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We consider a system of two-dimensional interacting fermions with a flat Fermi surface. The apparent
conflict between Luttinger and non-Luttinger liquid behaviors found through different approximations is re-
solved by showing the existence of a line of nontrivial fixed points, for the renormalization group �RG� flow,
corresponding to Luttinger liquid behavior; the presence of marginally relevant operators can cause flow away
from the fixed point. The analysis is nonperturbative and based on the implementation, at each RG iteration, of
Ward identities obtained from local phase transformations depending on the Fermi surface side, implying the
partial vanishing of the beta function.
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I. INTRODUCTION

The properties of the two-dimensional interacting fermi-
ons are still largely unknown, despite the tremendous effort
devoted to their understanding in the last years. One of the
most debated questions is on the possible existence of a Lut-
tinger liquid phase, which was first suggested by Anderson1

as an explanation of some properties of high Tc supercon-
ductors, as observed also in recent experiments, see, e.g.,
Ref. 2.

It has been proved, in the case of symmetric, smooth, and
convex Fermi surfaces �such as in the Jellium model3 or in
the Hubbard model in the non-half-filled case4�, that the
wave function renormalization Z is essentially temperature
independent up to exponentially small temperatures. In a
Luttinger liquid one expects instead a logarithmic behavior
in this regime, i.e., Z�1+O�U2 log ��, so that such results
rule out for sure the possibility of Luttinger liquid behavior.

On the contrary, the presence in the Fermi surface of flat
regions can produce non-Fermi liquid behavior. The simplest
model with a flat Fermi surface is the 2D Hubbard model at
half filling, in which the Fermi surface is a square. It was
proved in Ref. 5 that the wave function renormalization is
Z=1+O�U2 log2 �� up to exponentially small temperatures;
the presence of the log2 � is a consequence of the Van Hove
singularities, which are related to the fact that the Fermi
velocity is vanishing at the corners of the squared Fermi
surface and implies that also in this case there is not Lut-
tinger liquid behavior.

It is important to stress that the results in Refs. 3–5 are
rigorous as they are based on expansions, which are conver-
gent provided that the temperature is not too low, the finite
temperature acting as an infrared cutoffs; however, such ex-
pansions cannot give any information on the zero tempera-
ture properties.

A lot of attention has been devoted in recent years to the
zero temperature properties of Fermi surfaces with flat re-
gions and no corners, which share some features with the
Fermi surfaces of some cuprates as seen in photoemission
experiments. Parquet method results6 and perturbative renor-
malization group �RG� analysis7 truncated at one loop indi-
cate that for repulsive interactions, there is no indication of a
Luttinger liquid phase at zero temperature; the effective cou-

plings flow toward a strong coupling regime that is related to
the onset of d-wave superconductivity. In a more recent RG
analysis that is truncated at two loops,8 one still gets a flow
to strong coupling, but in some intermediate region, some
indication of Luttinger liquid behavior is found.

Apparently, conflicting results are found by applying
bosonization: in Refs. 9 and 10, a model of electrons on a
square Fermi surface was mapped in a collection of fermions
on coupled chains, and it is found that the correlations at
zero temperature in momentum space are similar to the ones
of the Luttinger model. A related but somewhat different
strategies consists in proposing an exactly solvable 2D ana-
log of the Luttinger model; this approach was pursued in
Refs. 11 and 12 and again Luttinger liquid behavior up to
zero temperature was found.

A possible explanation of such conflicting results was
suggested in Ref. 13, postulating the existence for the RG
flow, in addition to the trivial fixed point associated to non-
interacting fermions, of a nontrivial fixed point associated
with Luttinger behavior, which could be made instable by the
presence of marginally relevant operators. In this paper, we
provide a quantitative verification of such hypothesis, explic-
itly showing the existence of a line nontrivial Luttinger fixed
points for the RG flow of a system of 2D interacting fermi-
ons with a flat Fermi surface. It would be not possible to
directly derive such result from the perturbative expansions,
as it is related to cancellations between graphs to all orders
of the expansion which are too complex to be seen explicitly;
it is well known that even in one dimension, Ward identities
�WI� are necessary to prove the existence of a Luttinger liq-
uid fixed point.14 Our analysis is based on the implementa-
tion, in an exact RG approach, of WI with corrections due
the the cutoffs introduced in the multiscale analysis, extend-
ing a technique already used to establish Luttinger liquid
behavior in a large class of 1D fermionic systems15,16 or 2D
spin systems.17 Such methods are the only ones, which can
be applied to nonexactly solvable models, such as the model
analyzed in this paper.

II. MODEL

We consider a model with a square Fermi surface similar
to the one considered in Refs. 6, 8, and 9; the Schwinger
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functions are given by functional derivatives of the generat-
ing functional,

eW��� =� P�d��exp�V��� +� dx��x
+�x

− + �x
−�x

+�� , �1�

with �k
� are Grassmann variables, k= �k− ,k+ ,k0�, k�= 2�

L�
n�,

k0= 2�
� �n0+ 1

2 �, n� ,n0=0 , �1, �2, . . . , and P�d�� is the fer-
mionic integration with propagator

gk = 	
�=�

	
�=�

H�k−��C0
−1�
a0

−2�k0
2 + vF

2��k�� − pF�2��
− ik0 + vF�k� − �pF�

� 	
�,�=�

g�,�,k, �2�

H�k−��=��a−2k−�
2 �, ��t�=1 if t	1, and 0 otherwise, C0

−1�t� is
a smooth compact support function=1 for t	1 and=0 for
t
�, ��1. We assume, for definiteness, a

pF

4 and a0
pF

20
so that the support of gk is over four disconnected regions;
the Fermi surface is defined as the set of momenta in which
gk for k0=0 is singular in the limit �→� �Fig. 1�.

By using well known properties of Grassmann integrals
�see Ref. 18�, Eq. �6� allows us to write the Grassmann field
as a sum of independent fields,

�k
� = 	

�=�
	

�=�

��,�,k
� , �3�

with ��,�,x
� independent Grassmann variables with propaga-

tor g�,�,k. As in Refs. 6, 8, and 9, we can consider only
interactions between parallel patches �V=L+L−�,

V = 	
�

	
��

1

�V��4 	
k1,. . .,k4

Uv̂�k1 − k2�

���1,�,k1

+ ��2,�,k2

− ��3,�,k3

+ ��4,�,k4

− ��k1 − k2 + k3 − k4� ,

�4�

with v�x� a short range potential. The two-point Schwinger
function is given by

S2�x,y� =  �2W���
��x��y


�=0

. �5�

III. RENORMALIZATION GROUP ANALYSIS

As the interaction does not couple different �, we can
from now on fix �=+ for definiteness and forget the index �.
We analyze the functional integral �1� by performing a mul-
tiscale analysis by using the methods of constructive quan-
tum field theory �for a general introduction to such methods,
see Ref. 18�. The propagator �2� can be written as sum of
“single slice” propagators in the following way:

g��x − y� = 	
h=−�

0

ei�pF�x+−y+�g�
�h��x − y� , �6�

where

g�
�h��x − y� =

1

V�
	
k

eik�x−y� H�k−�fh�k�
− ik0 + �vFk+

, �7�

and fh�k� has support in a region O��h� around each flat side
of the Fermi surface, at a distance O��h� from it, that is
a0�h−1
k0

2+vF
2k+

2 a0�h+1; note that in each term in Eq. �6�
the change of variables k+→k++�pF has been performed.
The single scale propagator verify the following bound for
any integer M,

�g�
�h��x��  CM sin ax−

x−
 �h

1 + ��h��x+� + �x0���M . �8�

The integration is done iteratively integrating out the fields
with momenta closer and closer to the Fermi surface, renor-
malizing at each step the wave function. After the integration
of the fields ��0� , . . . ,��h+1�, we obtain

� PZh
�d��h��e−V�h��
Zh��h��, �9�

where PZh
�d��h�� is the fermionic integration with propaga-

tor Zh
−1�k�g�,k

�h�, with g�,k
�h�=	k=−�

h g�,k
�k� and Zh is iteratively

defined starting from Z0=1; moreover, if p�F= �0, pF ,0�,

V�h���h� = 	
n=1

�

	
��

1

��V�2n 	
k1,. . .,k2n

��	
i

�i�ki + �ip�F��
��

i=1

2n

�̂�i,ki

�h��i�Ŵ2n
�h��k1, . . . ,k2n−1� . �10�

By using that �dk�g�,�,k
�k� �C�k and �g�,�,k

�k� �C�−k, we see

that the kernels Ŵ2n
�k� are O��−k�n−2��; this means that the

terms quadratic in the fields have positive scaling dimension
and the quartic terms have vanishing scaling dimension, and
all the other terms have negative dimension; we have then to
properly renormalize the terms with non-negative dimension.

By calling k̄= �k− ,0 ,0�, we define an L operator acting
linearly on the kernels of the effective potential,

�1� LŴ2n
�h�=0 if n
2.

�2� If n=1,

LŴ2
h�k� = Ŵ2

h�k̄� + k0�k0
Ŵ2

h�k̄� + k+�+Ŵ2
h�k̄� . �11�

�3� If n=2,

FIG. 1. The Fermi surface corresponding to the singularities of
gk; the four sides are labeled by �� ,��= �� , � �.
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LŴ4
h�k1,k2,k3� = �	i�i�i,0

Ŵ4
h�k̄1,k̄2,k̄3� . �12�

By calling �0Ŵ2
h�k̄�=−izh�k−�, �+Ŵ2

h�k̄�=�zh�k−� �symme-
try considerations are used�, and lh�k−,1 ,k−,2 ,k−,3�
=Ŵ4

h�k̄1 , k̄2 , k̄3�, we obtain

LVh =
1

�V
	
k

�zh�k−��k+ − ik0zh�k−���̂k,�
+�h��̂k,�

−�h�

+ 	
�� ,��

*
1

��V�4 	
k1,. . .,k4

lh�k−,1,k−,2,k−,3��̂k1,�1

+�h��̂k2,�2

−�h��̂k3,�3

+�h�

��̂k4,�4

−�h���	
i

�iki� , �13�

where 	
��
* is constrained to the condition 	i�i�ip�F=0 and we

have used that, by symmetry, W2
h�k̄�=0.

We write Eq. �9� as

� PZh
�d��h��e−LV�h��
Zh��h��−RV�h��
Zh��h��, �14�

with R=1−L. The nontrivial action of R on the kernel with
n=2 can be written as

RŴ4
h�k1,k2,k3� = �Ŵ4

h�k1,k2,k3� − Ŵ4
h�k̄1,k2,k3��

+ �Ŵ4
h�k̄1,k2,k3� − Ŵ4

h�k̄1,k̄2,k3��

+ �Ŵ4
h�k̄1,k̄2,k3� − Ŵ4

h�k̄1,k̄2,k̄3�� .

�15�

The first addend can be written as

k0,1�
0

1

dt�k0,1
Ŵ4

h�k−,1,k+,1,tk0,1;k2,k3� + k+,1

��
0

1

dt�k+,1
Ŵ4

h�k−,1,tk+,1,0;k2,k3� . �16�

The factors k0,1 and k+,1 are O��h�� for the compact support

properties of the propagator associated with �̂�1,k1

+�h�, with h�
h, while the derivatives are dimensionally O��−h−1�;
hence, the effect of R is to produce a factor �h�−h−1	1,
making its scaling dimension negative. Similar consider-
ations can be done for the action of R on the n=1 terms. The
effect of the L operation is to replace in W2

h�k� the momen-
tum k� with its projection on the closest flat side of the Fermi
surface. Hence, the fact that the propagator is singular over
an extended region �the Fermi surface� and not simply in a
point has the effect that the renormalization point cannot be
fixed but it must be left moving on the Fermi surface.

In order to integrate the field ��h� we can write Eq. �14� as

� PZh−1
�d��h��e−LṼh�
Zh��h��−RV�h��
Zh��h��, �17�

where PZh−1
�d��h�� is the fermionic integration with propa-

gator,

1

Zh−1�k�
H�k−�Ch

−1�k�
− ik0 + �vFk+

, �18�

with Ch
−1�k�=	k=−�

h fk and

Zh−1�k� = Zh�k−��1 + H�k−�Ch
−1�k�zh�k−�� . �19�

Moreover, LṼh is the second term in Eq. �13�.
We rescale the fields by rewriting the right hand side of

Eq. �14� as

� PZh−1
�d��h��e−LV̂h�
Zh−1��h��−RV�h��
Zh−1��h��, �20�

where

LV̂h��� = 	
��

*
1

��V�4 	
k1,..,k4

gh�k−,1,k−,2,k−,3�

��̂k1,�1

+ �̂k2,�2

− �̂k3,�3

+ �̂k4,�4

− ��	
i

�iki� , �21�

and the effective couplings,

gh�k−,1,k−,2,k−,3� = ��
i=1

4 
 Zh�k−,i�
Zh−1�k−,i�

�lh�k−,1,k−,2,k−,3� .

�22�

After the integrations of the fields ��0�, ��−1� , . . . ,��h�, we get
an effective theory describing fermions with wave function
renormalization Zh and effective interaction given by Eq.
�21�. Note that Zh and gh are nontrivial functions of the mo-
mentum parallel to the Fermi surface.

We write

� PZh−1
�d��h−1�� � PZh−1

�d��h��

�e−LV̂�h��
Zh−1��h��−RV�h��
Zh−1��h��, �23�

and the propagator of PZh−1
�d�� is

ĝ�,�
h �k� = H�k−�

1

Zh−1�k−�
f̃ h�k�

− ik0 + �vFk+
,

and

f̃ h�k� = Zh−1�k−�� Ch
−1�k�

Zh−1�k�
−

Ch−1
−1 �k�

Zh−1�k−�� , �24�

with H�k−� f̃ h�k� having the same support that H�k−�fh�k�. We
integrate then the field ��h� and we get

� PZh−1
�d��h−1��e−V�h−1��
Zh−1��h−1��, �25�

and the procedure can be iterated.
The above procedure allows us to write W2n

�h� as a series in
the effective couplings gk, k
h, which is convergent �see
Ref. 18�, provided that L− is finite and �h=supk
h�gk� small
enough; moreover, �W2n

�h��=O��−h�n−2��. A similar analysis
can be repeated for the two-point function.
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However, even if the couplings gk starts with small val-
ues, they can possibly increase iterating the RG and at the
end reach the boundary of the �estimated� convergence do-
main; if this happen, all the above procedure looses its con-
sistency. A finite temperature acts as an infrared cutoff saying
that the RG has to be iterated up to a maximum scale h�

=O�log �� and, up to exponentially small temperatures, i.e.,
�O�e��U�−1

�, then surely the effective couplings are in the
convergence domain; however, in order to get lower tem-
peratures, more information on the effective couplings are
necessary.

IV. RENORMALIZATION GROUP FLOW
AND LUTTINGER LIQUID FIXED POINT

The RG analysis seen in the previous section implies that
the effective coupling gh verifing a flow equation of the form

gh−1 = gh + �g
�h��gh; . . . ;g0� , �26�

where the right hand side of the above equation is called beta
function, which is expressed by a convergent expansion in
the couplings if �h is small enough. The first nontrivial con-
tribution to �g

�h�, which is called �g
�2��h�, is quadratic in the

couplings and it is given by

�g
�2��h� = �h

�a� + �h
�b�, �27�

where

�h
�a� =� dpH�k1,− − p−�H�k3,− + p−�gh�k1,−,k1,− − p−,k3,−�

� gh�k1,− − p−,k2,−,k3,− + p−�
fh�p�Ch�p�
p0

2 + vF
2 p+

2 , �28�

�h
�b� = −� dpH�k2,− − p−�H�k3,− − p−�

�gh�k1,−,k2,− − p−,k3,− − p−�

�gh�k2,− − p−,k2,−,k3,−�
fh�p�Ch�p�
p0

2 + vF
2 p+

2 . �29�

The above expression essentially coincides with the one
found in Refs. 6 and 8; it is indeed well known that the
lowest order contributions to the beta function are essentially
independent by RG procedure one follows.

The flow equation �26� encodes most of the physical
properties of the model, but its analysis is extremely com-
plex. Some insights can be obtained by truncating the beta
function at second order and by the numerical analysis of the
resulting flow by discretization of the Fermi surface; it is
found �see Refs. 6 and 8� that gh�k−,1 ,k−,2 ,k−,3� has a flow
which, for certain values of k−,1 ,k−,2 ,k−,3 increases and reach
the estimated domain of convergence of the series for Wn

�k�.
While this increasing can be interpreted as a sign of instabil-
ity, mathematically speaking this means that the truncation
procedure becomes inconsistent.

A basic question is about the fixed points of the flow
equation �26�; in particular, if there is in addition to the

trivial fixed point gh=0, a nontrivial fixed point correspond-
ing to Luttinger liquid behavior. Note first that the set

gh�k−,1,k−,2,k−,3� =
1

L−
��k1,− − k2,−���1,�2

��3,�4
�h, �30�

with �h constant in k, is invariant under the RG flow, in the
sense that if LV�k� has the form, for k
h

1

��V�3 	
k,k�,p
�,��

�h�p−,0�̂�,k
+ �̂�,k+p

− �̂��,k�
+ �̂��,k�−p

− , �31�

the same is true for LV�h−1�. This can be checked by the
graph expansion. In the graphs contributing to W4

�h�, the ex-
ternal lines either come out from a single point or are con-
nected by a chain of propagators with the same � ,k−. More-
over, in each Feynman graph, the only dependence from the
momenta of the external lines is through the function H�k−�,
which are 1 in the support of the external fields
�dkH�k−��k

�=�dk�k
�. For the same reasons, Zh is also inde-

pendent of k−.
The crucial point is that in the set given by Eq. �30�, some

dramatic cancellation are present, implying the following
asymptotic vanishing of the beta function �which will be
proved in the subsequent sections�,

�g
�h� = O��h�h

2� , �32�

saying that there is a cancellations between the graphs with
four external lines and the graphs with two lines contributing
to the square of Zh �see Eq. �22��; such graphs are O�1� but
there are cancellations making the size of the sum of them
O��h�. At the second order, Eq. �32� can be verified from
Eqs. �29� and �30�; at third order, it is compatible with Eqs.
�A16�, �A15�, and �4.8� of Ref. 8.

The validity of Eq. �32� immediately implies the existence
of a line of nontrivial fixed points for Eq. �26� of the form

g−��k−,1,k−,2,k−,3� =
1

L−
��k1,− − k2,−���1,�2

��3,�4
�−�,

�33�

with �−� k independent and continuous function of U, �−�

=�0+O�U2� and �0=cU for a suitable constant c.
Note also that to such fixed point is associated Luttinger

liquid behavior, as from Eq. �19� Zh��2�h, with �=a�0
2

+O�U3� and p̄= �0, p̄+ , p̄0�,

a = lim
h→−�

	
��

�0
2

L−

1

h
� dk�dp̄+dp̄0

H�k−��Ch�k��
− ik0� + ��vFk+�

�  H�k−��Ch�k� + p̄�
− i�k0� + p̄0� + ��vF�k+� + p̄+�

�

�k+

�
H�k−�Ch

−1�k − p̄�
− i�k0 − p̄0� + �vF�k+ − p̄+�


k0=k+=0

. �34�

Indeed, the two-point Schwinger function can be written
as

VIERI MASTROPIETRO PHYSICAL REVIEW B 77, 195106 �2008�

195106-4



S2�x,y� = 	
�=�

ei�pF�x+−y+� 1

V�
	
k

eik�x−y�g�
�h��k�
Zh

�1 + A�h��k�� ,

�35�

with A�h��k�=O��h� so that

S2�x,y� = 	
�=�

ei�pF�x+−y+�

�
1

V�
	
k

eik�x−y� H�k−�C0
−1�k�

− ik0 + �vFk+

1 + A�k�
�k0

2 + vF
2k+

2��
,

�36�

with �A�k��C �U�. This means that to the fixed point is as-
sociated Luttinger liquid behavior, as the wave function
renormalization vanishes at the Fermi surface as a powerlike
with a nonuniversal critical index; the Luttinger liquid be-
havior is found only if L− is finite. Note also that the cancel-
lation in Eq. �32� reduce to the one in 1D if k−=k−� in Eq.
�31�.

V. AUXILIARY MODEL

There is essentially no hope of proving a property such as
Eq. �32� directly from the graph expansion, as the algebra of
the graphs is too cumbersome �except than at one loop in
which it is easy to check�. We will follow instead the same
strategy for proving the asymptotic vanishing of the Beta
function in 1D followed in Refs. 15 and 16, considering an
auxiliary model with the same beta function, up to irrelevant
terms, but verifying extra symmetries, from which a set of
Ward identities can be derived. In the present case, such
identities are related to the invariance under local phase
transformations depending on the Fermi surface side, which
in the model �1� is broken by the cutoff function C0

−1�k�.
We consider an auxiliary model whose generating func-

tion is

� D�exp� 	
�=�

� dkH−1�k−�Ch,N�k��− ik0 + �k+vF��̂�,k
+ �̂�,k

−

+ V̄��� + 	
�,�=�

� dx��,x
� ��,x

−� + 	
�=�

� dxJx,���,x� ,

�37�

with Ch,N
−1 �k�=	k=h

N fk�k0
2+vF

2k+
2�, h0, ��,x=��,x

+ ��,x,

V̄ =
U

L−
	

�,��
� dxdyv�x0 − y0,x+ − y+���,x

+ ��,x
− ���,y

+ ���,y
−

=
U

L−

1

��V�2 	
k,k�

1

�L+
	

p0,p+

v̂�p0,p+�

��̂�,k
+ �̂�,k+�0,p+,p0�

− �̂��,k�
+ �̂��,k�−�0,p+,p0�

− , �38�

with v�x0 ,x+� a short range interaction. The above functional
integral is very similar to the previous one, with the differ-
ence that there is an ultraviolet cutoff �N on the � variables,
which will be removed at the end; such features are present

also in the models introduced in Refs. 9 and 12.
Again, Eq. �37� can be analyzed by a multiscale integra-

tion based on a decomposition similar to Eq. �6�, with the
difference that the scale are from h to N. In the integration of
the scales between N and 0, the ultraviolet scales, there is no
need of renormalization; apparently, the terms with two or
four external lines have positive or vanishing dimension but
one can use the non locality of the interaction to improve
their scaling dimension. We integrate �with L=0� the fields
��N� ,��N−1� , . . . ,��k� and we call W2n,m

�k� the kernels in the ef-
fective potential multiplying 2n fermionic fields and a num-
ber m of fields of type J. Again, the dimension is �−k�n+m−2�,
k
0, and we have to improve the bounds by using the non-
locality of the interaction. We can write

W2,0
�k� �x,y� =� dy1U

v�x0 − y1,0,x+ − y1,+�
L−

�W0,1
�k� �y1�g�k,N��x − y2�W2,0

�k� �y2;y�

+ U� dy2
v�x0 − y0,1,x+ − y+,1�

L−
g�k,N��x − y2�

�W2,1
�k� �y,y2;y1� + U��x − y�

�� dy1
v�x0 − y1,0,x+ − y1,+�

L−
W0,1

�k� �y1� . �39�

The first and the third addend of Fig. 2 are vanishing by
the symmetry g�k0 ,k+ ,k−�=−g�−k0 ,−k+ ,k−�; hence, by using

that �g�j��1 C̃�−j and that W2,1
�k� is O�U� �by induction�, we

obtain the following bound:

�W2,0
�k� �  C

�U�
L−

�W2,1
�k� � · 	

j=k

N

�g�j��1  C�U��kL−
−1�−2k. �40�

Note that we have a gain O�L−
−1�−2k� due to the fact that we

are integrating over a fermionic instead than over a bosonic
line. Similar arguments can be repeated for W0,2

�k� , which can
be decomposed as in Fig 3.

+ +

FIG. 3. Decomposition of W2,0
�k� .

+= +

FIG. 2. Graphical representation of Eq. �39�; the blobs represent
Wn,m

�k� and the wiggly lines represent v the lines g�k,N�.
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The second term in the figure is bounded by
O��U�L−

−1�−2k�. A similar bound is found for the third term in
Fig. 3; regarding the first term, we can rewrite it as

� dxdz̄�g�k,N��z − x��2 U

L−
v�x0 − z̄0,x+ − z̄+�W0,2

�k� �z̄,y�

=� dxdz̄U
v�z̄0 − z0, z̄+ − z+�

L−
�g�k,N��x − z��2W0,2

�k� �z̄,y�

+� dxdz̄
U

L−
�v�z̄0 − x0, z̄+ − x+� − v�z̄0 − z0, z̄+ − z+��

��g�k,N��x − z��2W0,2
�k� �z̄,y0� , �41�

and using that

� dx�g�k,N��x − z��2 =� dk−H�k−� � dk0dk+
Ck,N

−2 �k�
�− ik0 + k+�2 = 0,

�42�

the first addend is vanishing; the second addend, by using the
interpolation formula for v�z̄0−x0 , z̄+−x+�−v�z̄0−z0 , z̄+−z+�,
can be bounded by C�U��−k, as by induction �W0,2

�k� �C�U�. A
similar analysis proves the bound for W4,0

�k� .
After the integration of the fields ��N� ,��N−1� , . . . ,��−1�,

we get a Grassmann integral very similar to Eq. �1�; the
integration of the remaining fields ��0� ,��−1� , . . . is done fol-
lowing the same procedure as in Sec. III, with the effective
coupling of form �30� and LV�k� of form �31�. The crucial
point is that the beta function coincides with the beta func-
tion for model �1� up to O��h� terms; hence, it is enough to
prove the validity of �32� in the auxiliary model.

VI. WARD IDENTITIES

We derive now a set of Ward identities, relating the
Schwinger functions of the auxiliary model �37�; by per-
forming the change of variables,

��,x
� → e�i��,x��,x

� , �43�

and making a derivative with respect to �x,� and to the ex-
ternal fields, we obtain

� dk��H−1�k−� + p−�Ch,N�k� + p��− i�k0� + p0� + �vF�k+� + p+��

− H−1�k−��Ch,N�k���− ik0� + �vFk+���

���̂�,k�+p
+ �̂�,k�

− �̂��,k−p
+ �̂��,k

− �

= ��,�����̂��,k−p
+ �̂��,k−p

− � − ��̂��,k
+ �̂��,k

− �� , �44�

where ��̂�,k�+p
+ �̂�,k�

− �̂��,k−p
+ �̂��,k

− � is the derivative with re-
spect to Jp,� ,���,k−p

+ ,���,k
− of Eq. �37�. Computing Eq. �44�

for p−=0, we get if p̄= �0, p̄+ , p̄0�

�− ip̄0 + �vFp̄+���p̄,��̂k,��
+ �̂k−p̄,��

− � + ��k,p̄�

= ��,�����̂��,k−p̄
+ �̂��,k−p̄

− � − ��̂��,k
+ �̂��,k

− �� , �45�

and

��k,p̄� =� dk�C�k�,p̄���̂�,k�+p̄
+ �̂�,k�

− �̂��,k−p̄
+ �̂��,k

− � ,

�46�

with

C�k,p̄� = �− ik0 + �vFk+��Ch,N�k + p̄� − Ch,N�k�� + �− ip̄0

+ �vFp̄+��Ch,N�k + p̄� − 1� . �47�

In deriving the above equation, we have used that

� dk�H−1�k−����̂�,k�+p̄
+ �̂�,k�

− �̂��,k−p̄
+ �̂�,k

− �

=� dk���̂�,k�+p̄
+ �̂�,k�

− �̂��,k−p̄
+ �̂��,k

− � �48�

for the compact support properties of the fields �k and H2

=H; note also the crucial role of the condition p−=0 in the
above derivation.

The presence of the term ��k , p̄� in the Ward identity �45�
is related to the presence of the ultraviolet cutoff; as in 1D,
such a term is not vanishing even in the limit N→� and it is
responsible of the anomalies �see Refs. 15 and 16�. The fol-
lowing correction identity holds, which is similar to the one
in the 1D case:

��k,p̄� = ��− ip̄0 − �vFp̄+� 	
��=�

��p̄,���̂��,k−p̄
+ �̂��,k

− �

+ R�
2,1�k,p̄� , �49�

with R�
2,1 a small correction. Indeed, R�

2,1 can be written as
functional derivative, with respect to �+, �−, and J, of

eW��J,�� =� P�d��exp�− V��� + 	
�
� dz���,z

+ ��,z
−

+ ��,z
+ ��,z

− � + T0�J,�� − T−�J,��� , �50�

with

T0��� =� dp̄+

�2��
dp̄0

�2��
dk

�2��3C�k,p̄�Jp̄�̂k+p̄,�
+ �̂k,�

− , �51�

T−��̂� = 	
��
� dp̄+

�2��
dp̄0

�2��
dk

�2��3

��Jp̄�− ip̄0 − �vFp̄+��̂k+p̄,��
+ �̂k,��

− . �52�

Equation �50� can be evaluated by a multiscale integration
similar to the previous one, the only difference being that
�J� is replaced by T0−T−. The terms with vanishing scaling
dimension of the form J�+�− can be obtained from the con-
traction of T0 and T−; in the first case, we can perform a
decomposition similar to the one in Fig. 3 �see Fig. 4�. Re-
garding the second and third terms, we can exactly proceed
as in Sec. V, the main difference being that at least one of the
two fields in Eq. �51� have scale N so that they obey to the
bound O��−2k�−�1/2��N−k��. This follows from the fact that

VIERI MASTROPIETRO PHYSICAL REVIEW B 77, 195106 �2008�

195106-6



when C is multiplied by two propagators, we get

C�k,p̄�g�i��k�g�j��k + p̄�

=
f i�k�

− ik0 + �vFk+
� f j�k + p̄�

Ch,N
−1 �k + p̄�

− f j�k + p̄��
−

f j�k + p̄�
− i�k0 + p̄0� + �vF�k+ + p̄+�� f i�k�

Ch,N
−1 �k�

− f i�k�� ,

�53�

which is nonvanishing only if one among i or j are equal to
h or N.

The main difference with the analysis in the previous sec-
tion is in the first term of Fig. 4; the “bubble” in Fig. 3 was
vanishing, while here it is not. We choose � in Eq. �50� equal
to the value of this bubble in order to cancel it. The value of
the bubble is given by

� = Uv�p̄0, p̄+� � dk

�2��3

C�k,p̄�
− ip̄0 − �vFp̄+

g�
�N��k�g�

�N��k + p̄� ,

�54�

and in the limit N→�, �=Uv�p̄0 , p̄+� a
4�2 . Hence, for k0 ,k+

=O��h�,

�R�
2,1�k,p̄��  C�h

2�−2h. �55�

VII. SCHWINGER–DYSON EQUATION

An immediate consequence of the analysis in Sec. VI is
that for momenta computed at the infrared scale �k�= �k��
= �k+ p̂�= �k�− p̂�= �p̂�=�h,

��̂�,k
− �̂�,k+p̂

+ �̂��,k�
− �̂��,k�−p̂

+ � =
1

�Zh�2

�h

L−
g�,k

�h� g��,k�
�h� g�,k�+p̂

�h� g��,k�−p̂
�h�

��1 + O��h����̂�,k
− �̂�,k

+ �

=
g�,k

�h�

Zh
�1 + O��h�� . �56�

This says that relations between the effective couplings at a
certain scale h0 can be obtained from the relations be-
tween the Schwinger functions of the auxiliary model �Eq.
�37�� computed at the infrared cutoff scale. The starting point
for deriving such relations is the Schwinger-Dyson equation
for the four-point function, given by computing the external
momenta at the infrared scale and calling p̂= �0, p̂+ , p̂0� and
p̄= �0, p̄+ , p̄0� �Fig. 5�

��̂�,k
− �̂�,k−p̂

+ �̂��,k�
− �̂��,k�+p̂

+ �

= 	
��
� U

L−
v�p̂0, p̂+�g��,k�+p̂��̂��,k�

− �̂��,k�
+ ���p̂,���̂�,k

− �̂�,k−p̂
+ �

+
U

L−
g��,k�+p̂� dp̄0

�2��
dp̄+

�2��
v�p̄0, p̄+�

���p̄,���̂�,k
− �̂�,k−p̂

+ �̂��,k�
− �̂��,k�+p̂−p̄

+ �� . �57�

By the WI �Eqs. �45� and �49��,

�− ip̂0 + ��vFp̂+��̄�p̂,���̂k,�
− �̂k−p̂,�

+

= A�,���p����̂�,k−p̂
− �̂�,k−p̂

+ � − ��̂�,k
− �̂�,k

+ �� + H�,��
�2,1��k,p� ,

�58�

with A�,��p�=1+O��h�, A�,−��p�=O��h�, and even in p;
moreover, H�,���k ,p� is a linear combination of the R2,1

functions in Eq. �49� with bounded coefficients. The WI for
the four-point function is given by

�− ip̄0 + �vFp̄+���p̄,��̂�,k
− �̂�,k−p̂

+ �̂−�,k�
− �̂−�,k�+p̂−p̄

+ �

= ��̂k−p̄,�
− �̂k−p̂,�

+ �̂k�,−�
− �̂k�+p̂−p̄,−�

+ �

− ��̂k,�
− �̂k−p̂+p̄,�

+ �̂k�,−�
− �̂k�+p̂−p̄,−�

+ � + �	
�̄

�− ip̄0 − �vFp̄+�

���p̄,�̄�̂k,�
− �̂k−p̂,�

+ �̂k�,−�
− �̂k�+p̂−p̄,−�

+ � + R�
4,1�k,k�,p0� , �59�

and similar ones so that the second addend of the left hand
side of �57� is given by

� dp̄0dp̄+���p̄�
v̂�p̄0, p̄+�

− ip̄0 + ��vFp̄+

�A1�p̄���̂k−p̄,�
− �̂k−p̂,�

+ �̂k�,��
− �̂k�+p̂−p̄,��

+ �

+ A2�p̄���̂k,�
− �̂k−p̂+p̄,�

+ �̂k�,��
− �̂k�+p̂−p̄,��

+ �

+ A3�p̄���̂k,�
− �̂k−p̂,�

+ �̂k�−p̄,��
− �̂k�+p̂−p̄,��

+ �

+ A4�p̄���̂k,�
− �̂k−p̂,�

+ �̂k�,��
− �̂k�+p̂,��

+ � + H4,1�k,k�,p̄�� ,

�60�

where ���p̄� is a compact support function vanishing for p̄

+ +

FIG. 4. Terms obtained from the contraction of T0; the black dot
represents C�k , p̄�

= + p

FIG. 5. Graphical representation of Eq. �57�; the dotted line
represent the free propagator.
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=0, and such that it becomes the identity in the limit �→0;
moreover, the functions Ai�p� are bounded and even in p,
and H4,1 is a linear combination of the R4,1 functions in Eq.
�59� with bounded coefficients.

We have now to bound all the sums in the right hand side
of Eq. �60�. Note first that by parity

� dp̄0dp̄+���p̄�A4�p̄�
v̂�p̄0, p̄+�

− ip̄0 + ��vFp̄+

���̂k,�
− �̂k−p̂,�

+ �̂k�,��
− �̂k�+p̂,��

+ � = 0. �61�

Moreover, the first term in the right hand side of Eq. �60�
verifies

� dp̄0dp̄+
v̂�p̄0, p̄+�

− ip̄0 + vF��p̄+

A1�p̄����p̄�

���̂k−p̄,�
− �̂k−p̂,�

+ �̂k�,��
− �̂k�+p̂−p̄,��

+ �
 C�h

�−3h

Zh
2 , �62�

and a similar bound is true for the second and third term.
Finally, as in Ref. 16,

� dp̄0dp̄+
v̂�p̄0, p̄+�

− ip̄0 + vF��p̄+

H4,1�k,k�,p̄�  C�h
�−3h

Zh
2 .

�63�

By inserting Eqs. �56�, �58�, and �60�–�62� in Eq. �57�, we
get �h=�0+O�U2�, which means that the effective interac-
tion remain close to initial value for any RG iteration; a
contradiction argument shows that this can be true only if
the beta function is asymptotically vanishing: as this beta
function is the same of the 2D model �1� with effective cou-
plings �30� up to O��h� terms, then Eq. �32� follows.

VIII. CONCLUSIONS

We have shown that the RG flow for a system of spinless
fermions with flat Fermi surface has, in addition to the trivial
fixed point, a line of Luttinger liquid fixed points, corre-

sponding to vanishing wave function renormalization and
anomalous exponents in the two-point function; such fixed
point is in the invariant set �30�. This makes quantitative the
analysis in Ref. 10, in which the existence of a Luttinger
fixed point in 2D was postulated on the basis of bosoniza-
tion. With respect to previous perturbative RG analysis, the
key novelty is the implementation of WI at each RG itera-
tion, which is in analogy to what is done in 1D.

Of course the other effective interactions should cause
flows away from this fixed point; a similar phenomenon hap-
pens in the 1D �spinning� Hubbard model, in which there is
a Luttinger liquid fixed point in the invariant set obtained
setting all but the backscattering and umklapp scattering
terms equal to zero �that is, the set g1,h=g3,h=0 in the
g-ology notation, see Ref. 19�, but attractive backscattering
interaction produces a flow to a strong coupling regime. We
can in any case expect, as in 1D, that even if the Luttinger
fixed point in 2D is not stable its presence has an important
role in the physical properties of the system.

Fermi surfaces with flat or almost flat pieces and no van
Hove singularities are found in the Hubbard model with next
to nearest neighbor interactions or in the Hubbard model
close to half filling, and it is likely that our results can be
extended, at least partially, to such models. Note, however,
that in such models the sides of the Fermi surface are not
perfectly flat so that one expects a renormalization of the
shape of the Fermi surface, as in Ref. 3, which is absent in
the case of flat sides by symmetry. Another simplifying prop-
erty of the model considered here is that the modulation of
the Fermi velocity is taken constant along the Fermi surface,
which is contrary to what happens in more realistic models;
a momentum dependent Fermi velocity produces extra terms
in the WI, as it is evident from Eq. �43� �vF should be re-
placed by vF�k−�� in the first line and vF�k−�+ p−� in the second
line�, and their effect deserves further analysis.
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