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Quantum electrodynamics in 2+1 dimensions is an effective gauge theory for the so-called algebraic quan-
tum liquids. A new type of such a liquid, the algebraic charge liquid, has been proposed recently in the context
of deconfined quantum critical points �R. K. Kaul et al., Nat. Phys. 4, 28 �2008��. In this context, by using the
renormalization group in d=4−� space-time dimensions, we show that a deconfined quantum critical point
occurs in a SU�2� system provided the number of Dirac fermion species Nf �4. The calculations are done in
a representation where the Dirac fermions are given by four-component spinors. The critical exponents are
calculated for several values of Nf. In particular, for Nf =4 and �=1 �d=2+1�, the anomalous dimension of the
Néel field is given by �N=1 /3, with a correlation length exponent �=1 /2. These values considerably change
for Nf �4. For instance, for Nf =6, we find �N�0.75 191 and ��0.660 09. We also investigate the effect of
chiral symmetry breaking and analyze the scaling behavior of the chiral holon susceptibility, G��x�
���̄�x���x��̄�0���0��.
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I. INTRODUCTION

In very simple terms, we can define spinons as elementary
excitations carrying spin but no charge. They emerge in two-
dimensional Mott insulators as a consequence of electron
fractionalization.1 Similar to quarks in quantum chromody-
namics, spinons do not emerge so easily out of a confined
state. As a consequence, explicit observation of spinons is
very difficult. Quarks, although confined, are essential to ex-
plain the properties and structure of matter. In a similar way,
spinons, in spite of their confinement, seem to be essential in
explaining all the remarkable properties of Mott insulators,
including the doped ones, which open the way for the under-
standing of high-Tc superconductors.2

In several systems, spinons may deconfine at a quantum
critical point.1 One prominent example is the critical point
separating different types of order in quantum antiferromag-
nets, for example, in the phase transition between a Néel and
a valence-bond solid �VBS� state,3 which is a paramagnetic
state breaking lattice symmetries. Spinon deconfinement also
occurs in some paramagnetic Mott insulating states where no
symmetries are broken, for example, the spin liquid state in
pyrochlore antiferromagnets,4,5 and in some theories for the
underdoped state of high-Tc superconductors.6 A remarkable
property of deconfined spinons is that they are interacting at
low energies �i.e., they are asymptotically interacting in the
infrared�, in contrast to deconfined quarks, which are free at
high energies �asymptotic freedom�.7 Therefore, the field
theory of a deconfined quantum critical point is a highly
nontrivial conformal field theory.8 This deconfined quantum
criticality �DQC� arises due to a destructive interference be-
tween the Berry phases of a quantum antiferromagnet and
the instantons. This mechanism makes instanton events irrel-
evant at large distances, which in turn allows the spinons to
deconfine. Furthermore, since deconfined spinons are
strongly interacting, the critical exponents are nontrivial. In-
terestingly, the critical exponents following from such a
theory have unusual values with respect to those arising from
the Landau–Ginzburg–Wilson �LGW� paradigm of phase

transitions.8 The difference can already be seen in the mean-
field theory. It is easy to see that mean-field theory based on
the LGW paradigm gives an anomalous dimension �N=0 for
the Néel field Si= �−1�iSni, where i is the lattice site, S is the
spin, and ni

2=1. However, this is not the case for a mean-
field theory in the DQC scenario. There, the direction field is
written in terms of the spinon fields using a CP1 representa-
tion, i.e., ni,a=zi

†�azi, a=1,2 ,3, where zi= �zi1 ,zi2�, and �a
are the Pauli matrices, and the constraint ni

2=1 implies zi
†zi

=1. In mean-field theory, the dimension of fields is simply
given by the dimensional analysis of the action functional. In
such a case, this simply gives dim�zi	�= �d−2� /2, where d is
the dimension of the space-time. Therefore, the mean-field
theory leads to dim�ni,a�= �d−2+�N� /2=2 dim�z	�, which
implies �N=d−2, or �N=1 in 2+1 dimensions. Thus, we see
that the field theory of deconfined spinons leads to a large
anomalous dimension of the Néel field already at the mean-
field level. Quantum fluctuations typically reduce this value,
but it still remains considerably larger than the prediction of
the LGW scenario,9,10 whose fluctuation corrections lead to
an anomalous dimension �N�0.03.11

A deconfined quantum critical point governs a second-
order phase transition between different quantum states of
matter at zero temperature, the paradigmatic situation in this
case being the transition from a Néel state to a VBS. Thus, it
is important to check whether the proposed models for DQC
actually undergo a second-order phase transition with a large
anomalous dimension. In recent years, there has been a lot of
activity in this direction. Indeed, some of the proposed mod-
els have been extensively checked in large scale Monte Carlo
�MC� simulations.9,10,12–16 Particularly important are the MC
simulations for the well studied S=1 /2 quantum antiferro-
magnet with easy-plane anisotropy. Due to its global U�1�
symmetry and the additional local U�1� symmetry, the model
is self-dual.9 This model was predicted to exhibit a decon-
fined quantum critical point.8,9 However, recent MC
simulations12,13 have clearly shown that in this case actually
a first-order phase transition takes place. This result is con-
firmed by a recent renormalization group �RG� analysis.17
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Remarkably, despite the absence of quantum criticality, the
destructive interference mechanism between the Berry
phases and instantons was shown to work,13 so that we can
still talk about spinon deconfinement. The situation here is
reminiscent of the Z2-Higgs theory in three space-time di-
mensions, although in this case we have a discrete gauge
symmetry rather than a continuous one. This model is also
self-dual,18 but is known to undergo a first-order phase tran-
sition along the self-dual line.19 However, the Z2-Higgs
theory has the peculiarity of having a deconfined phase
bounded by two lines of second-order phase transitions that
become first order when they are very near to each other and
to the self-dual line. At present, it is not known whether a
similar behavior for the easy-plane frustrated quantum anti-
ferromagnet is possible.

For the SU�2� case, a MC simulation on a Heisenberg
model with hedgehog suppression9 seems to support the
DQC scenario. Another interesting model is the S=1 Heisen-
berg antiferromagnet with a biquadratic interaction between
the spins,20 where numerical evidence for DQC has also been
found.14 Strong evidence for DQC has been reported in Ref.
10, where a model featuring a four-spin interaction was
simulated. There, the anomalous dimension of the Néel field
was found to be �N�0.26. Further MC studies15 confirm the
analysis of Ref. 10, in which a transition from a Néel state to
a VBS occurs. There, the obtained value of the anomalous
dimension is �N�0.35. However, there is a recent paper16 on
the same model where MC simulations are reported to lead
to a first-order phase transition.

Due to the inherently nonperturbative character of decon-
fined quantum critical points, purely analytical and well con-
trolled studies are not easy to perform. For instance, the per-
turbative RG applied to the SU�N� case can only access a
quantum critical point if N�182.9.17 The smallest value of
N, which produces a critical point, N=183, leads to an
anomalous dimension �N=609 /671�0.9076. In principle,
the result of this RG analysis would mean that the phase
transition for the SU�2� case is a first-order one. However, it
was argued in Ref. 17 that, similarly to the Ginzburg–Landau
�GL� superconductor with N complex order parameter
fields,21 the actual critical behavior at low N and in the
strong-coupling limit may be compatible with a second-order
phase transition. For a GL model with a single complex order
field, this expectation is confirmed both by duality and MC
analysis of the model.22–28 There are RG studies where
low-N critical points were found,29–32 but they all have some
kind of problem, being either not well controlled or involv-
ing ad hoc assumptions. The two-loop perturbation in terms
of the � expansion should be, in principle, a well controlled
approach.33 The resummation of the two-loop result30 led to
a critical point for N=1. However, the unresummed result,
although correct, contains unacceptable pathologies, for ex-
ample, a critical exponent � for 182.9
N�200 larger than
the N→� result at fixed dimension, and the absence of a
fixed point for the gauge coupling if N
18�. In view of
these pathologies, the resummed two-loop result cannot be
completely trusted. The ideal approach would be to obtain a
resummed three-loop result. Unfortunately, to this order, the
only available RG function is the 
 function for the gauge
coupling.34 Anyway, the important argument from Ref. 17 to

be retained here is the following. The existence of a critical
value of N in the weak-coupling analysis in d=4−� space-
time dimensions, above which a critical point exists, is
thought of as an indication that in the strong-coupling limit a
quantum critical point at lower values of N may exist. This
is, of course, a conjecture that must be tested further. Note,
however, that the easy-plane case, also studied in Ref. 17,
when generalized to a theory with a global O�N��O�N�
symmetry, does not have any fixed points at nonzero gauge
coupling for all values of N, i.e., this theory does not have a
critical value of N.

The behavior of the � expansion for the GL model with a
single complex order field considerably improves if the
theory is coupled via the gauge field to Nf Dirac fermion
species.35 Interestingly, it is not necessary to have a large
value of Nf to obtain an infrared stable fixed point. In the
context of the present paper, it should be noted that the
SU�2� model for deconfined spinons is exactly the same as a
GL model with two complex order fields.

In this paper, we will consider the Lagrangian:

L = Lb + L f , �1�

where

Lb =
1

2e0
2 �������A��2 + 	

	=1

Nb


��� − iA��z	
2 + r0	
	=1

Nb


z	
2

+
u0

2
�	

	=1

Nb


z	
2�2

�2�

and

L f = 	
	=1

Nf

�̄a��” + iA” ��a. �3�

The Lagrangian Lb is precisely the model for deconfined
spinons proposed in Ref. 8. In this context, we are primarily
interested in the case with Nb=2. The Lagrangian Lb is sup-
posed to govern the universality class of the phase transition
between a Néel state and a VBS.

The Lagrangian L f contains Nf species of four-component
Dirac fermions in 2+1 Euclidean dimensions.36 The repre-
sentation of � matrices in this case is given by

�0 = ��3 0

0 − �3
�, �1 = ��2 0

0 − �2
�, �2 = ��1 0

0 − �1
� ,

�4�

where �1, �2, and �3 are the Pauli matrices.
The Lagrangian L f is typical of a so-called algebraic

quantum liquid. There are three such quantum liquids: the
algebraic spin liquid �ASL�,37 the algebraic Fermi liquid
�AFL�,38 and the recently introduced algebraic charge liquid
�ACL�.39 Let us briefly mention the differences between
these algebraic quantum liquids.

The ASL emerges out of the so-called staggered flux
phase40 in the large Nf limit of a SU�Nf� Heisenberg antifer-
romagnet. In this case, the spin operators are written in terms
of fermion bilinears such that the Heisenberg model reads
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H=−�J /Nf�	�i,j�f i	
† f j	f j


† f i
, with the constraint f i	
† f i	=Nf /2.

A lattice gauge field arises from the phase fluctuations of the
Hubbard–Stratonovich link field �ij = �f i	

† f j	�. This gives rise
to a compact U�1� gauge theory. Linearizing around the
nodes ��� /2,� /2� of the quasiparicle spectrum Ek
=2
�0

cos2 kx+cos2 ky and taking the continuum limit lead
to the Lagrangian �3�. For large enough Nf, the fermionic
spinons deconfine41–43 and we obtain a Mott insulating state
having no broken symmetries, i.e., a spin liquid. For low
enough Nf, the spin liquid is no longer stable43 and the chiral
symmetry is probably broken due to spinon confinement.
However, in this theory, chiral symmetry breaking �CSB�
takes place even in the noncompact case.36,44 This CSB is
associated with the development of an insulating antiferro-
magnetic state.45

The AFL, although having essentially the same Lagrang-
ian L f, is physically very different from the ASL. Here, the
gauge field is not compact and has a completely different
origin.38,46 While the ASL is associated with a Mott insulator,
the AFL originates from a d-wave superconductor. The Dirac
fermions are obtained by identifying the low-energy quasi-
particles on the nodes of the d-wave gap. The gauge field
follows from the coupling of these quasiparticles to vortices.
The way this is done is very subtle and involves the manipu-
lation of singular gauge transformations.38 The fermions in
the AFL, just like the ones of the ASL, carry no charge.
Interestingly, the number Nf in the AFL is related to the
number of layers of the system. For example, a single-layer
system has Nf =2, while a bilayer system has Nf =4. Note
that, in this case, there is no need for other gauge fields in the
corresponding layers, since the gauge field arises from a
vortex-antivortex excitation. Thus, at large distances, a vor-
tex in one layer is always connected with a vortex in the
second layer, the same happening for the antivortices. The
end result is that Dirac fermions in different layers couple to
the same gauge field.47 Of course, similarly to the ASL, CSB
also occurs here for small enough Nf,

46,48 and is once more
associated with antiferromagnetism.

In the ACL, a fractional fermionic particle with charge e
and no spin, a holon, couples to bosonic spinons via a gauge
field.39 Therefore, it is necessarily related to the concept of
DQC and in this case the whole Lagrangian �1� has to be
considered. Note that in contrast to the ASL and the AFL, the
Dirac fermions in the ACL carry charge. This state of matter
bears some resemblances with earlier ideas on spin-charge
separation in the cuprates.6 An important difference is that in
earlier theories superconductivity is obtained by doping a
spin liquid, while in the ACL superconductivity arises by
doping an antiferromagnetic state near the deconfined quan-
tum critical point.49 Thus, we can either dope a Néel or a
VBS state. Like in the two other algebraic quantum liquids,
here the chiral symmetry can also be broken. However, since
the Dirac fermions now carry charge, we have a situation
where charge density waves �CDWs� develop as a result of
CSB. It is important to note that the coupling to bosons leads
to a reduction in the value of Nf below which the chiral
symmetry breaks.45

From the above discussion, we see that among the three
algebraic quantum liquids, only the ACL cannot exist with-
out the coupling to bosons. The results of this paper will

mainly concern this case. Quantum criticality in U�1� gauge
theories with both bosonic and fermionic matter has been
also considered in a recent paper.50 There, the authors con-
sidered a CPNb−1 model coupled to Nf Dirac fermion species
and analyzed the model for large Nb and Nf, while keeping
Nf /Nb arbitrary. Here, we have followed Ref. 8 and softened
the CPNb−1 constraint. This leads to a theory that is tractable
in a RG framework in d=4−� space-time dimensions. The
main advantage of this approach is that we will be able to
work with a fixed Nb=2 and Nf does not need to be large to
obtain a quantum critical point. Part of our results follow
directly from Ref. 35, the main difference being that here we
are interested in Nb=2 rather than Nb=1 .51 However, in this
paper, we will substantially improve the previous analysis
and present many results, which are relevant for the quantum
critical behavior of the ACL. One of the main results of this
paper will be the calculation of �N for Nb=2 and Nf �4 in
terms of the crossover exponent �. As shown in Ref. 17, the
critical exponent �N is related to the crossover exponent by
the following formula:

�N = d + 2�1 − �/�� , �5�

where � is the correlation length exponent. The crossover
exponent is related to a mass anisotropy of the Lagrangian.
Although the Lagrangian Lb does not have any mass aniso-
tropy, the correlation function �z��x� ·z�0�z�x� ·z��0�� is cal-
culated through the insertion of the operator z	

�z
. For 	
�
, this insertion allows us to calculate �.52

The plan of this paper is as follows. In order to explain
why a second-order phase transition is easier to obtain when
Dirac fermions are included, in Sec. II we will calculate the
effective potential associated with the Lagrangian �1�. There,
we compare the cases with and without fermions. In the ab-
sence of fermions, the one-loop effective potential typically
describes a first-order phase transition. When fermions are
included, the situation changes and we can show that for
small Nf a first-order transition takes place, while for larger
values of Nf the effective potential features a second-order
phase transition. In Sec. III, we proceed with the RG analysis
and the calculation of the critical exponents. In Sec. IV, we
briefly discuss the effect of CSB and show that it does not
affect the quantum critical regime analyzed in Sec. III. We
also compute the anomalous dimension of the chiral holon
susceptibility. Section V concludes this paper. The Appendix
sketches the details of the calculations of the anomalous di-
mension �N.

II. EFFECTIVE POTENTIALS AND THE ORDER
OF THE PHASE TRANSITION

A. Simple example

In order to illustrate the subtlety involving the determina-
tion of the order of the phase transition in models for decon-
fined spinons, we will consider the following simple La-
grangian for an interacting scalar theory in d=2+1
Euclidean dimensions:
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L =
1

2
�����2 +

m0
2

2
�2 +

u0

4!
�4. �6�

At the mean-field level, the above model obviously exhib-
its a second-order phase transition with a critical point at
m0

2=0. Let us calculate the effective potential for the above
model at one-loop order. This is more easily done by writing
�= �̄+��, where �̄ is a constant background field, and inte-
grating out the quadratic fluctuations in �� while disregard-
ing the higher order ones. This calculation is very simple,
since it just involves a Gaussian integration in ��. We obtain

Ueff��̄� =
m0

2

2
�̄2 +

u0

4!
�̄4 +

1

2V
�Tr ln�− �2 + m0

2 +
u0

2
�̄2�

− Tr ln�− �2�� , �7�

where V is the �infinite� volume. Explicit evaluation of the
trace-log term yields

Ueff��̄� =
1

2
�m0

2 +
�u0

2�2��̄2 +
u0

4!
�̄4 −

1

12�
�m0

2 +
u0

2
�̄2�3/2

,

�8�

where � is an ultraviolet cutoff and we have neglected terms,
which are independent of �̄. The above effective potential
can be written in terms of renormalized quantities m2 and u
defined by the normalization conditions Ueff� �0�=m2 and
Ueff���0�=u, where the primes denote derivatives with respect
to �̄. This leads to

m2 = m0
2 +

�u0

2�2 �9�

and

u = u0 −
3u0

2

16�m
, �10�

where in Eq. �10� we have replaced in the second term m0
2

with m2, since the error involved in this replacement contrib-
utes to an order higher than the one being calculated here.
Thus, the effective potential becomes

Ueff��̄� =
m2

2
�̄2 +

u0

4!
�̄4 −

1

12�
�m2 +

u0

2
�̄2�3/2

. �11�

The above potential is typical of a system exhibiting a
second-order phase transition. The order parameter is ob-
tained by extremizing the effective potential. It is given by

�̄� = �

3

8�u0
�3u0

3 − 128�2m2u0 − 
9u0
6 − 512�2m2u0

4�1/2,

�12�

and we see that the critical point is given by m2=0. Looking
at Eq. �10�, we may think that u will get large and negative
as the critical point is approached, such that the effective
potential would become unstable against a �6 interaction.
However, this is not the case, since up to one-loop accuracy,

we can write the following RG equation for the dimension-
less coupling û=u / �16�m�:

m
� û

�m
= − û + 3û2. �13�

We see that as m→0, the above 
 function vanishes at the
infrared stable fixed point û�=1 /3. Thus, u actually does not
diverge as the critical point is approached.

B. Effective potential for the SU(2) antiferromagnet

Let us consider now the one-loop effective potential for
the Lagrangian �2�. Like in the example of a single scalar
field theory, all we have to do is to integrate out the Gaussian
fluctuations. Note that the Lagrangian is already quadratic in
the gauge field, so that the latter can be immediately inte-
grated out exactly. We will consider a nonzero background
for the fields z1 and z2, leaving a vanishing background for
the remaining Nb−2 fields. Thus, we will have z1= z̄1+�z1,
z2= z̄2+�z2, and z	=�z	 for 	�3. Thus, we have the back-
ground spin orientation field n= z̄	�	
z̄
 for Nb=2. The re-
sult is

Ueff
AF�z̄1, z̄2� = m2�
z̄1
2 + 
z̄2
2� +

u0

2
�
z̄1
2 + 
z̄2
2�2

−

2e0

3

3�
�
z̄1
2 + 
z̄2
2�3/2 −

1

12�
��m2 + u0�3
z̄1
2

+ 
z̄2
2��3/2 + �m2 + u0�
z̄1
2 + 3
z̄2
2��3/2

+ 2�Nb − 1��m2 + u0�
z̄1
2 + 
z̄2
2��3/2� , �14�

where m2 is given by

m2 = r0 + �Nb + 1

2
u0 +

4e0
2

3
� �

�2 . �15�

The third term in Eq. �14� arises from the integration over
the gauge field and is reminiscent from the fluctuation-
corrected mean-field theory in the GL superconductor.21,53

Due to this term, the symmetry will be broken for a m2�0,
leading in this way to a weak first-order phase transition.21

Note that, for e0=0, we have a second-order phase transition
in the universality class of a O�2Nb� symmetric classical
magnetic system in three dimensions.

C. Effective potential for the algebraic charge liquid

Finally, let us consider the one-loop effective potential for
the Lagrangian �1�. First, we note that the one-loop contri-
bution following from integrating out the Dirac fermions is
given by

L f
eff =

Nfe0
2

32
F��

1

− �2

F��, �16�

where F��=��A�−��A� �note that the above expression is
multiplied by a factor of 2 in the case of two-component
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Dirac fermions�. The above expression simply follows by calculating the one-loop vacuum polarization in 2+1 dimensions.
The background fields are chosen in the same way as in Sec. II B. After integrating out the quadratic gauge fluctuations for a
fixed spinon background, we obtain the following correction:

�L f
eff =

1

V
�Tr ln�− �2 +

Nfe0
2

8

− �2 + 2e0

2�
z̄1
2 + 
z̄2
2�� − Tr ln�− �2�� . �17�

After evaluating the above trace-log and integrating out the spinon Gaussian fluctuations, we obtain

Ueff
ACL�z̄1, z̄2� = m2�
z̄1
2 + 
z̄2
2� +

u0

2
�
z̄1
2 + 
z̄2
2�2 +

Nfe0
4

16�2�
z̄1
2 + 
z̄2
2 −
Nf

2e0
2

384
�ln�2e0

2�
z̄1
2 + 
z̄2
2�
�2 �

+
�Nfe0

2/8�3 − �5Nfe0
4/4��
z̄1
2 + 
z̄2
2� + �128e0

2/Nf��
z̄1
2 + 
z̄2
2�2

12�2
1 −
512

Nf
2e0

2 �
z̄1
2 + 
z̄2
2�
ln�1 −
1 −

512

Nf
2e0

2 �
z̄1
2 + 
z̄2
2�

1 +
1 −
512

Nf
2e0

2 �
z̄1
2 + 
z̄2
2��
−

1

12�
��m2 + u0�3
z̄1
2 + 
z̄2
2��3/2 + �m2 + u0�
z̄1
2 + 3
z̄2
2��3/2 + 2�Nb − 1��m2 + u0�
z̄1
2 + 
z̄2
2��3/2� , �18�

where m2 is still given by Eq. �15�. Note that the annoying
third term of Eq. �14� disappeared once Dirac fermions were
included. For Nf →0, the above equation reduces to Eq. �14�,
as it should. Thus, we can expect that for sufficiently small
Nf a first-order phase transition occurs. On the other hand,
for Nf above some critical value, a second-order phase tran-
sition should take place. The leading small Nf correction
shifts the mass term and adds a logarithmic correction, which
result in

Ueff
ACL�z̄1, z̄2� = Ueff

AF +
e0

4Nf

48�2 �
z̄1
2 + 
z̄2
2�

��2 + 3 ln�2e0
2�
z̄1
2 + 
z̄2
2�

�2 �� + O�Nf
2� .

�19�

The phase transition described by the above effective poten-
tial is certainly a first-order one.

To see how the second-order phase transition takes place,
we perform a large Nf expansion with the limit Nf →� being
taken with Nfe0

2 kept fixed. Up to order 1 /Nf, we have

Ueff
ACL�z̄1, z̄2� = �m2 − mc

2��
z̄1
2 + 
z̄2
2� + �u0

2
−

8e0
2

Nf�
2�

��
z̄1
2 + 
z̄2
2�2

−
1

12�
��m2 + u0�3
z̄1
2 + 
z̄2
2��3/2

+ �m2 + u0�
z̄1
2 + 3
z̄2
2��3/2 + 2�Nb − 1�

��m2 + u0�
z̄1
2 + 
z̄2
2��3/2� + O� 1

Nf
2� ,

�20�

where

mc
2 =

e0
4Nf

24�2�3 ln� 8�

Nfe0
2� − 1� . �21�

The �
z̄1
2+ 
z̄2
2�2 term is reminiscent of the Landau ex-
pansion of the dual formulation of the GL model of a
superconductor,23,54 where a tricritical point was shown to
exist. By defining a “Ginzburg parameter” �2=u0 / �2e0

2�, we
see that the effective potential �20� is stable only for �2

�8 / �Nf�
2�, in which case a second-order phase transition

occurs. The precise characterization of the change of behav-
ior as a function of Nf will be studied in Sec. III by means of
the RG.

III. QUANTUM CRITICAL BEHAVIOR OF THE SU(2)
ALGEBRAIC CHARGE LIQUID

The 
 functions at one-loop order in d=4−� dimensions
are easily calculated using standard methods.11,55 The dimen-
sionless couplings are given as a function of the momentum
scale � by f =ZA�−�e0

2 and g=Zz
2�−�u0 /Zu, where ZA and Zz

are the wave function renormalizations for the gauge field
and spinon field, respectively. Zu is obtained from the vertex
function associated with spinon self-interaction. The renor-
malization factor ZA is directly obtained from the one-loop
vacuum polarization. The 
 functions 
 f ��� f /�� and 
g
���g /�� are given by


 f = − �f +
4Nf + Nb

3
f2 �22�

and


g = − �g − 6fg + �Nb + 4�g2 + 6f2, �23�

where f and g were rescaled as f →8�2f and g→8�2g in
order to remove unnecessary geometrical factors. Note that,
at one loop, the number of fermion components Nf appears
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only in Eq. �22�. Of course, for Nf →0, the above result
coincides with the one for the Ginzburg–Landau
superconductor.21,30,33

For Nb=2, and provided Nf �4, there are two fixed points
�g� , f�� at nonzero gauge coupling whose coordinates are
given by

f� =
3�

2�2Nf + 1�
�24�

and

g� =
5 + Nf � 
Nf

2 + 10Nf − 56

6�2Nf + 1�
� . �25�

From the above fixed points, only �g+ , f�� is infrared stable,
thus corresponding to the quantum critical point where the
critical exponents will be calculated. A schematic flow dia-
gram is shown in Fig. 1. We see that the effect of Dirac
fermions on the phase structure is quite remarkable, since
neither Nb nor Nf need to be large in order to attain critical-
ity. This behavior is in strong contrast to the one obtained in
the limit Nf →0, where quantum criticality occurs only for
Nb�182.9.17

The case Nf =4 exhibits a peculiar critical behavior, as the
calculations of the critical exponents will show. In fact, for
Nf =4, the fixed points �g− , f�� and �g+ , f�� coincide.

The critical exponent � is obtained through the calculation
of the insertion of the operator 		
z	
2 in the correlation
function �z	�x�z	

��y��.11,55 This leads to singularities, so that
we have to introduce a renormalization constant, Z2, associ-
ated with this operator insertion. In pure scalar theories, Z2 is
very simply calculated by differentiating the two-point func-
tion at zero momentum with respect to the mass. However, in
general, it is better to perform the renormalization at nonzero
momenta in order to avoid certain infrared divergences, es-
pecially when the scalar fields are coupled to a gauge field,
like the case studied here. The standard way to calculate � is
to compute the following RG function at the infrared stable
fixed point:

�2 � �
� ln�Z2/Zz�

��
, �26�

which leads to

1

�
= 2 + �2, �27�

where �2 is the value of �2 at the infrared stable fixed point.
At one-loop order, we have

�2 = 3f − �Nb + 1�g . �28�

By inserting f� and g+ for Nb=2 in the above equations and
expanding up to first order in �, we obtain

� =
1

2
+

Nf − 4 + 
Nf
2 + 10Nf − 56

4�1 + 2Nf�
� + O��2� . �29�

The critical exponent �N is also derived through a qua-
dratic operator insertion. However, in this case, there is a
mass anisotropy involved. For a general Nb, the correlation
function G�x���n�x� ·n�0�� is given in terms of spinon fields
as

G�x� = 2�z��x� · z�0�z�x� · z��0�� −
2

Nb
�
z�x�
2
z�0�
2� .

�30�

For Nb=2, we simply have

G�x� = 2�z1
��x�z1�0�z2�x�z2

��0�� + 2�z1�x�z1
��0�z2

��x�z2�0��

− 2�
z1�x�
2
z2�0�
2� + �
z1�x�
2
z1�0�
2�

+ �
z2�x�
2
z2�0�
2� . �31�

The critical exponent �N is defined by the behavior of G�x� at
the quantum critical point:

G�x� �
1


x
d−2+�N
, �32�

where �N is given in terms of the crossover exponent � in
Eq. �5�.

We also note the following scaling behavior at the quan-
tum critical point:

�	
	


z	�x�
2	




z
�0�
2� �
1


x
d−2+�4
, �33�

where

�4 = d + 2�1 − 1/�� . �34�

Thus, the scaling dimension of the operator 		
z	�x�
2 is
given by

dim�	
	


z	�x�
2� = d − 1/� . �35�

That �4 depends only on � is very easy to see, since it fol-
lows from the correlation function between operators 		
z	
2,
whose singular behavior leads to the renormalization con-
stant Z2 and consequently to �. From the expression �29� for
the critical exponent �, we obtain

P+P

g

f

O(4)

FIG. 1. Schematic flow diagram associated with the 
 functions
�22� and �23� for Nb=2 and Nf �4. In the figure, P�= �g� , f��. Note
that only P+ is infrared stable, thus corresponding to a quantum
critical point. For a vanishing gauge coupling, we have a second-
order phase transition governed by a O�4� Wilson–Fisher fixed
point. This fixed point is unstable for f �0.
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�4 = 2 −
9 + 2
Nf

2 + 10Nf − 56

1 + 2Nf
� + O��2� . �36�

The calculation of �N depends on the calculation of the
crossover exponent �. The calculation is facilitated by ob-
serving that the scaling dimension of each component of n is
given by d−� /�. In particular, we have

dim�
z1
2 − 
z2
2� = d − �/� . �37�

Thus, � can be calculated from the insertions of 
z1
2 and

z2
2 in the correlation function G11�x���z1�x�z1

��0��.52 This
calculation is sketched in the Appendix. By denoting those
insertions by G11,	, where 	=1,2, we can obtain the cross-
over exponent from the renormalization of G11,1�x�
−G11,2�x�. This procedure leads to a renormalization constant
Z2� and, analogously to Eq. �26�, we can define the following
RG function:

�2� � �
� ln�Z2�/Zz�

��
, �38�

which, at the infrared stable fixed point, yields

�2� =
�

�
− 2. �39�

By comparing the above equation to Eq. �5�, we see that
�N=d−2−2�2�. At one-loop order, we have

�2� = 3f − g , �40�

and therefore

�N = 2 +

Nf

2 + 10Nf − 56 − 5Nf − 16

3�1 + 2Nf�
� + O��2� , �41�

while the crossover exponent is given by

� = 1 +
5�Nf + 
Nf

2 + 10Nf − 56� − 11

12�1 + 2Nf�
� + O��2� . �42�

The critical exponents for three space-time dimensions
��=1� are shown for several values of Nf in Table I. As
already mentioned, the case Nf =4 is peculiar. Indeed, for
Nf =4, the critical exponents are rational and, moreover, it
corresponds to the only case where �N
�4. Note that for
Nf =10, the exponents are also rational, but in this case �N
��4, just like for all of the other values of Nf. Interestingly,
we have that �N�1 for Nf �10. This result is consistent with
the analysis at large Nf and Nb with Nb /Nf arbitrary.50 In-
deed, in that case, we find that �N�1 if Nf /Nb�3 �if four-
component Dirac fermions are used, the latter inequality be-
comes Nf /Nb�3 /2�.

IV. CHIRAL SYMMETRY BREAKING AND CHIRAL
SUSCEPTIBILITY

We have already mentioned in the Introduction that CSB
constitutes an important physical aspect of both algebraic
Fermi and spin liquids. In this section, we want to investigate
the effect of CSB on the ACL.56 This is typically a phenom-

enon that takes place at low energies. In the case of AFL and
ASL, it occurs for 
p
�Nfe0

2.36,44 For the ACL, this roughly
corresponds to 
p
�	��Nf +Nb /2�e0

2. In this regime, the
gauge field propagator is dominated by the one-loop vacuum
polarization and is given by

D���p� �
16

�2Nf + Nb�e0
2
p


���� −
p�p�

p2 � , �43�

where we have used the Landau gauge and assumed a three-
dimensional Euclidean space-time. Following the standard
literature,36,44 we consider the one-loop fermion Green func-
tion with a dressed fermionic propagator and where the
above gauge field propagator has been inserted. The inverse
propagator is given by G�

−1�p�= ip”Z�p�+��p� and the corre-
sponding self-consistent equation reads

G�
−1�p� = ip” +

16

2Nf + Nb

��� d3k

�2��3

�����k − p� + i�k” − p” �Z�k − p����

�Z2�k − p��k − p�2 + �2�k − p��
k


−� d3k

�2��3

k”���k − p� + i�k” − p” �Z�k − p��k”
�Z2�k − p��k − p�2 + �2�k − p��
k
3� .

�44�

Note that the only difference with respect to the standard
analysis is the coefficient in front of the curly brackets,
which gets modified due to the spinon loop contribution to
the vacuum polarization. We will set Nb=2, which is the case
of physical interest to us. Furthermore, in order to simplify
the analysis, we will assume that Z�p��1.44,57 After standard
manipulations involving the algebra of the gamma matrices,
we obtain the self-consistent equation for the self-energy:

��p� =
32

2Nf + 1
� d3k

�2��3

��k�
�k2 + �2�k��
k + p


. �45�

Integrating over the angles, we obtain

TABLE I. Values of the critical exponents for Nb=2 and differ-
ent values of Nf �4. We have set �=1.

Nf � �N �4 �

4 1/2 1/3 1 13/12

5 0.62179 0.61694 0.38929 1.27117

6 0.66009 0.75191 0.33468 1.3245

7 0.68229 0.84305 0.3417 1.35381

8 0.69678 0.90943 0.36696 1.37208

9 0.70689 0.96007 0.39749 1.38429

10 5/7 1 3/7 39/28

11 0.71988 1.0323 0.45837 1.39907

20 0.73978 1.17336 0.64274 1.41792

50 0.74817 1.27148 0.83646 1.42103
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��p� =
8

�2Nf + 1��2
p
�0

	

d
k


k
��k��
k
 + 
p
 − 
k − p
�

k2 + �2�k�

=
16

�2Nf + 1��2
p
��0


p


d
k

k2��k�

k2 + �2�k�

+ 
p
�

p


	

d
k


k
��k�

k2 + �2�k�� , �46�

which can easily be converted to the differential following
equation:

d

dp
�p2d��p�

dp
� = −

16

�2�2Nf + 1�
p2��p�

p2 + �2�p�
. �47�

The above equation can be linearized in the regime 
p

���p� where it can be solved. We will omit the details here,
since the analysis is well known.44 The solution here is only
slightly changed due to the spinon degrees of freedom. The

result is a dynamically generated mass gap ��0����̄�� of
the following form:

��0� = 	 exp�−
2�


 64

�2�2Nf + 1�
− 1� . �48�

This mass generation is associated with the development of a
chiral condensate, which signals the appearance of holon
charge density waves in the system. The above mass gap
vanishes for Nf �Nch, where

Nch =
1

2
� 64

�2 − 1� � 2.74, �49�

which is smaller than the corresponding value in the absence
of spinons.58 Thus, CSB seems to occur only in the regime
where no quantum critical point is found. Therefore, by ac-
cepting the calculations and underlying approximations em-
ployed so far in this paper, it seems that CSB does not spoil
the quantum critical behavior.

Another correlation function of interest is the chiral sus-
ceptibility,

G��x� = ��̄�x���x��̄�0���0�� , �50�

whose scaling behavior for a large number of fermion com-
ponents and 2+1 dimensions has been calculated in Refs. 59
and 60. At the quantum critical point, the chiral susceptibility
behaves like

G��x� �
1


x
d−2+�̃4
, �51�

which defines the critical exponent �̃4. If fluctuations are
ignored, we can simply write

G��x� �
1


x
2�d−1� , �52�

which leads to �̃4=d.
We can obtain the anomalous dimension �̃4 in 2+1 di-

mensions for large Nf and Nb, with Nf /Nb arbitrary, directly

from the result of Ref. 60 by the simple replacement 8 /N
→8 / �Nf +Nb /2�. The result agrees, of course, with the one
obtained in Ref. 50, up to a trivial difference related to the
fact that the latter reference works with two-component
Dirac fermions.

Let us compute now �̃4 for the SU�2� ACL in first order in
�. Similarly to the case of four-spinon correlation functions,
the calculation can be done by computing the insertion of the

operator �̄� in the correlation function G��x�. This amounts

in computing the scaling dimension of the operator �̄�, i.e.,

dim��̄�� = d − 1 − �̃2, �53�

where �̃2 is the fixed point value of the RG function related
to mass renormalization. Thus, the easiest way to compute
the above scaling dimension is by adding a bare mass term in
the Lagrangian L f. The calculation of the needed renormal-
ization constant is standard and can be found in quantum
field theory textbooks.55 We obtain the result �̃2=3f� at one
loop. From Eqs. �51� and �53�, we obtain

�̃4 = d − 2�̃2, �54�

and, therefore,

�̃4 = 2�2 −
Nf + 5

2Nf + 1
� + O��2�� . �55�

In particular, for Nf =4 and �=1, we obtain �̃4=2. In this
case, we have that the chiral susceptibility behaves at the
quantum critical point as

G��x� �
1


x
3
, �56�

which leads to a logarithmic behavior in momentum space.

V. CONCLUSION AND DISCUSSION

In this paper, we have studied the quantum critical behav-
ior of a field theory associated with the algebraic charge
liquid �abbreviated as ACL throughout this paper�, which is a
new type of quantum liquid proposed recently in Ref. 39.
Our study was made in the framework of the � expansion. To
lowest order, it leads to a quantum critical point provided the
number of fermion components Nf �4. Since we are consid-
ering a representation using four-component spinors, the
physically relevant number of fermions is Nf =2.61 Thus, in
the framework of the present study, we are unable to find a
deconfined quantum critical point for Nf =2. However, it is
likely that an improved approximation will show that the
theory is also critical for Nf =2. The point is that the � ex-
pansion for the Lagrangian �2� should, in a nonperturbative
framework, exhibit an infrared stable fixed point for all val-
ues of Nb�1. The � expansion cannot capture such a strong-
coupling regime. At the moment, there is no reliable nonper-
turbative scheme for this problem. As discussed in the
Introduction, a resummed three-loop � expansion would pro-
vide the desirable controlled approximation. The inclusion of
Dirac fermions makes the � expansion more reliable, since
they essentially make the gauge coupling weaker. It is re-
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markable that in such a case it is not any longer necessary to
have a large number of spinons to obtain a quantum critical
point. Interestingly, the number of Dirac fermions does not
need to be large either. Thus, we were able to explicitly
exhibit a deconfined quantum critical point for an SU�2�
theory of bosonic spinons.

In order to convincingly show how the Dirac fermions
make the full theory more well behaved, let us have a look at
the two-loop 
 function for the gauge coupling. This result
can be easily derived by using the earlier two-loop result for
the Lagrangian �2�,33 combined with the higher order result
for the Lagrangian �3�.62,63 The result is


 f = − �f +
Nb + 4Nf

3
f2 + 2�Nb + 2Nf�f3, �57�

which has a nontrivial fixed point at

f� =
3�

Nb + 4Nf
�1 −

18

Nb + 4Nf
� + O��2�� . �58�

For Nf =0, we obtain that f��0 only for Nb�18�. Further-
more, in this limit, the two-loop result for 
g shows that we
still have an infrared stable fixed point only for Nb�182.9.
Thus, besides the two-loop result for Nf =0 being unable to
produce a quantum critical point for low values of Nb, it
introduces a difficulty, since a nontrivial fixed point for f no
longer exists for all Nb�1. However, the situation consider-
ably improves if Nf �0. Indeed, in this case, we have that
f��0 for Nb�18�−4Nf. Thus, for Nb=2, we should have
Nf � �9�−1� /2, which after setting �=1 becomes Nf �4.
While this clearly shows that the introduction of Dirac fer-
mions improves the behavior of the SU�2� antiferromagnet, it
is a little bit frustrating to see that at two loop, no quantum
critical point for Nf =4 is found anymore. However, we
should keep in mind that the theory in the absence of fermi-
ons is not being considered in a strong-coupling regime.
Once this is done in some way, a critical regime even for
values as low as Nf =2 should be expected to occur. Note that
even if such a result is achieved, we may have to face an-
other problem, namely, CSB. The calculation in Sec. IV in-
dicates that CSB leads to gapped fermions for Nf =2. If this
number is really correct, then there will be no deconfined
quantum critical point anyway. Physically, this means that
CDW will screen the interspinon interaction in such a way as
to make the spinon correlation length finite, and the only
possible phase transition, if any, would be a first-order one.
Adopting a more optimistic point of view, let us mention that
there is strong evidence that the values of Nch calculated
using methods like the one we have used in Sec. IV tend to
be overestimated.64–66 Since the spinons contribute further to
reduce the value of Nch, we may hope that the quantum criti-
cal point for Nf =2 will survive.

Larger values of Nf are physically relevant for multilayer
systems. As discussed in the Introduction, this is precisely
the case with the AFL.38 However, we must be aware of the
fact that in the case of the ACL, additional gauge fields may
play a role, so that the analysis made here would have to be
accordingly modified.

The main achievement of this paper was the computation
of the anomalous dimensions of composite operators associ-
ated with the quantum critical behavior of the Lagrangian
�1�. Particularly important was the calculation of the anoma-
lous dimension �N of the Néel field. The results presented
here constitute an explicit and well controlled example of
deconfined quantum critical point for a system having SU�2�
invariance. The computed values of �N are substantially
larger than the ones that would follow from a LGW analysis,
which reflect a typical feature of the DQC scenario.
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APPENDIX: CALCULATION OF �N

In this appendix, we sketch the calculation of �N based on
the insertion of the operators 
z1
2 and 
z2
2 in the correlation
function G11�x�= �z1�x�z1

��0��. The calculation follows the
method of Ref. 52, i.e., it is based on dimensional regular-
ization in the minimal subtraction scheme.

In Fig. 2, the one-loop Feynman diagrams associated with
the insertion of 
z1
2 are shown. For the insertion of 
z2
2, on
the other hand, only one diagram is produced at one loop
�Fig. 3�.

The renormalization constant Z2� is determined by the nor-
malization condition in momentum space as follows:

Z2�
�G11,1
−1 �p1,p2;p3� − G11,2

−1 �p1,p2;p3��
SP = 1, �A1�

where p3=−�p1+ p2� and SP denotes the symmetry point de-
fined by

11 1 1

1 1

1 1

11

FIG. 2. One-loop Feynman diagrams representing the insertion
of the operator 
z1
2 �dashed line� in the correlation function
�z1�x�z1

��0��. Here, the lines labeled 1 or 2 are associated with the
fields z1 and z2, respectively. The wavy line represents the gauge
field propagator.

1 1

2 2

FIG. 3. For the insertion of the operator 
z2
2 �dashed line� in the
correlation function �z1�x�z1

��0��, only one diagram contributes.
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pi · pj =
�2

4
�4�ij − 1� . �A2�

We will also need to compute Zz, which can be deter-
mined from the following normalization condition:

�Zz

�G11
−1�p�

�p2 �
p2=�2

= 1. �A3�

A straightforward way to understand the insertion of the
operators 
z1
2 and 
z2
2 is by adding a source term of the
following form:

Lsource = r1�x�
z1�x�
2 + r2�x� � ft
z2�x�
2 �A4�

to the Lagrangian. Thus,

G11,	�x;x�� =
�

�r	�x��
G11�x� . �A5�

Note that both Zz and Z2� are gauge dependent. However,
this gauge dependence can be exactly calculated from the
Ward identities.55 It can be shown that Zz and Z2� have both
the same gauge dependence to all orders in perturbation
theory. Thus, the ratio Z2� /Zz is gauge independent, which
should be physically expected, since it leads to the anoma-
lous dimension of the gauge invariant operator 
z1
2− 
z2
2. A
similar argument holds for Z2 /Zz, which leads to the critical
exponent �. Since Z2� /Zz is gauge independent, any gauge
can be fixed to calculate Zz and Z2�. Here, we are going to use
the Feynman gauge, so that the gauge field propagator is
given in imaginary time by

D���p� =
���

p2 . �A6�

At the quantum critical point and at one-loop order, we
have

G11
−1�p� = p2 − e0

2� ddk

�2��d

�2p� − k���2p� − k��
�p − k�2 D���k�

= p2�1 −
e0

2
p
−�

4�2�
� + finite, �A7�

where we have made use of the following integral:

� ddk

�2��d

1

�p − k�2k2 =
��2 − d/2��2�d/2 − 1�

�4��d/2��d − 2�

p
d−4

�A8�

and the usual properties of dimensional regularization.11,55

Next, we use Eq. �A3� to obtain

Zz = 1 +
e0

2�−�

4�2�
, �A9�

which can be rewritten in terms of the renormalized dimen-
sionless coupling up to one-loop accuracy as

Zz = 1 +
2f

�
. �A10�

The calculation of Z2� is similarly made. In this case, stan-
dard manipulations in Eq. �A1� lead once more to integrals
of the form �A8�. An integral of the following form:

� ddk

�2��d

1

�p1 − k�2�p2 + k�2k2 , �A11�

also appears in Eq. �A1�. However, there is no need to worry
with the above integral, since it does not have poles at �=0.
At the end, we obtain the following result:

Z2� = 1 +
g

�
−

f

�
. �A12�

Therefore,

Z2�

Zz
= 1 +

g

�
−

3f

�
, �A13�

which leads to Eq. �40�.
The renormalization constant Z2� can also be obtained by

computing G11,	, assuming that the sources in Eq. �A4� are x
independent. In this case, by setting r0=0, we have

G11
−1�p� = p2 + r1 + �2u0 + e0

2�� ddk

�2��d

1

k2 + r1

+ u0� ddk

�2��d

1

k2 + r2
+ 2e0

2� ddk

�2��d

r1 − p2

��p − k�2 + r1�k2

− 2e0
2� ddk

�2��d

1

k2 . �A14�

Thus,

G11,1
−1 �0,p;− p� =

�

�r1
G11

−1�p�

= 1 − �2u0 + e0
2�� ddk

�2��d

1

�k2 + r1�2

+ 2e0
2� ddk

�2��d

1

��p − k�2 + r1�k2

− 2e0
2p2� ddk

�2��d

1

��p − k�2 + r1�2k2

�A15�

and

G11,2
−1 �0,p;− p� =

�

�r2
G11

−1�p� = − u0� ddk

�2��d

1

�k2 + r2�2 .

�A16�

The renormalization constant Z2� follows from

lim
p→0


�G11,1
−1 �0,p;− p� − G11,2

−1 �0,p;− p��
r1=r2=�2 = Z2�
−1,

�A17�

and the result �A12� is obtained once more.
In order to obtain �N, we first note that the renormalized
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direction field, which is a composite operator, is given by

nR =
Z2�

Zz
n . �A18�

Since nR is finite, its dimension is just given by dimensional
analysis, i.e., dim�nR�=d−2. Near the quantum critical point,

we have that Z2� /Zz���2�, where �2� is the value of �2� �recall
Eq. �38�� at the infrared stable fixed point. Therefore, the
scaling dimension of the Néel field is given by

dim�n� = d − 2 − �2�. �A19�

The anomalous dimension �N is defined by the scaling be-
havior �32�. Thus, we also have that

dim�n� =
d − 2 + �N

2
, �A20�

and therefore we obtain

�N = d − 2 − 2�2�. �A21�

Using Eq. �39�, we obtain the form given in Eq. �5�.
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