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We show that due to the Dzyaloshinskii-Moriya and the XY anisotropies, the disordered diagonal spin spiral
in the insulating La2−xSrxCuO4 generates a diagonal charge density wave �CDW� with the wave vector twice
that of the spin spiral. The amplitude of the CDW depends on values of the anisotropies, the doping level, and
the density of states at the chemical potential. Based on available experimental data, we estimate that for 4%
doping, the amplitude of CDW is about 1 /10 of the doping level. We believe that this mechanism explains the
CDW recently observed in Zn-codoped detwinned La2−xSrxCuO4.
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The problem of charge density waves or charge stripes is
one of central importance in the physics of cuprates. The
effect was first discovered more than a decade ago1 �see also
Ref. 2� and has been intensively studied since then. The
effect has only been observed in two cuprates,
La1.875Ba0.125CuO4 and La1.6−xNd0.4SrxCuO4, only in the
low-temperature tetragonal �LTT� phase, and only at doping
close to x=0.12. A very recent study3 has revealed a charge
density wave �CDW� in absolutely different conditions. The
compound is La1.95Sr0.05Cu0.95Zn0.05O4, the phase is the low-
temperature orthorhombic �LTO�, and the doping level is
about x=0.04–0.05. We believe that this discovery provides
a very important insight into the problem of charge stripes.
In this Brief Report, we suggest a specific mechanism for
CDW in the spin-glass LTO phase.

The three-dimensional antiferromagnetic Néel order in
La2−xSrxCuO4 �LSCO� disappears at doping x�0.02 and
gives way to the so-called spin-glass phase, which extends
up to x�0.055. In both the Néel and the spin-glass phase,
the system essentially behaves as an Anderson insulator.4,5

Superconductivity then sets in for doping x�0.055. The in-
commensurate magnetic order has been observed at low tem-
perature in neutron scattering. This order manifests itself as a
scattering peak shifted with respect to the antiferromagnetic
position. In the spin-glass phase, the shift is directed along
the b axis and linearly scales with doping.6 In the under-
doped superconducting region �0.055�x�0.12�, the shift
still scales linearly with doping, but it is directed along one
of the crystal axes of the tetragonal lattice.7

In the present work, we address the insulating spin-glass
phase. The theory for the spin structure of the insulating
phase has been developed in Refs. 8–10. The theory is based
on the idea of the disordered spin spiral. Intrinsically, this
picture does not contain any charge ordering and this is
qualitatively different from the stripe scenario.11 In the
present work, we demonstrate that a small charge modulation
is still possible in the spin spiral picture due to the spin-orbit
interaction. We show also that this effect perfectly explains
the experimental data.

Outlines of the spin structure description. �1� Due to
strong antiferromagnetic correlations, the minima of disper-
sion of a mobile hole are at points ��� /2, �� /2� of the
Brillouin zone, so the system can, to some extent, be consid-
ered as a two valley semiconductor. The hole does not have
a usual spin, but it possesses a pseudospin that describes how

the hole wave function is distributed between two magnetic
sublattices. �2� At low temperature, each hole is trapped in a
hydrogenlike bound state near the corresponding Sr ion, the
binding energy is about 10–15 meV, and the radius of the
bound state is about 10 Å. �3� Due to the orthorhombic dis-
tortion of LSCO, the b valley �−� /2,� /2� is deeper than the
a valley �� /2,� /2�. So, all the hydrogenlike bound states
are built with holes from the b valley. In what follows, we
refer to these bound states as impurities. �4� Each impurity
creates a spiral distortion of the spin background in the
orthorhombic b direction. The distortion is observed in neu-
tron scattering. So, the state is not a simple spin glass; it is a
disordered spin spiral. �5� At the point of overlapping of
bound states �“percolation” point�, the direction of the spiral
must rotate from the diagonal to parallel because of the Pauli
principle. Simultaneously, the superconducting pairing is get-
ting possible. Hence, x=0.055 is the percolation point.

Spiral pitch. Calculation of the spiral pitch can be per-
formed within the mean-field approximation. Mobile holes
are trapped by Sr ions in hydrogenlike bound states �“impu-
rities”�. The ground state of the “hydrogen atom” is fourfold
degenerate: �twofold pseudospin�� �twofold valley�. The
orthorhombic distortion lifts the valley degeneracy, so all the
impurities reside in the b valley.9,12 Impurity pseudospin in-
teracts with the spiral distortion of the spin fabric.8 The in-
teraction energy is �2gQb, where Q is the wave vector of the
spiral, Qb is the component along the orthorhombic b direc-
tion, and the coupling constant is approximately equal to the
antiferromagnetic exchange, g�J�140 meV. We set the te-
tragonal lattice spacing equal to unity, so the wave vector Q
is dimensionless. The pseudospin degeneracy is lifted as
soon as the spiral is established; all pseudospins are aligned
and the corresponding energy gain per unit area is −x�2gQ.
Here, x is the concentration of impurities that is practically
equal to doping. The elastic energy of the spin fabric defor-
mation is �sQ

2 /2. Here, �s�0.18 J is the spin stiffness.
Thus, the total energy is �sQ

2 /2−x�2gQb. Minimization
with respect to Q gives

Q = Qb =
�2g

�s
x . �1�

To fit the experimental data,6 we need g=0.7 J that agrees
with the t-J model estimate, g�J. The presented mean-field
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picture does not address the stability of the state, broadening
of the line due to disorder, topological defects, etc. These
issues have been studied in Refs. 9 and 10. The stability
depends on the localization length �size of the impurity� that
does not appear in the mean-field picture. However, as soon
as we know that the disordered spiral state is stable, then the
above description is correct. We would like to stress that the
spiral picture does not necessary assume a static spiral. The
spiral can be dynamic. In particular, in a pure two-
dimensional �2D� system, the spiral is dynamic at any non-
zero temperature. In LSCO, due to anisotropies and a weak
three-dimensional coupling, the spiral becomes dynamic at a
small finite temperature, T�20 K. However, the absence of
the static spiral at T�20 K does not mean that the spiral is
not there; it just becomes dynamic. The important compo-
nents in the above picture are �1� the hole binding, �2� the
a-valley depopulation, and �3� the height of the spin-wave
dome Ecross observed in neutron scattering. Both the binding
energy and the valley anisotropy energy are about
10–15 meV.8,12 The value of Ecross depends on doping, and
for x=0.03–0.05, it is also about 15 meV.13 Therefore, the
spiral description is valid up to characteristic temperature
Th�150 K.

Density of states. In the case of uniform doping, the diag-
onal spiral �unlike the parallel spiral� always has a tendency
toward charge modulation.14,15 In the case of the disordered
state, the problem of charge instability was resolved in Refs.
8–10 assuming that at zero temperature all the Sr-hole bound
states are filled and, hence, there is no room for compression.
So, implicitly, the picture of energy levels shown in Fig. 1�a�
was assumed: all the bound states are below the chemical
potential.

However, this picture would imply the activation behavior
of dc conductivity �	 exp�−�
E /T��, while it is well estab-
lished that the conductivity follows the 2D version of the
Mott variable range hopping �VRH� formula,4

� � exp�− �T0/T�1/3� . �2�

This implies that the chemical potential is within the range of
impurity energies, as shown in Fig. 1�b�. Hence, some bound
states are unoccupied and this gives room for CDW built on
the bound states. Let us denote the concentration of unoccu-
pied bound states by �x. It is well established that the hole
doping level is pretty close to the concentration of Sr ions;
therefore, �x�x. On the other hand, �x is not that small
because it is sufficient for VRH. It is reasonable to assume
that

�x

x
� 0.1. �3�

This is the maximum possible relative amplitude for charge
density modulation; there are no more quantum states within
the impurity band to develop a larger amplitude.

The characteristic VRH temperature T0 in Eq. �2� depends
on doping and sample quality and generally decreases
when doping increases �and, thus, conduction becomes
easier�. At 4% doping, the data of Ref. 4 are well fit with
T0�500 K.16 Analyzing the curves from, Ref. 5 we have

found T0�x=0.02��8000 K, T0�x=0.03��2000 K, and
T0�x=0.04��300 K. The temperature T0 is related to the 2D
density of states G,

G =
13.8

T0l2 , �4�

see Ref. 17. Here, l is the localization length �the “Bohr
radius” of the bound state�. We set the Boltzmann constant
equal to unity. The localization length is about 2.5 lattice
spacings.4 Note that the density of states determined in this
way is valid up to T�Eb�100–150 K �ionization of bound
states� in spite of the fact that the VRH resistivity formula is
valid only up to T�20–30 K. The density of states is related
to the width of the impurity band �E shown in Fig. 1,
G=x /�E. From here, we find values of �E at different dop-
ing levels: �E�x=0.02��6 meV, �E�x=0.03��2 meV, and
�E�x=0.04��1 meV.

Spin anisotropies and generation of the second harmonics
of the spiral. It is very convenient to use the �-model nota-
tion. The energy density in this notation reads10
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FIG. 1. The diagram of impurity energy levels. �a� The chemical
potential is outside the impurity band. �b� The chemical potential is
inside the impurity band. Eb�10–15 meV is the binding energy
and �E is the width of the impurity band.
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�s

2
��n��r��2 − �2g�

i

�i · �n� � �eb · ��n����r − ri�

+
�s

2c2 �D2na
2�r� + �cnc

2�r�� . �5�

Here, n� , n2=1 is the staggered field that describes spins, �i is
the direction of pseudospin of the ith impurity, 2=1, and eb
is the unit vector along the orthorhombic b axis. As we have
already mentioned, we neglect here the impurity size. We
mention once again that what we call the “impurity” is the
occupied bound state. The last two terms in Eq. �5� describe
anisotropies induced by the spin-orbit interaction.18,19 The
anisotropies “want” to direct n� along the b axis. The
Dzyaloshinskii-Moriya �DM� vector is D�2.5 meV and the
XY anisotropy is ��c�5 meV. The spin-wave velocity is c
��2 J.

As we described above, the two first terms in Eq. �5�
generate the spiral,

n� = �0,sin�Q · r + ��,cos�Q · r + ��� . �6�

Here, we assume that the spins are in the bc plane. However,
we will argue below that the actual plane of the spiral is not
important; moreover, spins can slowly fluctuate without any
static spiral. The disorder and topological defects give
random phase � that broadens the line;10 however, the
broadening is a separate issue and we disregard it here.
The XY term in Eq. �5� is 	nc

2= �cos�Q ·r+���2

→ 1
2 �1+cos�2Q ·r+2���→−� sin�2Q ·r�. Here, we have as-

sumed that ��1. Thus, the interaction does not vanish after
integration over space only if

� = A sin�2Q · r� . �7�

This is the mechanism for the generation of the second har-
monics in the spin pattern. Substitution of Eq. �6� into Eq.
�5� gives the following energy density:

�s

2
�Q + ���2 − �2g��Q + ��� −

�s�c

2c2 � sin�2Q · r� , �8�

where ��= �eb ·��� and ��r�=�i��r−ri� is the density of im-
purities per unit area of the plane. In the case of distribution
of states shown in Fig. 1�a�, the density of impurities is con-
stant because there is no room for a density modulation,
�=x. In this case, minimization of Eq. �8� with respect to the
amplitude of the second harmonics of the spin spiral gives

A =
�c

8c2Q2 . �9�

The value of A is small, A�10−3–10−2, so it is hardly pos-
sible to observe it directly in neutron scattering.

Charge density wave. We know that the correct picture of
states is shown in Fig. 1�b� and, in this case, the CDW is
possible. According to Eq. �5�, the energy of a single impu-
rity is shifted due to the second harmonics of � as

�� = − �2g�� = − 2�2gQA cos�2Q · r� . �10�

Hence, the variation of density of impurities is

�� = − G�� = B cos�2Q · r� ,

B = 2G�2gQA =
13.8

8l2x

�c�s

J2T0
�

0.3

l2x

�c

JT0
. �11�

Here, G is the density of states given by Eq. �4�. By substi-
tuting numerical values of parameters in Eq. �11�, we find
that at x=0.04, the amplitude of charge modulation is

B � 10−2. �12�

This value is in units of elementary charge per unit cell of the
square lattice. Thus, the modulation is about 20% of the dop-
ing level. This dramatic enhancement of the CDW is due to
the very high density of states �Eq. �4��. In doing the esti-
mate, we assumed the static spin spiral in the bc plane �see
Eq. �6��. However, since the effect comes from the phase �,
the static order is not essential. In the case of a fully dynamic
spiral, we have to replace in Eq. �11� �c→ 1

2 ��c+D2�. Since
�c�D2, this does not influence the estimate �Eq. �12��. Ac-
cording to Eq. �12�, the CDW is so strong that it is quite
possible that the real limitation on the amplitude B comes
from the available Hilbert space limit given by Eq. �3�. Any-
way, both estimates �Eqs. �12� and �3�� give a CDW ampli-
tude of about 10% of the doping level.

Interestingly, a naive self-consistent treatment of the
mean-field equation �Eq. �8�� gives an instability with respect
to the unlimited increase of the CDW amplitude. However,
we know from the analysis9,10 that the stability issue cannot
be resolved within the mean-field approximation. This is
why here we rely on perturbation theory. In any case, the
amplitude is bound from the top by condition �3� and since
the perturbation theory result �Eq. �12�� is of the same value
as the upper bound, we believe that this is a reliable estimate
of the effect. The effect depends on temperature due
to the depopulation of the b valley as well as due to the
ionization of bound states. The expected dependence is
roughly B	 tanh�Th /2T�. The characteristic temperature is
Th�150 K.

Coulomb interaction, phonons, and large correlation
lengths. The mechanism considered above explains the CDW
amplitude, but it does not explain large correlation lengths
observed in Ref. 3. One needs an additional weak interaction
to coordinate the phase of the CDW. There are two candi-
dates for the “coordination interaction”: �1� Coulomb inter-
action and �2� interaction with phonons �lattice deformation�.
Let us first consider the Coulomb interaction. The dielectric
constant � is strongly anisotropic.20 For the direction along
the c axis, it is equal to the ionic value �c�30–70. The
in-plane value is much larger because polarizabilities of im-
purities contribute to the screening of the electric field.20

This contribution is proportional to doping, and extrapolating
from data,20 we get that at x=0.04, the value is �ab�2000.
Therefore, for estimates, we will use the effective isotropic
dielectric constant that is average between �c and �ab,
��1000. Here, we have in mind the zero temperature value.

If the Coulomb interaction is important, then it must es-
tablish the CDW antiphase between the CuO2 layers. On the
other hand, we know that the in-plane modulation is very
slow, 2� / �2Q��dc, where dc=13.15 Å is the separation be-
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tween the planes. A straightforward electrostatic calculation
shows that the Coulomb energy per unit area of the plane in
this geometry is EC� 1

2�3.2dc�e���2, where e�� is the charge
density per unit area, e is the elementary charge, and � is the
dielectric constant �we use CGS units�. The density wave is
��=B cos�2Q ·r�. Therefore, with account of the electro-
static energy, the impurity energy shift is changed from Eq.
�10� to

�� = − 2�2gQA cos�2Q · r� + 3.2
e2

�
dcB cos�2Q · r� .

�13�

The density variation is ��=−G��. Hence, we find from Eq.
�13� that the density wave amplitude is

B =
2G�2gQA

1 + 3.2�e2/��dcG
. �14�

The difference from Eq. �11� is in the Coulomb factor
FC= �1+3.2�e2 /��dcG�−1. The value of this factor at
x=0.04 is FC�0.5. Thus, the Coulomb interaction does not
qualitatively influence the estimate �Eq. �12��. It can change
the estimate by at most a factor of �2. This conclusion is
supported by the following experimental observation: the
CDW amplitude is not very sensitive to temperature up to
T�100–150 K.3 On the other hand, the screening must be
very sensitive to temperature because at T=0, the system is
an Anderson insulator, while at T�50–70 K, it behaves like
a conductor.5 Thus, the CDW amplitude is not sensitive to

the change of the screening regime and, hence, the Coulomb
interaction is not important. The most powerful confirmation
of this point directly comes from the experiment.3 In the
observed CDW, the layers are in phase and this implies that
the Coulomb interaction is negligible.

Thus, as pointed out in Ref. 3, we are left with phonons to
coordinate the CDW phase. Most likely, this is also related to
the DM interaction. The DM vector D is proportional
to the oxygen octahedra tilting angle, so we can write
D→D+�D, where �D is coupled to the soft phonon
responsible for the variation in the tilting angle. The
D2na

2 term in Eq. �5� generates coupling to the spiral
D2na

2→ �D+�D�2�sin�Q ·r+���2→D�D cos�2Q ·r+2��.
This generates the lattice deformation at the second harmon-
ics and this is the “coordination” interaction. Clearly, this
mechanism gives the same phase of the CDW for nearest
CuO2 layers.

In conclusion, the disordered diagonal spin spiral in the
insulating phase of LSCO generates a charge density wave
with the wavelength half that of the spin spiral. The charge
modulation is due to the relativistic Dzyaloshinskii-Moriya
and the XY anisotropies. At x=0.04, we estimate the
amplitude of the modulation at �10% of the doping level.
The effect survives up to the characteristic temperature
Th�150 K. We believe that this theory explains the CDW
observed in Ref. 3.
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