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Proximity to a Mott insulating phase is likely to be an important physical ingredient of a theory that aims to
describe high-temperature superconductivity in the cuprates. Quantum cluster methods are well suited to
describe the Mott phase. Hence, as a step toward a quantitative theory of the competition between antiferro-
magnetism and d-wave superconductivity in the cuprates, we use cellular dynamical mean-field theory to
compute zero-temperature properties of the two-dimensional square lattice Hubbard model. The d-wave order
parameter is found to scale like the superexchange coupling J for on-site interaction U comparable to or larger
than the bandwidth. The order parameter also assumes a dome shape as a function of doping, while, by
contrast, the gap in the single-particle density of states decreases monotonically with increasing doping. In the
presence of a finite second neighbor hopping t�, the zero-temperature phase diagram displays the electron-hole
asymmetric competition between antiferromagnetism and superconductivity that is observed experimentally in
the cuprates. Adding realistic third neighbor hopping t� improves the overall agreement with the experimental
phase diagram. Since band parameters can vary depending on the specific cuprate considered, the sensitivity of
the theoretical phase diagram to band parameters challenges the commonly held assumption that the doping vs
Tc /Tc

max phase diagram of the cuprates is universal. The calculated angle-resolved photoemission spectrum
displays the observed electron-hole asymmetry. The tendency to homogeneous coexistence of the supercon-
ducting and antiferromagnetic order parameters is stronger than observed in most experiments but consistent
with many theoretical results and with experiments in some layered high-temperature superconductors. Clearly,
our calculations reproduce important features of d-wave superconductivity in the cuprates that would otherwise
be considered anomalous from the point of view of the standard Bardeen–Cooper–Schrieffer approach. At
strong coupling, d-wave superconductivity and antiferromagnetism naturally appear as two equally important
competing instabilities of the normal phase of the same underlying Hamiltonian.
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I. INTRODUCTION

Superconductivity in the cuprates and in the layered or-
ganics of the BEDT family is highly anomalous, i.e., it dis-
plays a number of properties that cannot be explained by the
Bardeen–Cooper–Schrieffer �BCS� theory modified for
d-wave symmetry. For example, in the cuprates, supercon-
ductivity emerges upon doping an antiferromagnetic Mott
insulator. Moreover, in the so-called underdoped region near
the insulator, experiments show that the gap in the single-
particle density of states decreases upon doping while
Tc /Tc

max or the order parameter increases, which is in sharp
contrast with expectations from standard BCS theory.1 In the
organics, antiferromagnetism and superconductivity are
separated by a first-order transition and a Mott transition
separates the corresponding states with no order. For both the
organics and the cuprates, there is much evidence from ap-
proximate solutions that the essential low-energy physics is
described by the one-band Hubbard model for the appropri-
ate lattice, band structure, interaction, and dopings.2–4

Theoretically understanding anomalous superconductivity
in a quantitative manner is still a challenge. An important
step toward this goal is to obtain accurate solutions of the

Hubbard model. Despite the apparent simplicity of the
model, it is extremely difficult to solve in the relevant regime
where neither the potential �U� nor the kinetic energy �8t�
dominate. In recent years, a number of numerical methods
have shed light on this problem. In this paper, we will de-
scribe the results obtained from the cellular dynamical mean-
field theory5 �CDMFT� for d-wave superconductivity and its
competition with antiferromagnetism in the cuprates. The
corresponding study in the organics has been published.6,7

The results will be compared with other quantum cluster
methods,8–10 mean-field theories, slave boson, and with
variational approaches.

Our choice of method is motivated by the following con-
siderations. Since anomalous superconductivity appears near
antiferromagnetic Mott insulating phases, it is important to
use approaches that correctly treat these phases. CDMFT is a
generalization of the dynamical mean-field theory
�DMFT�.11,12 The latter method describes the Mott insulator-
metal transition of the Hubbard model exactly in the limit of
infinite dimensions. DMFT is, by construction, a local theory
that maps the full interacting many-body lattice problem
onto a single-site embedded in a self-consistent bath. Unfor-
tunately, the local nature of the spatial correlations inherent
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to single-site DMFT precludes a description of the supercon-
ducting phase with d-wave symmetry experimentally ob-
served in the cuprates. This limitation has been overcome by
several recently developed cluster extensions of DMFT. In
addition to CDMFT,5 these include the dynamical cluster ap-
proximation �DCA�13 and variational cluster perturbation
theory,14,15 which is also known as the variational cluster
approximation �VCA�. These methods incorporate short-
range correlations as well as some properties of the infinite
lattice in a systematic and causal manner �for reviews, see
Refs. 8–10�. CDMFT maps a lattice problem onto a finite-
size cluster �with different boundary conditions than DCA�
and is able to accurately describe the short-range correlations
within the cluster. A self-consistently determined bath of un-
correlated electrons approximates the effect of the rest of the
infinite lattice on the cluster. Coupling between the embed-
ded cluster and the bath provides a self-consistent theory that
naturally allows for phase transitions and phases with long-
range order. In a way, CDMFT makes a compromise be-
tween short-range and long-range correlations, the latter be-
ing associated with order parameters that appear only in the
bath.

Cluster models can be formulated in a general functional
framework10,15 and they all converge to the same limit for
very large cluster sizes. Nevertheless, different cluster meth-
ods have convergence rates that depend on the physical ob-
servable. In particular, at finite temperatures, CDMFT has
been shown to converge exponentially quickly for local
quantities such as the density of states.16 The quality of the
approximation made by CDMFT has been tested extensively
by comparisons with exact results.17,18 The method was
found to be accurate in describing the complexities of the
Mott insulator-to-metal transition, indicating that both high
and low energy phenomena are well captured. Furthermore,
CDMFT has also been successfully used to elucidate the dif-
ferences in the evolution of a Mott–Hubbard insulator into an
anomalous correlated metal for the electron- and hole-doped
cases19,20 as well as to shed light on the normal state
pseudogap phenomenon.21

In the following section, we describe our implementation
of CDMFT in more detail. We then present the zero-
temperature results and compare to those of other numerical
approaches. It is shown that, in the intermediate-coupling
regime U=8t, the d-wave superconducting phase at zero
temperature is stabilized. In addition, at strong coupling, the
magnitude of the order parameter scales with J=4t2 /U. We
also discuss the effect of longer-range hopping and of the
proximity to the Mott transition. We present the phase dia-
gram for both hole- and electron-doped systems, exhibiting
the competition between d-wave superconductivity and anti-
ferromagnetism. The regions where d-wave superconductiv-
ity and antiferromagnetism appear are in semiquantitative
agreement with experiment, except for a region of coexist-
ence that is not always observed experimentally. It is striking
to observe that as we make the model more realistic by in-
cluding all the main band structure parameters t, t�, and t�,
the coexistence region decreases and the overall phase dia-
gram becomes closer to experiments. Finally, before we sum-
marize the results, we compute the single-particle density of
states and show that the order parameter increases with dop-

ing in contrast to the single-particle gap that decreases,
which is in qualitative agreement with experiment. In addi-
tion, we find that the results of angle-resolved photoemission
spectroscopy �ARPES�22 have a natural explanation in our
approach. Discussion of our results in the context of a
sample of the existing literature appears at the end of each
subsection.

II. MODEL AND METHODS

We define the Hubbard model Hamiltonian by

H = − �
i,j,�

ti,jdi,�
† dj,� + U�

i

ni↑ni↓, �1�

where ti,j and U correspond to the hopping and the on-site
Coulomb repulsion, respectively. In order to investigate the
d-wave superconducting phase within CDMFT, we write an

effective action containing a Weiss dynamical field Ĝ0 with
both normal �particle-hole� and anomalous �particle-particle�
components that describe the degrees of freedom outside the
cluster �the bath� as a time dependent hopping within the
cluster,

Seff = �
0

�

d�d���d
†����Ĝ0

−1��d���� + U�
�
�

0

�

d�n�↑n�↓.

�2�

For the case of a 2�2 plaquette, which we shall consider
throughout this work, the Nambu spinor is defined by �d

†

��d1↑
† , . . . ,d4↑

† ,d1↓ , . . . ,d4↓� and � ,� label the degrees of
freedom within the cluster. Physically, this action corre-
sponds to a cluster embedded in a self-consistently deter-
mined medium with d-wave pairing correlations.

Given the effective action with a starting guess for the

Weiss field Ĝ0, we compute the cluster propagator Ĝc by
solving the cluster impurity Hamiltonian that will be shortly

described. Then, we extract the cluster self-energy from 	̂c

= Ĝ0
−1− Ĝc

−1. Here,

Ĝc��,��� = �Ĝ↑��,��� F̂��,���

F̂†��,��� − Ĝ↓���,��
	 �3�

is an 8�8 matrix, while G��,��−
Td�����d��
† �0�� and F��

�−
Td�↑���d�↓�0�� are the imaginary-time-ordered normal
and anomalous Green functions, respectively. Using the self-
consistency condition

Ĝ0
−1�i
n� = � Nc

�2��2 � dk̃Ĝ�k̃,i
n�−1

+ 	̂c�i
n� , �4�

with

Ĝ�k̃,i
n� = �i
n + � − t̂�k̃� − 	̂c�i
n��−1, �5�

we recompute the Weiss field Ĝ0
−1 and iterate will conver-

gence. Here, t̂�k̃� is the Fourier transform of the superlattice
hopping matrix with appropriate sign flip between propaga-

tors for up and down spins and the integral over k̃ is per-
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formed over the reduced Brillouin zone of the superlattice.
To solve the cluster impurity problem represented by the

effective action above, we express it in the form of a Hamil-
tonian Himp with a discrete number of bath orbitals coupled
to the cluster and use the exact-diagonalization technique
�Lanczos method�,23

Himp � �
���

E���d��
† d�� + �

m�

�m�
 am�

† am�


+ �
m��

Vm��
 am�

† �c�� + H.c.� + U�
�

n�↑n�↓

+ �


��a1↑
 a2↓

 − a2↑
 a3↓

 + a3↑
 a4↓

 − a4↑
 a1↓

 + a2↑
 a1↓



− a3↑
 a2↓

 + a4↑
 a3↓

 − a1↑
 a4↓

 + H.c.� .

Here, � ,�=1, . . . ,Nc label the sites in the cluster and E���

represents the hopping and the chemical potential within the
cluster. The energy levels in the bath are grouped into repli-
cas of the cluster �Nc=4� �two replicas in the present case�
with the labels m=1, . . . ,Nc and =1,2 such that we have
16 bath energy levels �m�

 coupled to the cluster via the bath-
cluster hybridization matrix Vm��

 . Using lattice symmetries,
we take Vm��

 �V�m� and �m�
 ��. The quantity � repre-

sents the amplitude of superconducting correlations in the
bath. No static mean-field order parameter directly acts on
the cluster sites.24

The parameters �, V, and � are determined by impos-
ing the self-consistency condition in Eq. �4� using a conju-
gate gradient minimization algorithm with a distance func-
tion

d = �

n,�,�

��Ĝ0�
−1�i
n� − Ĝ0

−1�i
n�����2 �6�

that emphasizes the lowest frequencies of the Weiss field by
imposing a sharp cutoff at 
c=1.5. �Energies are given in
units of hopping t, and we take �=1 and kB=1.� The distance
function in Eq. �6� is computed on the imaginary frequency
axis �effective inverse temperature, �=50� since the Weiss

field Ĝ0�i
n� is a smooth function on that axis.
With the bond superconducting order parameter defined

as

��� = 
d�↑d�↓� , �7�

we consider a d-wave singlet pairing ����12=−�23=�34=
−�41�. The average is taken in the ground state of the cluster.

To study the competition with antiferromagnetism, while
preserving bipartite symmetry, hybridization Vm��

 �V�
�m�

and bath site energies �m�
 ���

 become spin dependent. This
doubles the number of independent hybridization and bath
parameters. The staggered magnetic order parameter is given
by the cluster wave function average

M� = 
d�↑
† d�↑ − d�↓

† d�↓� , �8�

with M �M1=−M2=M3=−M4.
The finite size of the bath in the exact-diagonalization

technique is an additional approximation to the CDMFT
scheme. The accuracy of this approximation can be verified
by comparing the CDMFT solution for the one-band Hub-

bard model with the solution from the Bethe ansatz.18,25 We
have also used this comparison in one dimension as a guide-
line to fix the choice of parameters in the distance function
�
c=1.5 and �=50�. These results in one dimension also
compare well with those obtained using the Hirsch–Fye
quantum Monte Carlo algorithm as an impurity solver where
the bath is not truncated.26 Further, using finite-size scaling
for these low �but finite� temperature calculations,26 it was
shown that, at intermediate to strong coupling, a 2�2 cluster
in a bath accounts for more than 95% of the correlation ef-
fect of the infinite-size cluster in the single-particle spectrum.

We can also perform an internal consistency check on the
effect of the finite bath on the accuracy of the calculation.
With an infinite bath, convergence ensures that the density
inside the cluster is identical to the density computed from
the lattice Green function. In practice, we find that there can
be a difference of �0.02 between the density estimated from
the lattice and that estimated from the cluster. We will dis-
play results as a function of cluster density since benchmarks
with the one-dimensional Hubbard model show that, with a
finite bath and the procedure described above, one can quite
accurately reproduce Bethe ansatz results for n��� when the
cluster density is used. Nevertheless, we should adopt a con-
servative attitude and keep in mind the error estimate men-
tioned above.

III. ANOMALOUS SUPERCONDUCTIVITY AND ITS
COMPETITION WITH MAGNETISM

In this section, we first discuss d-wave superconductivity
by itself. Competition with magnetism is taken into account
in subsequent subsections. We will conclude with single-
particle spectral properties.

A. Scaling as J at strong coupling

The effect of interaction strength on d-wave superconduc-
tivity is illustrated in Fig. 1�a�, where we show the d-wave
order parameter � as a function of the density n for t�=0 and
different values of on-site Coulomb repulsion U. No long-
range antiferromagnetism is allowed in this calculation. As U
is increased to 8t, the order parameter acquires a very broad
maximum around �= �1−n�=0.15 �optimal doping�. The
d-wave Weiss field �not shown�, on the other hand, is mono-
tonic as a function of doping with a maximum value close to
half-filling. As the system approaches half-filling from opti-
mal doping, there is a progressive localization due to the
increasing proximity of the Mott insulator and hence, despite
the stronger d-wave Weiss field in this region, there is a
suppression of the d-wave order parameter. This suppression
is not seen for U=4t that is too small for a Mott transition.
However, even in that case, if we were to allow for long-
range antiferromagnetic correlations, the insulating gap at
half-filling that emerges from antiferromagnetic �Slater� cor-
relations should also d-wave superconductivity completely
suppress.27,28 Clearly, antiferromagnetism near half-filling
can destroy superconductivity but the paramagnetic Mott
transition by itself, without antiferromagnetism, suffices at
strong to intermediate coupling. The maximum of the order
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parameter increases as U increases but then it decreases as U
changes to 12t, 16t, and 24t. This clearly signals that d-wave
superconductivity will be strongest at intermediate coupling
and that at strong coupling the d-wave order parameter scales
as the superexchange coupling J=4t2 /U. In Fig. 1�b�, the
value of the order parameter is divided by J on the vertical
axis to better exhibit this scaling for U�12t. The value of
optimal doping is nearly independent of U in the intermedi-
ate to strong coupling regime.

In the overdoped side, d-wave superconductivity disap-
pears at a doping that is comparable to the DCA13,29 and
VCA.30 Variational calculations31,32 find d-wave supercon-
ductivity up to about 35% doping. The strong-coupling scal-
ing with the superexchange coupling J=4t2 /U as well as the
domelike shape of the superconducting order parameter,
which are a hallmark of correlated superconductivity, were
also found in VCA,30 renormalized mean-field theory,33

gauge theories,34 and in early RVB slave-boson studies.35,36

In multiorbital models for fullerenes, a dome behavior is also
found as a function of the correlation strength.37,38 We note
that at large doping for U=8t−12t, we find in Fig. 1 that the
fall of the d-wave order parameter occurs with a constant
negative curvature as a function of doping, which seems to
occur experimentally. This contrasts with weak-coupling
studies27,28 where this does not occur.

Recent experiments39 in four families
�different x� of high-temperature superconductors
�CaxLa1−x��Ba1.75−xLa0.25+x�Cu3Oy suggest that scaling with J
has been observed experimentally in the cuprates.

B. Effect of second neighbor hopping t� Õ t without competition
with antiferromagnetism

The effect of next-nearest-neighbor hopping t� / t is illus-
trated in Fig. 2, where we plot the d-wave order parameter �

as a function of doping for various values of the next-
nearest-neighbor �diagonal� hopping t�. For clarity, we rep-
resent both the hole- and electron-doped cases on the same
plot by performing a particle-hole transformation and consid-
ering t�= +0.3t in the electron-doped case. The maximum of
� grows with increasing t�.

This trend with t� was found in DCA,29 in recent varia-
tional studies,40 and in two-leg ladder studies of the t− t�−J
model.41 However, the increase of � with t� does not seem
consistent with the empirical correlation found in Ref. 42
between a larger optimal Tc and a smaller value of the t�
obtained from band structure calculations. As found in an
earlier VCA study,30 the maximum � is larger for electron
doping than for hole doping when calculations are done on
2�2 clusters. However, the situation reverses for larger
clusters. This suggests that finite-size effects may be influ-
encing our conclusions on the effect of t�. Superconductivity
is known to be strongest on the hole-doped compounds as
opposed to the electron-doped compounds �Using particle-
hole transformation, the latter correspond to positive t� in
Fig. 2�. Nevertheless, we will see in the following section
that including the competition with antiferromagnetism re-
stores the experimentally observed electron-hole asymmetry.

C. Phase diagram and competition with magnetism

In the previous sections, we have constrained the bath of
the associated impurity problem to allow only normal state
and d-wave superconducting solutions. In this section, we
start from initial bath parameters that allow for both d-wave
and antiferromagnetic symmetry breaking. Figure 3 displays
the results for the zero-temperature phase diagram for t�=
−0.3t and three values of the interaction strength U=6t, U
=8t, and U=12t. The plots are as a function of electron den-
sity, so that the system is hole doped for n�1 and electron-
doped for n�1. The order parameter for d-wave supercon-
ductivity is multiplied by a factor of 10 so that it is on the
same scale as the antiferromagnetic order parameter. We

0.7 0.8 0.9 1
n

0
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ψ
/J
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0.02
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ψ

U/t=4
U/t=8
U/t=12
U/t=16
U/t=24

(a)

(b)

FIG. 1. �Color online� �a� d-wave order parameter � as a func-
tion of filling n and on-site Coulomb repulsion U, t�=0. �b� Same
results but with the vertical axis divided by J=4t2 /U.

0.7 0.75 0.8 0.85 0.9 0.95 1
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FIG. 2. �Color online� d-wave order parameter for U=8t as a
function of filling n for various values of t� / t �frustration�.
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have checked that in the coexistence region, even if we start
the iterations with a fully converged antiferromagnetic solu-
tion, the final solution is the same as the one exhibited in Fig.
3.

From Fig. 3, we observe that antiferromagnetism occurs
over a narrower range of dopings as U increases since J then
decreases �the trend would be opposite at weak coupling�.
There is a homogeneous coexistence of antiferromagnetism
and d-wave superconductivity near half-filling in all cases.
That phase can be called a superconducting antiferromagnet
or an antiferromagnetic superconductor. d-wave supercon-
ductivity exists by itself at large electron or hole doping. The
transition from a homogeneous coexistence phase to pure
d-wave superconductivity is second order, except for large
values of U=12t on the electron-doped side. Qualitatively, it
seems that U=8t gives a better agreement with the experi-
mental phase diagram of the cuprates since, in that case,
superconductivity appears alone over a broader range of dop-
ings on the hole than on the electron-doped side. Also, the
value of the maximum d-wave order parameter is larger on
the hole- than on the electron-doped side, showing that com-
petition with antiferromagnetism can reverse the trend ob-
served as a function of t� in Fig. 2. Choosing a value of U on
the electron-doped side43,44 that is smaller than the value of
U for the hole-doped side would also help in making the
tendency for d-wave superconductivity smaller on the
electron-doped side, as observed experimentally. The asym-
metry in the maximum value of the d-wave order parameter
for hole and electron doping is also observed for U=6t, but
in that case the antiferromagnetism occurs over a doping
range that is unreasonably large compared to the experiment.
For U=8t, optimal doping occurs around 15% in the hole-
doped case. U=8t is also consistent with the value necessary
to explain details of the spin wave spectrum obtained by
neutron measurements at half-filling.45,46 All these qualitative
trends agree with the experimental phase diagram except for
the following: antiferromagnetism extends over a broader
range of dopings on the hole-doped side than experimentally
observed �see, however, the next section� and there is a
strong tendency for homogeneous coexistence of the two or-
der parameters, even though the d-wave order parameter is
suppressed by the presence of antiferromagnetic order. While
the suppression of d-wave superconductivity by antiferro-
magnetism is appreciable, the reverse effect is almost
negligible.47 This is also observed in mean-field studies.48

Homogeneous coexistence of antiferromagnetism and
d-wave superconductivity is not generic in the cuprates. Nev-
ertheless, it has been observed recently in ordered layered
compounds49 and in the electron-doped cuprate PrCeCuO.50

Although such coexistence is not observed in compounds
such as YBa2Cu3O7−x �YBCO�, it appears in La2CuO4.11 at
zero field and in La1.9Sr0.1CuO4 under applied magnetic
field.51 The agreement of the latter field-dependent
experiments52 with the theoretical predictions53 reveals the
proximity of single-phase d-wave superconductivity with ho-
mogeneous coexistence of antiferromagnetism and d-wave
superconductivity. Other La2−xSrxCuO4 �LSCO�
compounds54,55 reveal the proximity of antiferromagnetism
and d-wave superconductivity through the application of a
magnetic field. Muon spin rotation studies as a function of
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FIG. 3. �Color online� Superconducting �red circles� and antifer-
romagnetic �blue squares� order parameters for t�=−0.3t and, from
top to bottom, the three values U=6t, U=8t, and U=12t. The am-
plitude of the superconducting order parameter is multiplied by a
factor of 10 to be on a scale comparable to the antiferromagnetic
one.
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doping, temperature, and field show that the zero-field coex-
istence of superconductivity with short-range static
magnetism56 is generic in the underdoped regime. Since
competition between antiferromagnetism and d-wave super-
conductivity seems to be quite sensitive to disorder,57 the
homogeneous coexistence between the two phases that we
find here may be reconcilable with experiments.

It is instructive to compare our theoretical results with
other approaches that include competition of d-wave super-
conductivity with antiferromagnetism. Early variational
calculations58 at t�=0, U=10, and with the t−J model59

showed a strong tendency for antiferromagnetism and super-
conductivity to coexist homogeneously, even though there is
a region where d-wave superconductivity exists by itself.
The most recent variational calculations40,60 show the same
trend. Weak-coupling calculations with functional renormal-
ization coupled to renormalized mean-field theory at U=2.5
and t�=−0.15 also show a coexistence region.28 A recent
review33 of variational approaches and renormalized mean-
field theory results61 shows that a coexistence region is often
obtained in these approaches, as it was in early slave-boson
theories.36

An early version of cluster DMFT62 using t�=−0.15t and
U=4.8t found that d-wave superconductivity and antiferro-
magnetism coexist over most of the doping range 1−n
�0.3. Recent CDMFT calculations63 at t�=0 find that an
homogeneous coexistence region appears at weak coupling
but is replaced by a first-order transition between both phases
at strong coupling. Phase separation as a function of doping
takes place in strong coupling but not in weak coupling.
Here, at finite t�, we did find a first-order transition at large U
on the electron-doped side but phase coexistence persists at
low doping.

In VCA calculations that include cluster chemical poten-
tial as a variational parameter64,65 to ensure thermodynamic
consistency, a coexistence phase with continuous transition
to d-wave superconductivity is found for t�=−0.3 at weak
coupling, but at strong coupling the transition between ho-
mogeneous coexistence and pure d-wave superconductivity
is first order,66 as we have found here for U=12t on the
electron-doped side. In early VCA studies,67 U=8, t�=−0.3,
it was noticed that the energy scale for that first-order tran-
sition is larger on the hole than on the electron-doped side. In
VCA calculations that do not include chemical potential as a
variational parameter, zero-temperature finite-size studies
find antiferromagnetism and d-wave superconductivity over
doping ranges that agree semi-quantitatively with experiment
for both hole- and electron-doped systems,30 using U=8t and
taking the second nearest neighbor hopping parameter t�=
−0.3t and the third nearest neighbor hopping t�=0.2t from
the band structure. As in our case, there is a coexistence
region on the electron-doped side, but on the hole-doped side
there is still some nonmonotonic size dependence that sug-
gests that inhomogeneous phases may be more stable.

Finally, in DCA, system sizes up to 32 sites have been
studied for U=4t, t�=0. At 10% doping, a superconducting
transition is found68 with critical temperature Tc=0.023. The
question of ground state coexistence was not studied since
these are finite temperature studies. However, it was estab-
lished at intermediate coupling that the frequency and mo-

mentum dependence of the pairing channel comes from the
antiferromagnetic fluctuations.69–71 Within DCA, there is a
tendency for phase separation in the normal state on the
electron-doped side of the phase diagram.72 The same ten-
dency is observed at weak coupling73 using the two-particle
self-consistent �TPSC� approach.74

D. Additional effects of the band structure on the phase
diagram

The one-band Hubbard model is an effective model of the
cuprates, so parameters can vary with doping.43,44 Given our
numerical uncertainties, it would be inappropriate at this
point to fine tune our parameters to try to find a best fit of the
experimental phase diagram of the high-temperature super-
conductors. Nevertheless, we point out in this section that
when more realistic band parameters are used for the calcu-
lation, the qualitative changes of the resulting phase diagram
go in the right direction to improve agreement with experi-
ment. We also comment on the implications of sensitivity to
band parameters.

The most common parameters used for the one-band
model of YBCO, for example,42,75 are t�=−0.3t, t�=0.2t,
where t� stands for the third nearest neighbor hopping. It has
been known for a decade76 that for the half-filled parent com-
pound Sr2CuO2Cl2, for example, these values well describe
ARPES experiments. Adding the third nearest neighbor hop-
ping t�=0.2t to the calculation of the previous section leads
to the phase diagram illustrated on the upper part of Fig. 4.
Clearly, the phase diagram becomes qualitatively closer to
that of the cuprates since the antiferromagnetic phase has a
stronger electron-hole asymmetry and the tendency for coex-
istence between antiferromagnetism and d-wave supercon-
ductivity is reduced. These two results were found first in
recent VCA calculations.77 Note also that the phase bound-
aries for antiferromagnetism are extremely close to those ob-
tained from VCA for the same parameters.30 In our CDMFT
calculations, the effect of t� enters only in the self-

consistency condition �Eq. �4�� through the parameter t̂�k̃� of
the superlattice Green function �Eq. �5��. In VCA, the clus-
ters are larger so that t� can also enter in the cluster calcula-
tion not only in the self-consistency condition. The excellent
agreement between both methods for the boundaries of the
antiferromagnetic phases suggests that the main effect of t� is
taken into account in our CDMFT calculations.

In the lower part of Fig. 4, one finds the phase diagram
corresponding to parameters typical of LSCO,42 namely, t�
=−0.17t and t�=0.08t. There are quantitative changes com-
pared to the top figure appropriate for YBCO. In particular,
on the hole-doped side of the phase diagram, the d-wave
phase extends to larger dopings for the above LSCO param-
eters than those for YBCO. Although there is no qualitative
change, this quantitative sensitivity of the phase diagram to
band parameters suggests that the universality of the
Tc��� /Tc

max relation,78,79 which is usually assumed for hole-
doped ��� high-temperature superconductors, may not be
completely accurate, unless it signals that band parameters
are, in fact, quite close, as has been suggested in some recent
studies.46 The possible lack of universality of the Tc��� /Tc

max
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relation has been noticed before.75 In experiments, it has
been pointed out a while ago80 that single layer
Bi2Sr2−zLazCu2O6+� �BSLCO� deviates from the universal
Tc��� /Tc

max curve. The electronic structure of that compound
differs81 from that of LSCO, which is the compound used to
determine the universal Tc��� /Tc

max curve.78 Hence, the band
structure could be one of the factors explaining the devia-
tions of single layer BSLCO. There is also a “universal”
Tc�S�290 K�� /Tc

max determined from thermopower S�290 K�
at 290 K instead of doping.79 However, thermopower has
been experimentally linked to the band structure.82

E. Gap in total density of states and angle-resolved
photoemission spectroscopy spectrum

Having established that the d-wave order parameter � de-
creases toward zero as we approach half-filling, we now

show that the gap � computed from the single-particle den-
sity of states increases monotonically toward half-filling n
=1 in the hole-doped case. All the calculations of this section
are for t�=−0.3t and U=8t. The local density of states can be
obtained from the cluster or from the lattice Green function.
The results are identical in the limit of infinite bath size. The
single-particle gap is extracted from the local density of
states that we obtain from the lattice Green function that will
be used later to obtain the single-particle spectral weight
A�k ,
=0�. The lattice Green function is computed by peri-

odizing the superlattice Green function G���k̃ ,
� in Eq. �5�
over the entire Brillouin zone of the original infinite lattice as
is done in CPT.43 This proceeds as follows. In reciprocal
space, any wave vector k in the Brillouin zone may be writ-

ten as k= k̃+K, where both k and k̃ are continuous in the

infinite-size limit. However, k̃ is only defined in the reduced
Brillouin zone that corresponds to the superlattice. On the
other hand, K is discrete and denotes reciprocal lattice vec-
tors of the superlattice. Then, the lattice Green function is
defined by

Glatt�k,
� = �
�,�

e−ik·�r�−r��G���k,
� , �9�

where G���k ,
�=G���k̃ ,
�. Integration over k yields the
local density of states. Different periodization procedures can
be used.9,10

The single-particle gap is defined as half the distance be-
tween the peaks that surround the minimum near 
=0. The
inset of Fig. 5 shows the local density of states in the super-
conducting state at n=0.9. Due to the finite value of the
broadening parameter �0.1t�, some spectral weight fills the
d-wave gap, which linearly vanishes near 
=0. We do not
focus on this 
→0 energy scale. In Fig. 5, we exhibit the
monotonic increase of the single-particle gap as filling in-
creases toward n=1 �unlike the order parameter decrease� in
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FIG. 4. �Color online� Superconducting �red circles� and antifer-
romagnetic �blue squares� order parameters for U=8t and various
values of the band parameters. On the top, parameters t�=−0.3t,
t�=0.2t appropriate for YBCO. On the bottom, t�=−0.17t, t�
=0.08t as in LSCO. The amplitude of the superconducting order
parameter is multiplied by a factor of 10 to be on a comparable
scale with the antiferromagnetic one.
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FIG. 5. The gap as a function of filling, for U=8t, t�=−0.3t. The
gap is defined as half the distance between the two peaks on either
side of 
=0, as they appear, for example, in the inset.
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accordance to, for example, thermal conductivity1 and tun-
neling experiments83,84 for the cuprates. This is a radical de-
parture from a conventional superconductor where the
single-particle gap � and � are proportional to each other.
Experimentally in the hole-doped cuprates,1 the magnitude
of the gap at optimal doping is estimated to be around
50 meV. Here, we obtain 0.2t, which is in good agreement
with experimental estimates if we take a reasonable value t
=250 meV. CDMFT should be reliable for the value of this
gap since it is extracted from a local quantity.

In Figs. 6 and 7, we present single-particle spectra in the
d-wave superconducting state for, respectively, hole doping
n=0.94 and electron doping n=1.06. The upper part of the
figures illustrates the momentum distribution curves �MDCs�
at the Fermi energy in the first quadrant of the Brillouin
zone, in other words, a contour plot of the single-particle
spectral weight A�k ,
=0� with a finite energy resolution �
=0.1t. The lower part contains energy distribution curves
�EDCs� A�k ,
� as a function of frequency in units of t for
various wave vectors k along symmetry directions.

The MDC for hole doping, n=0.94, in Fig. 6, and electron
doping, n=1.06, in Fig. 7, are very similar to the correspond-

ing results in the normal state obtained earlier with the same
approach �Figs. 5 and 6 of Ref. 21 and Fig. 4 of Ref. 20� and
with CPT,43,85 the latter having the best momentum reso-
lution. They display the striking asymmetry of the hole- and
electron-doped cases that can be measured by ARPES in the
d-wave superconducting phase22 and in the pseudogap phase.
More specifically, for the hole-doped case, the Fermi energy
plot �MDC� shows weight near �� /2,� /2� with a clear sup-
pression everywhere else. On the other hand, the electron-
doped case �Fig. 7� shows weight in complementary areas of
�� ,0� and �0,�� with the largest suppression near
�� /2,� /2�.

As shown in an earlier paper,21 it is likely that for large
values of U, the correlations responsible for the suppressed
weight in the normal state are of short-range antiferromag-
netic origin, although the precise nature of the magnetic fluc-
tuations seems less important than the fact that the system is
close to a Mott insulator20 and that there are short-range
spatial magnetic correlations induced by J. This is the
strong-coupling mechanism for pseudogap discussed in Refs.
43 and 85. By contrast, the weak-coupling mechanism does
not need to be close to a Mott insulator. It involves long
wavelength fluctuations44,74,86 that can be explained by the
two-particle self-consistent approach. The latter mechanism
seems to explain86 experimental results in slightly under-
doped Nd2−xCexCuO4. For a discussion of the pseudogap at
large and small U, see Refs. 43 and 85.
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(π,0)

(π,π)

(0,0)
-6 -4 -2 0 2 4 6

ω/t

U/t=8, n=0.94, t’/t=-0.3

FIG. 6. �Color online� Hole-doped d-wave superconducting
phase for n=0.94, U=8t, t�=−0.3. Upper figure, color contour plot
of A�k ,
=0+� in the first quadrant of the Brillouin zone. Energy
resolution is �=0.1t for both figures. Lower figure, A�k ,
� for
various values of wave vector along high-symmetry directions. The
relative scale in the contour plot can be made quantitative by com-
parison with the lower figure.
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FIG. 7. �Color online� Same plots as in Fig. 6 but for the
electron-doped case n=1.06. The maximum on the color scale cor-
responds to 104% of the maximum of the data to stress finer details
near the maximum. All other parameters are identical.
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In the EDC for the hole-doped case on the lower part of
Fig. 6, one can see in the �0,0� to �� ,�� direction a gaplike
feature between −t and −2t that looks like the so-called wa-
terfall feature observed in ARPES experiments.87–92 This has
some similarity to what has been obtained in the t-J model93

but one should be careful since at these energy scales, it is
likely that the one-band Hubbard model differs from more
realistic multiband models.3 The gaplike feature here occurs
between the spin-fluctuation-induced band near the Fermi
energy21 and the rest of the lower-Hubbard band. There are
differences with DMFT calculations since these are appropri-
ate only for higher dimension.94

In the hole-doped case of Fig. 6, we do not have the
resolution to address the question of whether there are two
gaps, one associated with superconductivity and the other
one associated with the pseudogap, as discussed recently in
the literature.95–98 This question is clearly most difficult to
address in the hole-doped compounds where the pseudogap
and superconducting gap occur in the same region of the
Brillouin zone. In the electron-doped case of Fig. 7, the po-
sition of the pseudogap or of the antiferromagnetic gap near
�� /2,� /2� differs from the location of the maximum super-
conducting gap. Hence, an earlier VCA study30 with better
momentum resolution allowed one to see the superconduct-
ing gap in the electron-doped case near �� ,0� at the same
time as the �pseudo�gap near �� /2,� /2�. In our case also,
the EDC in the lower part of Fig. 7 does have both the
normal state gap near �� /2,� /2� and the d-wave supercon-
ducting gap near �� ,0�. The MDC color scheme in the upper
part of the same figure is on a relative scale. Hence, despite
the fact that there is both a pseudogap and a superconducting
gap, the MDC emphasizes that there is less weight in the
pseudogap region near �� /2,� /2� than near the supercon-
ducting gap region near �� ,0�, �0,��. Nevertheless, close
inspection reveals that regions of constant intensity carry less
weight near �� ,0� than the corresponding normal state re-
sults in Ref. 21. Also, the weight increases as one moves
slightly away from the zone edge along the Fermi surface,
reflecting the superconducting gap. Experimentally, the su-
perconducting gap in the electron-doped compounds has
been seen independent of the pseudogap.99

IV. CONCLUSION

A. Summary

We have shown that many of the non-BCS features exhib-
ited by superconductivity in the underdoped cuprates can be
reproduced by CDMFT calculations for the two-dimensional
Hubbard model. For example, the fact that the zero-
temperature d-wave superconducting order parameter de-
creases as we move toward half-filling while the gap in the
single-particle density of states increases, we have demon-
strated semiquantitative agreement with other cluster meth-
ods and with experimental results for other quantities as
well, such as the ARPES spectrum and the doping range
where superconductivity is stable.

We have also calculated the phase diagram that describes
the competition between antiferromagnetism and supercon-
ductivitity for t�=−0.3t for both hole and electron doping at

various values of U. There is, in general, homogeneous co-
existence �superconducting antiferromagnetism or, equiva-
lently, antiferromagnetic superconductivity� between antifer-
romagnetism and d-wave superconductivity in the
underdoped region. This feature is quite generally observed
in quantum cluster methods, variational approaches, and
mean-field theories that do not allow for spin or charge den-
sity modulations on large length scales. In experiment, such
coexistence seems to be the exception rather than the norm.
At large U, the transition between the coexistence phase and
the pure d-wave state is first order.

Without attempting any precise fits to experimental data,
it seems that the phase diagram obtained for t�=−0.3t at
intermediate coupling U=8t corresponds to the experimental
phase diagram better than either smaller �U=6t� or larger
�U=12t� values of U. Interestingly, adding the third neighbor
hopping t�=0.2t, as suggested by the band structure, leads to
an improvement of the qualitative agreement between the
calculated and observed phase diagrams, namely, a reduced
tendency to coexistence and a larger electron-hole asymme-
try. The sensitivity to band parameters, expected at interme-
diate coupling where both kinetic and potential contributions
are comparable, hints toward quantitative deviations from
the universal Tc��� /Tc

max curve for compounds with different
band parameters, such as LSCO and YBCO.

B. Discussion

The major questions left open by the present work are as
follows: �a� whether the Hubbard model by itself, without
additional interactions, additional bands, or without extrinsic
disorder, can lead to a closer agreement with the experimen-
tal phase diagram when additional broken symmetries are
allowed in the space of solutions100–103 and �b� if the addi-
tional broken symmetries that are present in cuprates appear
as secondary instabilities or are essential to the physics of
high-temperature superconductivity.

Nevertheless, the Hubbard model seems sufficient to lead
to the overall phase diagram of the high-temperature super-
conductors and to explain many of the observed non-BCS
features, even in the absence of a final answer to the last
questions raised. In BCS theory, it is useful to think about the
mechanism for superconductivity, i.e., what perturbation
makes the normal state unstable toward a superconducting
ground state. Similarly, in the weak-coupling Hubbard
model, finite temperature DCA69–71 and TPSC27 suggest that
in this case, it makes sense to think of d-wave superconduc-
tivity as being mediated by antiferromagnetic
fluctuations,104–107 a generalization of the Kohn–Luttinger
mechanism. In this weak- to intermediate-coupling case,
pairing occurs when the antiferromagnetic correlation length
is large.27,108 At strong coupling though, we have shown,
which is in agreement with other approaches, that the order
parameter scales with the superexchange interaction J, even
when we do not allow for large antiferromagnetic correlation
lengths �which in the cluster treatments are mimicked by
antiferromagnetic long-range order�. This shows that at
strong coupling, d-wave superconductivity can directly occur
from the superexchange35,36 J, without the need for an anti-
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ferromagnetic “glue” or antiferromagnon exchange, as advo-
cated by Anderson.109 Still, at large U, the frequency depen-
dence of the order parameter has a complicated frequency
dependence with multiple scales present110.

Antiferromagnetism and d-wave superconductivity are
two possible phases of the strong-coupling Hubbard model.
The normal state found in CDMFT is unstable to either phase
or to a coexistence phase, depending on parameters and on
doping. The CDMFT normal state contains both types of
fluctuations, d wave and antiferromagnetic. At strong cou-
pling, it does not appear necessary to think that antiferro-
magnetic fluctuations lead to d-wave superconductivity or
that d-wave superconducting fluctuations lead to antiferro-
magnetism. This is perhaps best illustrated by the layered
organic conductors that can be modeled by a one-band Hub-
bard model on the anisotropic triangular lattice at half-filling.
There, one finds, theoretically and experimentally, a first-
order transition between antiferromagnetism and d-wave
superconductivity,6,7 so both phases are different instabilities
of the same Hamiltonian.

CDMFT and a number of methods show that maximum
pairing �maximum value of the d-wave order parameter� oc-
curs at intermediate coupling, a range appropriate for the
high-temperature superconductors. So, both weak- and
strong-coupling features may appear.69–71

One of the ways to distinguish weak- and strong-coupling
limits is by the behavior of the d-wave order parameter as
one approaches half-filling. At strong coupling, it decreases
as n→1 when U is larger than the critical U for Mott local-
ization. The phase fluctuations and short-range antiferromag-
netic correlations that lead to the decrease need not be long
range: they occur within the cluster. At weak coupling on the
other hand, the decrease in the order parameter near half-

filling does not occur unless antiferromagnetic fluctuations
with correlation lengths large enough to create the pseudogap
are included.27,108 Exactly at half-filling, weak- and strong-
coupling limits are separated in the normal state by the Mott
transition,19,111 in the absence of magnetic long-range order.
Away from half-filling, one can postulate that when the cor-
relation length of the antiferromagnetic fluctuations become
of the order of the lattice spacing, then J by itself suffices to
lead to pairing at strong coupling. There may not be a sharp
phase transition between the two extreme limits.

Quantum cluster methods are powerful numerical ways of
attacking the problem of high-temperature superconductivity.
They clearly show that many aspects of the physics of the
high-temperature superconductors are contained in the Hub-
bard model. The convergence between the results of these
methods and those of other recent numerical approaches sug-
gests that we are closing in on methods that can provide a
quantitative solution of this problem.
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