
define new fermionic operators corresponding to the physical
sectors �c, s, f , sf�:

�� =
1

�2a
F�e−i��. �27�

The new Klein factors are defined to be ladder operators in
the physical Hilbert space for the band and to obey the usual
algebra given in Eqs. �11a�–�11c�, �12a�, and �12b�.

Inspecting H̃hyb, we are led to define the new impurity
operators:

d = Fsf�X↑−F↑− + X↓+F↓+� , �28a�

f = X−+Ff + X↑↓Fs. �28b�

They allow us to rewrite the hybridization term as

H̃hyb =
V

�2a
��f† + f�d + d†�f† + f�� + V��sf

† d + d†�sf� .

�29�

The new form of the Hamiltonian looks compellingly simple.
However, we will find that the new operators are not fermi-
ons. It can be seen that they satisfy the following relations:

d2 = d†2 = 0, �30a�

dd† = X↑↑ + X↓↓, �30b�

d†d = X++ + X−− �30c�

and
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f2 = f†2 = 0, �31a�

f f† = X−− + X↑↑, �31b�

f†f = X++ + X↓↓. �31c�

Using the completeness relation for the impurity Hilbert
space �X↑↑+X↓↓+X+++X−−=1�, it is clear that both d and f
are self-fermions �i.e., each of them independently obeys fer-
mionic anticommutation relations with itself�. We still need
to verify the mixed commutation relations. It is important to
stress that the relations written above can be deduced inde-
pendently of any relation between old and new Klein factors.
That is not the case for the relations mixing d and f .

2. Klein factor relations

Following the authors of Refs. 40 and 48, we have the
freedom to make the following four identifications between
the sets of old and new Klein factors:

Fsf
† Fs

† = F↑+
† F↓+, �32a�

FsfFs
† = F↑−

† F↓−, �32b�

Fsf
† Ff

† = F↑+
† F↑−, �32c�

Fc
†Fs

† = F↑+
† F↑−

† . �32d�

These relations are consistent with the physical constraints
given by the variations in the fermionic numbers on the dif-
ferent sectors the Klein factors act upon, and the choice of
signs serves to fix otherwise arbitrary phases. All other rela-
tions and their respective phases are now automatically fixed,
for instance,

Fs
†Ff

† = F↑+
† F↓−, �32e�

FsFc
† = F↓+

† F↓−
† , �32f�

Ff
†Fsf = F↓+

† F↓− �32g�

can be deduced using the first four relations.
We want now to explore further the relations between old

and new Klein factors. For example, using Eqs. �32a� and
�32b�, one can derive the following expressions:

0 = �F↑+,F↑+
† F↓+ = �F↑+,Fsf

† Fs
† = �F↑+,Fsf

† �Fs
† + Fsf

† �F↑+,Fs
† ,

�33a�

0 = �F↑+,F↑−
† F↓−� = �F↑+,FsfFs

†� = �F↑+,FsfFs
† − Fsf�F↑+,Fs

† .

�33b�

Premultiplying these equations by Fsf and Fsf
† , respectively,

and adding them up, one finds

FsfF↑+Fsf
† + Fsf

† F↑+Fsf = 0. �34�

Using the different relations in Eqs. �32a�–�32g�, one can
generalize this relation to a generic relation between old �o�
and new �n� Klein factors:

FnFoFn
† + Fn

†FoFn = 0. �35�

Interestingly, such a relation is not consistent neither with
commutation nor with anticommutation relations between
the old and new Klein factors. This is not unexpected, since
the two sets exist in different Hilbert spaces and the physical
identification between the two is only through the relations
among bilinears. While in Kondo-type models this poses no
problems because only Klein factor bilinears enter in the
Hamiltonians, this is not the case in Anderson-type models,31

for which we need to go beyond bilinears. Therefore, if we
insist that the old and new Klein factors should obey a rela-
tion of the type

FnFo = �FoFn, �36�

we find that �2=−1 must hold. Thus, only semionic commu-
tation relations are consistent between old and new Klein
factors and there is still an arbitrariness in the phase that
needs to be fixed. Let us postulate

F↑+Fc = iFcF↑+; �37�

all other commutation relations can be deduced from this one
and summarized as

F��F� = i���
� F�F��, �38a�

F��F�
† = − i���

� F�
†F��, �38b�

where ���
c =1, ���

s =�, ���
f =�, and ���

sf =��.
A similar procedure can be used to verify that the new

Klein factors and the nondiagonal impurity Hubbard opera-
tors that enter in Hhyb obey

F�X��F�
† − F�

†X��F� = 0, �39�

which is consistent only with standard commutation or anti-
commutation relations between the operators and, on physi-
cal grounds, we take them to anticommute.

Using the semionic commutation relations between the
two sets of Klein factors, it is easy to see that

df = ifd , �40a�

f†d = idf†. �40b�

Analogously, with respect to the spin-flavor band, we find

�sfd = − id�sf , �41a�

�sfd
† = id†�sf , �41b�

and

�f ,�sf� = �f†,�sf� = 0. �42�

We say that d is a relative-semion with respect to � and �sf,
while the latter two are relative-bosons.

On the other hand, the band fermions from the charge,
spin and flavor sectors, do not have simple commutation re-
lations with the new impurity operators. Those can be sim-
plified by performing a unitary transformation of the Klein
factors belonging to that subspace. Namely, we define
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F̃s = e−i�/2�XsFs, �43a�

F̃f = e−i�/2�XfFf , �43b�

F̃c = e−i�/4�XcFc. �43c�

The redefined operators in the decoupled bands are now
relative-fermions with d, f , and among themselves. Notice
also that the Hamiltonian for the decoupled sectors is invari-
ant under the redefinition. What remains is to simplify fur-
ther the commutation relations among the spin-flavor opera-
tors and the impurity ones.

3. Jordan-Wigner procedure

The procedure we will use to simplify the commutation
relations among the impurity and spin-flavor operators is in-
spired on the Jordan-Wigner treatment of spin chains. We
have that �sf, d, and f are all self-fermions while the pairs
��sf ,d� and �d , f� are relative-semions and, finally, ��sf , f�
are relative-bosons. For the sake of clarity, we will split the
Jordan-Wigner transformation into two parts. In the first part,
we shall change all operators into relative-bosons, and in the
second part, we will perform a standard Jordan-Wigner trans-
formation to turn them into relative-fermions; that way the
full system will be a system of fermions.

Defining

d̃ = d , �44a�

f̃ = e−ind/2f , �44b�

�̃sf = e−ind/2�sf �44c�

�where nd=d†d and nf = f†f�, we see that all operators are still
self-fermions, but now their relative-statistics is that of
relative-bosons:

�d̃, f̃� = �d̃,�̃sf� = � f̃ ,�̃sf� = 0. �45�

A set of operators that are relative-bosons but all self-
fermions, is what is usually called core bosons. They are
equivalent to spin-1 /2 spins and the usual Jordan-Wigner
treatment is available to turn them into fermions. The second
transformation is thus written as

f = f̃ , �46a�

d = e−infd̃ , �46b�

�sf = e−i�nf+nd��̃sf �46c�

�notice that we have redefined �sf, d and f , and that nf =nf̃
and nd=nd̃�. While the first Jordan-Wigner string was an-
chored at the d site, the second one is anchored at the f site;
this is why it is physically more transparent to split the trans-
formation into two steps.

Finally, since the different fermionic species can be or-

dered such that H̃hyb contains only nearest-neighbor hopping

terms, it can be seen that the Jordan-Wigner strings will not
appear explicitly in the Hamiltonian. After the double re-
placement, we find

H̃hyb = V��sf
† d + d†�sf� +

V
�2a

��f† − f��d† + d�� , �47�

where the operators are now the new ones and we were left
with a system where all operators are standard fermions �in-
cluding those in the decoupled bands�.

C. Biresonant-level model

Rewriting the remaining terms of the Hamiltonian in the
language of the new fermionic operators and choosing the
anisotropy that would make ��=0 ∀�, we find that the trans-
formations outlined above, in the limit of zero fields, give a
mapping to the following Fermi-Majorana biresonant-level
model �up to an additive constant, see also Fig. 1�:

Hbires = H0
sf − �d†d + �2���sf

† �0�d + d†�sf�0��

+ �2��f† − f��d† + d� , �48�

where �=�s−� f, �=V2 /2, and �=� /2a. This is a purely
quadratic model, on which reintroducing the terms with non-
zero �� would parametrize the deviations from the solvable
manifold �cf. Refs. 49 and 50�.

Rewriting the Hfield term after the mapping, we find
Hfield=Hfield

2 +Hfield
4 with

Hfield
2 = h�2nf − 1� − �h�nd + nf − 1

2� , �49a�

Hfield
4 = 2�hnfnd, �49b�

where we defined �h=hf −hs and 2h=hf +hs. Taking �h=0,
we find that the model is still quadratic even for nonzero h.
Nevertheless, we will see below that the presence of this
term changes the fixed point; we will talk in this case of a
double-Fermi biresonant-level model.

It is interesting to compare these two resonant-level mod-
els between them and with the models that correspond to the
solvable points of the single- and two-channel Kondo mod-
els. In the latter cases, one obtains a single-Majorana
resonant-level model and a single-Fermi resonant-level
model, respectively. In contrast to the Kondo models, the
Anderson case requires two fermionic degrees of freedom to
parametrize the state of the impurity, which is now more
complex, since it allows for fluctuating states of valence. For
both the two-channel Kondo and Anderson models, in the

↑ +

↓ +

↑ −
↓ −

c

s

f

sf d† f †
∆ Γ�

�

↑
↓
+

−

1
2
V 2

2h−

FIG. 1. �Color online� Schematic representation of the mapping
procedure between the anisotropic two-channel Anderson model
and the biresonant-level model. The external field enters as a site
energy for the f† fermion and has the effect of coupling its other-
wise disconnected Majorana component.
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absence of external fields, “half of a fermion” coming from
the impurity decouples from the band and the models are
naturally written in terms of the Majorana components of the
impurity degrees of freedom. The Majorana component that
exists completely decoupled from the rest of the system is
responsible for the fractional residual impurity entropy that
we will discuss below and constitutes a signature of the non-
Fermi-liquid properties of the fixed point. In both cases, the
addition of an external field has the effect of coupling the
disconnected Majorana component and driving the system
toward a Fermi-liquid type of fixed point, like the one of the
single-channel Kondo model.

IV. STABILITY OF THE FIXED POINTS

As mentioned above, taking �x=0 �for x=c, s, f , sf , h�
defines a solvable manifold that contains a set of fixed
points. The important question to be addressed is how ge-

neric and stable are those fixed points, how are they param-
etrized, and whether renormalization group �RG�-flow trajec-
tories starting outside the manifold will flow to the same
fixed points. The last consideration is particularly important,
since it addresses the genericalness of the fixed points and
the feasibility of perturbative calculations in �x.

A. Inside the soluble manifold

In order to address these questions, we start by computing
the different Green functions. For that, we first write down
the local action for the impurity, in which the extended de-
grees of freedom from the band were integrated out exactly;
this procedure is justified in order to study the interaction of
the band with a local impurity that exists only at, say, ximp
=0. In Nambu notation, we write all the sums over positive
Matsubara frequencies ��n� only and use the following
spinor basis:

���n� 
 ��sf��n� �sf
† �− �n� d��n� d†�− �n���n� f��n� f†�− �n��T. �50�

The explicit form of the local action in the solvable manifold is

S =
1

�
�
n�0

�†��n�A��n����n� , �51�

where �=1 /kBT is the inverse temperature and

A��n� =�
− 2ivF 0 �2� 0 0 0

0 − 2ivF 0 − �2� 0 0

�2� 0 − i�n − � 0 �2� − �2�

0 − �2� 0 − i�n + � �2� − �2�

0 0 �2� �2� − i�n + 2h 0

0 0 − �2� − �2� 0 − i�n − 2h

� . �52�

The two-point Green functions are defined as �G��n�

	���n��†��n�� with G��n�=A−1��n�. Given the structure
of the model, it is convenient to work in terms of Majorana
fermions.51 For that, we rotate each spinor according to

�M��n� 
 R���n�

= ��sf� ��n� �sf� ��n� d���n� d���n� f���n� f���n��T,

�53�

where R is a block diagonal matrix in which each block,
given by

r =
1
�2

�− i i

1 1
� , �54�

rotates a given Nambu doublet. With this convention, the
Majorana Green function matrix is GM��n�=RG��n�R† and
its expression in imaginary time is

GM�� − ��� 
 	�M����M
† �����

=
1

�
�
n�0

GM��n�e−i�n��−��� − GM
T ��n�ei�n��−���.

�55�

Let us now discuss the situation when h=0 �the case of
h�0 will be discussed in the Appendix�. A direct calculation
gives the following results for the long-� behavior of the
different diagonal Green functions:

	�sf� ����sf� �0�� �
1

�
, 	�sf� ����sf� �0�� �

1

�3 , �56a�

	d����d��0�� �
1

�
, 	d����d��0�� �

1

�3 , �56b�
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	f����f��0�� �
1

�
, 	f����f��0�� � sign � . �56c�

Notice that different Majorana components of a given fer-
mion exhibit different asymptotics; this fact and the 1 /�3

behavior of certain Green functions were already stressed
previously in the context of the two-channel Kondo
model.39,52 From these correlators, one could read the fol-
lowing naive scaling dimensions �see also Fig. 2�: ��sf� �
= �d��= �f��=1 /2, ��sf� �= �d��=3 /2, and �f��=0. The long
time behavior of all but one of the mixed correlation func-
tions can be obtained using these scaling dimensions; the
exception being 	�sf� ���d��0���1 /�3.

The scaling dimensions above are not compatible with a
standard renormalization group scheme that proceeds by in-
tegrating energy shells while keeping certain coefficients of
the quadratic action constant, cf. Ref. 53. Instead, we follow
the ideas of Ref. 54 and introduce the Majorana Fermi ve-
locities �v�� ,v��� as well as constants multiplying the fre-
quency in the Berry terms for the impurity �gd� ,gd� ,gf� ,gf��
and let all of them vary. Specifically, we proceed along the
standard steps53 but insisting that the fields should scale with
the dimensions we determined from the Green functions; this
yields the following RG-flow equations for the different cou-
plings:

dgd�

d�
= − 3gd�,

dgd�

d�
= − gd�, �57a�

dgf�

d�
= 0,

dgf�

d�
= − gf�, �57b�

dv��

d�
= − 2v��,

dv��

d�
= 0, �57c�

d�

d�
= − �,

d�

d�
= − � , �57d�

d�

d�
= − �,

dh

d�
=

1

2
h . �57e�

We find that most couplings are RG irrelevant but for v�� and
gf� that are RG marginal. In here, we are considering h=0,
but we find that if a field were to be generated it would be
RG relevant. It is important to remark that the quotient � /�
obeys

d

d�
� �

�
� = 0 �58�

and is also marginal. This agrees with the results of Bethe
ansatz12,44 and boundary conformal field theory41 that find a
line of non-Fermi-liquid fixed points that, in the microscopic
theory, are parametrized by the � /� ratio and interpolate
between spin and flavor two-channel Kondo behaviors.

B. Outside the soluble manifold

Collecting the terms in the refermionized Hamiltonian
that takes us away from the soluble manifold, we have

H� = − �c	c − �sf	sf − �s	s

+ 2�c	cnd + 2�sf	sfnd

+ � f	 fnd + �s	snd + 2�s	snf

− 2� f	 fndnf − 2�s	sndnf

− �h�nd + nf −
1

2
� + 2�hnfnd. �59�

In order to determine the stability of the h=0 fixed points,
we proceed to study the RG-relevance of the different terms
in H�. The first three terms are just chemical potential terms
for the conduction electrons. The charge and spin ones per-
tain only to bands that are decoupled from the impurity and
are marginal operators, since the dimension of the respective
fields is 1 /2, as dictated by their Berry phases. On the other
hand, the spin-flavor one is irrelevant as can be seen by
simple power counting.

For the operators in the second, third, and fourth lines, we
get the following dimensions by summing the dimensions of
their constituents �	cnd�= �	 fnd�= �	snd�=3, �	sfnd�=4,
�	snf�=3 /2, and �	 fndnf�= �	sndnf�=7 /2. Hence, all of them
are RG irrelevant. None of these terms can generate a local
field term for the impurity. In particular, �c, �s, and � f are
decoupled �and the average of the normal-ordered densities
	c, 	s, and 	 f is zero�. Eventually, the operator 	sfnd may
give a correction to �, thus taking the system along the line
of fixed points.

An interesting situation appears when one starts from the
fixed point in the absence of a magnetic field �hs=0� and
considers the effect of a small �h�0 �this is realized when
one starts with �h=2h, or in other words, with hf �0�. Then
one must consider carefully the effect of the last term in H�,
with dimension �nfnd�=5 /2 and therefore, in principle, RG
irrelevant. This term is actually classified as dangerously ir-
relevant, as it generates a potential field for f �i.e., RG rel-
evant h term�. It thus couples the remaining Majorana com-
ponent, f�, and changes the fixed point.

Indeed, when adding a magnetic field the fixed point
changes �see Appendix�. The chemical potentials for �sf and
d become marginal, and the operators with four and six fer-
mions are now all irrelevant. The parameters � /� and h /�
parametrize the new set of Fermi-liquid fixed points.

[ψ ]=1/2

[ψ ]=3/2 ’[f ]=0

’’

Γε∆ h=0

[d’]=3/2

[d’’]=1/2

[f’’]=1/2

’

[ψ ]=1/2

[ψ ]=3/2 ’[f ]=0

’’

Γε∆ h=0

[d’]=3/2

[d’’]=1/2

[f’’]=1/2

’

FIG. 2. �Color online� Connectivity graph, in terms of Majorana
operators, for the biresonant-level model. The scaling dimensions of
the fields are seen to alternate between 1 /2 and 3 /2, with the ex-
ception of f� that stays decoupled �for h=0� and has zero scaling
dimension.
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V. THERMODYNAMICS WITH FINITE FIELD

In order to extract the impurity thermodynamics when the
model parameters are on the solvable manifold, we can resort
to an exact calculation of the free energy. The impurity free
energy can be straightforwardly calculated by means of Pau-
li’s trick of integration over the coupling constants �an alter-
native way is to first derive an effective action for the
impurity55�, namely,

� − �0 = �
0

1 d�

�
	��Hbires − H0

sf���. �60�

The � subindex indicates that the mean values should be
computed using an action in which all couplings involving
the impurity were multiplied by the dimensionless parameter
�, and �0 is the impurity free energy when �=0. After com-
puting the mean values using G���n�, one arrives at the ex-
pression

� − �0 = − �
0

1

d�
1

�
�
n�0

��D��n,��
D��n,��

, �61�

where

D��n,�� 
 −
1

4
det A���n� = 4h2�2�6 + ���n�8� + ��n�

+ 4h2��2 + 2��n���4 + �n
2�4h2 + 8� + �2

+ 2��n��2 + �n
4. �62�

As a function of �n, this is a fourth order polynomial with
roots that are parametric functions of �: �k���, k=0, . . . ,3.
Using the factorized form of the polynomial in terms of its
roots and introducing a suitable regularization, we arrive at
the following expression:

� − �0 = �
0

1

d�
1

�
�
n�0

�
k

���k���
�n − �k���

= �
0

1

d�
1

�
�
n�0

�
k

���k����
−�

�k���

d�
1

��n − ��2 .

�63�

We verify that �k�0�=0 and call �k
�k�1�. Exchanging the
sum in n and the integral in �, we arrive at the final expres-
sion:

� − �0 = �
k

1

2
���1

2
+

��

2
��k +

2

�
ln ��1

2
−

�k�

2
�

−
2

�
ln ��1

2
�� , �64�

where ��z�
�z ln ��z� is the digamma function. Note that
the free energy needs the � regulator, but in all the derived
thermodynamic quantities we will be able to take the limit
�→ +� and obtain finite results.

In particular, the impurity entropy is given by S−S0
=�ks�zk�, with zk=−��k /2 and

s�z� = z���1

2
+ z� − 1� − ln ��1

2
+ z� +

1

2
ln  . �65�

Remarkably, the function s�z� is the same that is found for
the entropy of the two-channel Kondo model on the Emery-
Kivelson line.37 This is not completely unexpected, since
Kondo is the low-energy effective theory for most part of the
parameter regime of the two-channel Anderson model. In
Fig. 3, we show the impurity contribution to the entropy as a
function of temperature for different values of the local field
h.

Let us first discuss the h=0 case shown on the top left
panel of the figure. In this case, one of the roots is zero
��3=0� and there is a residual entropy of Simp=kB ln �2 that
signals a non-Fermi-liquid set of fixed points. The finite tem-
perature physics is governed by the other three roots.32 We
find that, within the range of parameters of physical rel-
evance, one of the roots ��0� is real while the other two
��1,2� are complex conjugate of each other. This makes it
natural to identify the roots with the Kondo and Schottky
energy scales in the following way:

kBTK = − �0/2 , �66�

kBTS = ��1�/2 . �67�

The Kondo scale corresponds to a jump in the entropy of
height kB ln �2, while the Schottky scale is associated with a
jump that is twice as large. For small ���, the two quenching
steps coincide; whereas as ��� /� grows, the Kondo tempera-
ture decreases while the Schottky temperature increases. Evi-
dently, over the soluble manifold, the dependence of all
scales on the microscopic parameters is algebraic. This con-
trasts with the isotropic case, for which the Kondo scale has
exponential dependence on ��� /�.44 This behavior is seen
also in the single-, and two-channel Kondo models, for
which it is found that the exponential dependence of the
Kondo scale is a property of the isotropic models only and
the functional dependence crosses over to algebraic in the
Toulouse and Emery-Kivelson limits, respectively.56,57 An-
other characteristic of the solvable limit is that the ln T de-
pendencies in the impurity susceptibilities or in the specific
heat coefficient are changed into power laws. It is known that
the logarithms can be recovered using perturbation theory in
�� �cf. Refs. 36, 49, and 50�, as it reintroduces the leading
RG-irrelevant operators that are absent from the soluble
manifold. For the leading contribution, the three operators
with scaling dimension 3 �i.e., 	cnd, 	snd, and 	 fnd� can be
included using second-order perturbation theory in the cou-
plings. All three of them mix one of the decoupled bands and
the impurity in a way that is the direct generalization of what
happens in the case of the two-channel Kondo model.50 Such
a procedure should recover, for instance, not only the results
for the specific heat and susceptibilities but also the Wilson
ratio that was discussed already in Ref. 41.

When h�0, �3 becomes nonzero as well and grows with
h. This introduces a third quenching step �as it can be seen,
for instance, in the top right panel of the figure� in which the
entropy goes from kB ln �2 to zero, signaling the system
flowing away from the non-Fermi-liquid fixed point. This is
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in accordance with the result of the previous section, in
which we found h to be a relevant perturbation. This process
defines a third energy scale,

kBTh = − �3/2 , �68�

that grows with h until reaching the same value as TK, which
happens at different values of the field for different values of
��� �taking place first for larger values, see the middle left
panel in Fig. 3�. As these two energy scales merge, the re-
spective roots become a complex-conjugate pair, a single
quenching step of the same height as the Schottky one

emerges and the transition width �i.e., the width of the cor-
responding anomaly in the specific heat� narrows. As h in-
creases further, the three scales first become degenerate and
then cross each other. In the bottom right panel, the two
scales have already crossed, the higher temperature step is
given by TK=Th and is insensitive to the value of ��� /�,
while the lower one continues to correspond to the Schottky
transition and shows the same type of dependence in ��� /� as
for lower fields. These results share many properties with
those for the isotropic case, but they are specific to the case
of a symmetric filed ��h=0� and exhibit important differ-
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FIG. 3. �Color online� Impurity contribution to the entropy as a function of temperature for different values of the symmetric external
field h. Temperature and field are both measured in units of �. Different curves correspond to different values of � /� and �=� /2. The top
left panel corresponds to zero field and the other ones to finite values of the field that increase hundredfold between panels, from h
=10−5� until h=103�.
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ences with the case when only hs or hf is applied to the
system �cf. Fig. 7 in Ref. 44�.

Other thermodynamic quantities of interest are the impu-
rity charge valence nc=�� /�� and the magnetization mimp
=−�� /�h. They are explicitly given by the expressions

nc − nc,0 =
1

�
�

k

��1

2
+ zk���zk, �69a�

mimp − mimp,0 = −
1

�
�

k

��1

2
+ zk��hzk, �69b�

where the derivatives of the roots can be expressed in closed
form using the identity

��,h�k = −
���,hD��,1���=�k

� j�k��k − � j�
. �70�

Plots of these two quantities are displayed in Figs. 4 and 5,
respectively.

The variability of the impurity valence is an aspect inher-
ent to Anderson-type models and of relevance, for instance,
in the context of quantum dots and other mesoscopic systems
that might allow direct measurements of the valence states
via changes in capacitance.22 The valence starts as nc,0
=1 /2 at high temperature �T�TS� independently of the val-
ues of � and h, and evolves as the temperature is lowered to
attain a certain zero-temperature value nc

0
nc�� ,h�T=0 that
characterizes the particular fixed point that the system
reaches. The quenching of the valence fluctuations coincides
with the first quenching of the entropy and takes place at the
characteristic scale TS. Subtle aspects of the small ��� curves,
such as the “overshoot” of the curves at intermediate tem-
peratures, T�TS, are generic and are also present in the ex-
act solution of the isotropic model.32,44,58 This feature exists
for h zero or small and disappears as h becomes of the order
of �. Comparisons with the isotropic model show that, de-
spite the differences in the infrared physics, the isotropic and

the anisotropic models share the same generic ultraviolet
physics.32 This is to be expected, since the physics at higher
energies tends to be dominated by local fluctuations.

The curves of finite-field impurity magnetization as a
function of temperature are in some ways similar to those of
the charge valence. At high temperatures, the magnetization
is zero, and it acquires a field-dependent finite value as the
temperature becomes T�Th �the magnetization does not
reach the maximum value of 1 due to the hybridization of the
impurity with the conduction band�. In this case, curves for
positive and negative values of � are degenerate. The quan-
tities mimp

0 
mimp�� ,h�T=0 and nc
0 label the set of finite-field

fixed points of the model. As we mentioned above, these
fixed points are of the local Fermi-liquid type.
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FIG. 4. �Color online� Impurity charge valence as a function of
temperature. The curves are displayed for h=0, the only effect of
finite fields is to wash out the overshoot that happens for small
values of � /� and to shift �away from 1 /2� the zero-temperature
values of nc �see text�.
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FIG. 5. �Color online� Impurity magnetization versus tempera-
ture. From top to bottom, the three panels show three different
values of h /�=10−3 ,10−2 ,10−1. Curves for different values of � /�
are shown and the values are indicated in the figure.
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VI. CONCLUSION

We have shown how the addition of exchange terms that
provide anisotropy that breaks the SU�2� symmetry of the
two-channel Anderson model in the spin and flavor sectors,
by singling out an easy access for each of them, allows to
identify a manifold in coupling constant space over which
the model becomes quadratic and thus exactly solvable. The
solvable theory is obtained in the form of a mapping to an
unusual type of resonant-level model that includes two reso-
nant levels and we thus call it a biresonant-level model.
Similar mappings exist for the Kondo model in the case of
one and two channels �and are known to be impossible for
larger number of channels59�. But they are unlike the present
mapping for the two-channel Anderson model that incorpo-
rates the physics of valence fluctuations. Equivalent map-
pings for the single-channel Anderson model are elusive �cf.
Ref. 31�, which indicates that the case of the two-channel
model constitutes a singular example. Since the mapping
captures, in particular, the mixed-valence regime of the
model, in which electrons fluctuate from the impurity to the
band and vice versa, it is of utmost importance to verify that
such physics is rigorously captured by including the Klein
factors and showing how they take part in the transforma-
tions that are required for the mapping. A careful study of the
Klein factors opens the door for future calculations of corre-
lation functions using the solvable points as starting ground.
The representativity of calculations that start from the
biresonant-level model requires that such model flows into
generic fixed points representative of the physics of the origi-
nal model. We performed an analysis of the stability of de-
viations from the locus of solvable points in parameter space
and established that perturbation theory on such deviations is
valid. The advantage of starting from the mapped model is
evident: closed analytical expressions can be derived for the
full temperature crossovers of the different quantities of in-
terest; this sets the approach apart from other nonperturba-
tive techniques applied previously to the two-channel Ander-
son model.

To illustrate the versatility, power, and simplicity of the
use of the biresonant-level model to do calculations, we pre-
sented several results of thermodynamic quantities that in-
volve the impurity. Namely, we gave results for the impurity
entropy, valence, and magnetization as functions of tempera-
ture for different values of � and h. These quantities illustrate
the existence of several energy scales in the model that signal
the transitions between different regimes. It is remarkable
that all the crossovers can be calculated explicitly in closed
analytic expressions, something not possible with other types
of calculations.

For the follow-up, it would be interesting to exploit the
precise mapping �that includes all the details such as Klein
factors, decoupled bands, etc.� to compute dynamic correla-
tion functions involving the impurity. Another interesting di-
rection would be the study of the finite-size crossover spec-
trum of the model, which would allow to establish
instructive connections with different renormalization group
schemes. Finally, we are in a position to, for instance, con-
sider the behavior of more than one impurity �cf. Ref. 60�
and, in particular, the case of one-dimensional two-channel

Anderson lattices �cf. Ref. 61�. The latter would be interest-
ing in order to determine if lattice effects are able to reverse
the sign of the prefactor in the leading �T term in the
resistivity,42 which would be required in order to match the
experimental results for thoriated UBe13.
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APPENDIX: STUDY OF THE FINITE-FIELD FIXED
POINTS

The long-� asymptotics change dramatically when a non-
zero external field is present �h�0�. The f� Majorana com-
ponent of f is now coupled to the rest of the system and we
must recompute all the Green functions. For the diagonal
ones, we find

	�sf� ����sf� �0�� �
1

�
, 	�sf� ����sf� �0�� �

1

�
, �A1a�

	d����d��0�� �
1

�
, 	d����d��0�� �

1

�
, �A1b�

	f����f��0�� �
1

�3 , 	f����f��0�� �
1

�
, �A1c�

from where we read the new naive scaling dimensions:
��sf� �= ��sf� �= �d��= �d��= �f��=1 /2, and �f��=3 /2. For the
nondiagonal Green functions, the following ones have long-�
behaviors that do not match the expectations from the naive
scalings:

	�sf� ����sf� �0�� �
1

�2 , 	�sf� ���d��0�� �
1

�2 , �A2a�

	�sf� ���d��0�� �
1

�2 , 	�sf� ���f��0�� �
1

�3 , �A2b�

	�sf� ���f��0�� �
1

�2 , 	d����d��0�� �
1

�2 , �A2c�

	d����f��0�� �
1

�3 , 	d����f��0�� �
1

�2 . �A2d�

All of them decay faster than what the naive use of the scal-
ing dimensions of the fields would indicate. Thus, in order to
obtain the RG flow of the nondiagonal couplings, one
should, all the same, employ the naive dimensions. The re-
sulting flow equations are as follows:
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dgd�

d�
= − gd�,

dgd�

d�
= − gd�, �A3a�

dgf�

d�
= − gf�,

dgf�

d�
= − 3gf�, �A3b�

dv��

d�
= 0,

dv��

d�
= 0, �A3c�

d�

d�
= 0,

d�

d�
= 0, �A3d�

d�

d�
= − �,

dh

d�
= − h . �A3e�

Now h became RG irrelevant. However, the ratio h /� is
exactly marginal and parametrizes the new finite-field Fermi-
liquid fixed points.
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