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The magnetic field �H� dependence of the Sommerfeld coefficient ��H� of the low-temperature specific heat
in Sr2RuO4 is analyzed by numerically solving the microscopic Eilenberger equation. By taking account of the
strong Pauli-paramagnetic effect, we find that ��H� exhibits a systematic change from a concave function �H
to a convex function H����1� at high fields when the orientation of the magnetic field is varied, explaining
experimental results. The magnetization is found to be consistent with this behavior. This implies either singlet
pairing or triplet pairing with the d vector locked in the basal plane. Based on this conclusion, we explain other
properties of this compound.
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I. INTRODUCTION

Superconductors are classified into two distinct groups,
which are characterized by either spin-singlet or spin-triplet
pairing of electrons forming the Cooper pairs. Almost all
superconductors that include high Tc cuprates belong to the
former group. To date, only a few examples of spin-triplet
superconductivity have been encountered. In the heavy Fer-
mion material UPt3, triplet pairing has been firmly iden-
tified.1–4 The observed multiple phase diagram in the field
�H� versus temperature �T� plane of UPt3, consisting of three
phases, A, B, and C, is reasonably explained only in terms of
triplet pairing. This situation is similar to superfluid 3He
where two subphases Anderson-Brinkman-Morel and Balian-
Werthamer are identified in the pressure vs T plane.5 A direct
probe to detect the spin structure of a Cooper pair is the
Knight shift experiment. Most of other probes obtain infor-
mation only about the orbital part of the pairing symmetry. In
addition to distinguishing the spin-singlet or spin-triplet pair-
ings, Knight shift experiments are used to identify the orien-
tation of the d vector, which describes the spin structure of
the spin-triplet pairing. In fact, the NMR Knight shift has
played a fundamental role in confirming theoretical pre-
dictions4 of the parity in UPt3.6 To identify the direction of
the d vector, it is particularly crucial to experimentally deter-
mine both the field direction where the Knight shift de-
creased below Tc and the field directions where it remained
constant,6 which is in accordance to theoretical predictions.4

Sr2RuO4 is a second promising candidate for triplet pair-
ing superconductivity.7 A variety of theoretical and experi-
mental works have been devoted to establishing the pairing
symmetry, but a decade after its discovery,8 it is still difficult
to identify the spin structure of Cooper pairs in this material,
though the gap structure of the orbital part with line nodes is
now established. In Sr2RuO4, the contributions by the orbital
dependent superconductivity of the �, �, and � bands have
also been studied.7

As the most direct probe to detect the spin part of the
parity, Knight shift experiments were performed by using
various nuclei, such as 87Sr, 101Ru, 99Ru, and 17O. Invariance
of the Knight shift has been reported for both field directions
of the c and ab axes as low as H=200 G.9 This fails to
confirm the spin direction of pairs, i.e., the orientation of the

d vector, since the Knight shift does not change below Tc for
any field direction. This is usually explained by suggesting
that the d vector is not pinned to any particular direction
strongly enough and, hence, it undergoes a rotation to a di-
rection perpendicular to the applied field even for a field
magnitude as low as 200 G. However, there remains a pos-
sibility that the spin part of the Knight shift is even smaller
than the estimate obtained from the linear extrapolation10 in
the K-� plot �where K is the Knight shift and � is the total
spin susceptibility�. In this case, since the NMR experiment
cannot detect the spin structure of the Cooper pairs within
the experimental resolution, spin-singlet pairing cannot be
ruled out.

In this paper, we discuss the spin part of the pairing func-
tion. Recent phase-sensitive experiments by Nelson et al.,11

Kidwingira et al.,12 and Xia et al.13 suggested chirality or
odd parity within the ab plane in Sr2RuO4. These results
contain information of the orbital part of the pairing func-
tion. However, the spin part, such as the d-vector direction,
has not been determined. With regard to these experimental
results, it is noted that in addition to investigating the p-wave
pairing scenario, attempts have been made to formulate an
explanation in terms of the singlet scenario, such as chiral
d-wave pairing �kx� iky�sin kzc by Zutic and Mazin14 or rea-
sons other than the pairing symmetry by Mineev.15 The ap-
pearance of a spontaneous magnetic field below Tc, which is
observed by muon spin relaxation,16 may be associated with
time reversal symmetry breaking of the pairing symmetry.
This can also be explained by a spin-singlet scenario, such as
chiral d-wave pairing, as well as spin-triplet chiral p-wave
pairing kx� iky. Related to this chirality of the pairing, spon-
taneous magnetic fields and supercurrents are predicted at the
edge or domain boundary in chiral p-wave superconductors.
However, the expected magnitude of the spontaneous field is
not observed in Sr2RuO4.17 Therefore, while spin-triplet chi-
ral p-wave symmetry is considered to be plausible for super-
conductivity of Sr2RuO4, the supporting evidence is not con-
clusive. Some experimental results are difficult to explain
within the simple scenario of spin-triplet chiral p-wave pair-
ing. As an example, in this paper, we discuss the anomalous
field dependence of the low-temperature specific heat at high
fields for H �ab in Sr2RuO4, in relation to the paramagnetic
effect through the spin part of the pairing. The paramagnetic
effect works for spin-singlet pairing or spin-triplet pairing
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with the d-vector locked along the magnetic field direction.
The orbital part of the pairing function does not significantly
affect the high-field behavior of the specific heat by the para-
magnetic effect. Thus, in this study, a simple form is used for
the orbital part of the pairing function, i.e., d wave. However,
this does not represent the actual d-wave symmetry for the
orbital part of the pairing in Sr2RuO4.

In this work, we examine the parity of the spin part in
Sr2RuO4, including the possibility of spin-singlet pairing,
through analyzing the specific heat experiment by Deguchi
et al.18,19 for various T and H. There are several outstanding
problems posed by this experiment. Making progress on
these problems will provide clues as to the nature of the
spin part. One of the most interesting questions is why
the field dependence of the Sommerfeld coefficient,
��H�=limT→0 C /T �where C is the specific heat�, in the
field along the basal ab plane shows a convex behavior
H� ���1� in spite of the existence of a line node gap. This
behavior is odd because ��H� is expected to show a concave
�H-like behavior due to line nodes, i.e., the so-called Volo-
vik effect.20 It is remarkable that the convex curve becomes a
Volovik �H curve with a concave curvature when the applied
field direction is tilted by only a few degrees from the basal
ab-plane �see inset �a� in Fig. 3�. In addition to analyzing the
specific heat data,19 we also examine the magnetization
data21 in a field. We explain these experiments based on the
idea that a strong Pauli-paramagnetic effect is important in
the basal ab plane physics of Sr2RuO4 and establish a con-
sistent picture for the dependence of the superconductivity
on the magnetic field direction.

After explaining our formulation of quasiclassical theory
in Sec. II, we discuss the field-orientation dependence of Hc2
in order to estimate the effective paramagnetic parameter at
each orientation in Sec. III. We analyze the field-orientation
dependence of the Sommerfeld coefficient ��H� in Sec. IV
and examine the magnetization curve in Sec. V. In Sec. VI,
after discussing the pairing of the superconductivity in
Sr2RuO4, we give a summary.

II. QUASICLASSICAL THEORY INCLUDING
PARAMAGNETIC CONTRIBUTION

In our study of the vortex states, we take account of the
paramagnetic depairing effect due to the Zeeman splitting
term �BB�r� in addition to the orbital depairing effect by the
vector potential A�r�. The flux density of the internal field is
B�r� and �B is the renormalized Bohr magneton. Therefore,
the Hamiltonian is given by

H − �0N = �
�=↑,↓

� d3r	�
†�r�K��r�	��r�

−� d3r1� d3r2�
�r1,r2�	↑
†�r1�	↓

†�r2�

+ 
��r1,r2�	↓�r2�	↑�r1�� , �1�

with

K��r� =
�2

2m
	�

i
+

2�


0
A
2

+ ��BB�r� − �0, �2�

the flux quantum 
0, and �= �1 for up- and down-spin
electrons. �0 is the chemical potential. We consider the pair-
ing of up-spin and down-spin electrons, i.e., the spin con-
figuration for which paramagnetic effect appears. This is the
case of spin-singlet pairing or triplet pairing with the d vec-
tor parallel to the magnetic field.22 The Fourier transforma-
tion of 
�r1 ,r2� with respect to r1–r2 is given by 
�r�
�k�,
where r= �r1+r2� /2 is the center-of-mass coordinate of the
Cooper pair and k is the relative momentum of the pair.

We calculate the properties of the vortex states by the
quasiclassical Eilenberger theory in the clean limit.23–29 This
framework is valid when kF��1 �where kF is the Fermi
wave number and � is the coherence length�. This is satisfied
for Sr2RuO4, where kF��500 �kF�0.753 Å−1 in the � band
and �ab=660 Å�.7 The quasiclassical Green’s functions
g��l+ i�̃B ,k ,r�, f��l+ i�̃B ,k ,r�, and f†��l+ i�̃B ,k ,r� are
calculated in the vortex lattice state by the Eilenberger equa-
tion in the presence of the paramagnetic contribution,30–33

��n + i�̃B + v�kF� · �� + iA�r��
f = 
�r�
�k�g ,

��n + i�̃B − v�kF� · ��− iA�r��
f† = 
��r�
��k�g , �3�

where g= �1− f f†�1/2, Re g�0, Matsubara frequency
�n= �2n+1��T, and 
�k� is the pairing function along the
Fermi surface k. The Fermi velocity v is scaled by
vF0= ��v�2�k

1/2, where �¯�k indicates the Fermi surface aver-
age. The paramagnetic parameter is �̃=�BB0 /�kBTc. In Eq.
�3� and thereafter, length, temperature, magnetic field, and
energy are scaled by R0, Tc, B0, and �kBTc, respectively.
Here, R0=�vF0 /2�kBTc and B0=�c /2�e�R0

2. When a mag-
netic field is applied along the z axis direction, in the
symmetric gauge, the vector potential is given by

A�r�= 1
2B�r+a�r�, where B= �0,0 , B̄� is a uniform flux

density and a�r� is related to the internal field B�r�
=B+��a�r�. The unit cell of the vortex lattice for the pair
potential 
�r� and quasiclassical Green’s functions is given
by r=s1�u1−u2�+s2u2, where −0.5�si�0.5 �i=1,2�, u1
= �a ,0 ,0�, and u2= �a /2,ay ,0� with ay /a=1 /2 for a square
lattice. The unit cell contains a vortex.

The pair potential is self-consistently calculated by


�r� = g0N0T �
0��n��cut

�
��k��f + f†���k, �4�

with �g0N0�−1=ln T+2T�0��n��cut
�l

−1. We use �cut=20. By
calculating 
�r� self-consistently, we obtain the dependence
of the vortex core size on H. This self-consistency is neces-
sary for a quantitatively valid estimate of ��H�.

The vector potential for the internal magnetic field is also
self-consistently determined by

� � �� � A� = � � Mpara�r� −
2T

�̃2 �
0��n

�vF Im g�k, �5�

using the large Ginzburg-Landau parameter �̃=20. In the
right-hand side of Eq. �5�, we consider both the diamagnetic
contribution of the supercurrent in the last term and the
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contribution of the paramagnetic moment, Mpara�r�
= �0,0 ,Mpara�r��, with

Mpara�r� = M0�B�r�

B̄
−

2T

�̃B̄
�

0��n

�Im�g
�k� . �6�

The normal state paramagnetic moment is M0= ��̃ / �̃�2B̄ with
�̃=B0 /�kBTc

�8�N0, where N0 is the density of states �DOS�
at the Fermi energy in the normal state. The self-consistent
calculation of internal fields by a�r� does not significantly
affect the behavior of ��H�.

We alternately solve Eqs. �3�–�6� and obtain self-
consistent solutions as in previous works26,27 for a given unit
cell of the vortex lattice. The unit cell is divided to 41�41
mesh points, where we obtain the quasiclassical Green’s
functions, 
�r�, Mpara�r�, and A�r�. When we solve Eq. �3�
by the explosion method, we estimate 
�r� and A�r� at ar-
bitrary positions by an interpolation from their values at the
mesh points and by the periodic boundary condition of the
unit cell taking account of the phase factor due to the mag-
netic field.24,26,27

By using the Doria-Gubernatis-Rainer scaling,34,35 we ob-

tain the following relation between B̄ and the external field
H:

H = 	1 −
�̃2

�̃2
�B̄ + ��B�r� − B̄�2�r/B̄�

+
T

�̃2B̄
� �

0��n

��̃B�r�Im�g
 +
1

2
Re� �f†
 + f
��g

g + 1 �
+ �l Re�g − 1
�

k
�

r

, �7�

where �¯�r indicates the spatial average. The magnetization,

M�T ,H�= B̄−H, includes both the diamagnetic and paramag-
netic contributions.

The local density of states is given by N�r ,E�
=N+1�r ,E�+N−1�r ,E� with

N��r,E� = �Re�g���l + i��̃B,k,r��i�l→E+i�
�k, �8�

for each spin component �= �1. We typically use �=0.01.
The DOS N�E� is obtained by calculating the spatial average
of N�r ,E�, i.e., N�E�= �N�r ,E��r. The zero-energy DOS
N�E=0,H� is identified as the Sommerfeld coefficient ��H�
in the specific heat at low T since C=�T�N�E=0�T at low
T. If we normalize N�E=0� and ��H� by their normal state
values N0 and �0, respectively, we obtain N�E=0,H� /N0
=��H� /�0. In our calculation, ��H� is evaluated at low tem-
perature, T /Tc=0.1.

In previous works, we reported the behavior of ��H� for
various pairing symmetries when the Pauli-paramagnetic
contribution is negligible ��̃=0�.27–29 In the case of a quasi-
two-dimensional �Q2D� Fermi surface, Hc2 for H �ab is
much higher than that for H �c. Even in this case, as shown
in Fig. 3 of Ref. 28 for s-wave pairing, scaled ��H� as a
function of H /Hc2 shows a similar field dependence. Thus,

we may roughly discuss the behavior of ��H� for any field
orientation, scaling H by Hc2 based on the results calculated
for H �c.

Recently, we reported the behavior of ��H� in the pres-
ence of a strong paramagnetic contribution.33 When we can-
not neglect the paramagnetic contribution, �̃ is a key param-
eter for analyzing ��H�. Since paramagnetic pair breaking
becomes effective at higher fields of the order of the Pauli
limiting field, Hp=
0 /�2�B �where 
0 is the gap amplitude
at T=0�, the effective paramagnetic parameter is related to
the ratio of the hypothetical orbitally limited upper critical
field Hc2

orb to Hp, i.e., effectively �̃→ �̃Hc2
orb /B0�Hc2

orb /Hp

with H in units of Hc2
orb, because �̃H /B0= ��̃Hc2

orb /B0�H /Hc2
orb.

For a Q2D Fermi surface with the paramagnetic effect, the
field-angle dependence of the effective paramagnetic param-
eter �̃��� comes through the factor Hc2

orb���. This orbital-
limited Hc2

orb��� is sensitive to the field orientation for highly
anisotropic systems, such as in the present layered material
Sr2RuO4. Hp is a material-specific bulk parameter indepen-
dent of the field orientation. This is evidenced by the nearly
isotropic bulk susceptibility observed.7 Therefore, in our
simple estimation of ��H�, instead of rotating magnetic
fields, we analyze the change by the field orientation through
the dependence of the effective paramagnetic parameter �̃���
on the tilting angle �.

We study the field-orientation dependence of ��H�, as-
suming the presence of a paramagnetic contribution. Our
main purpose is to understand the high-field behavior of
��H� in Sr2RuO4, i.e., the systematic change from a concave
function �H to a convex function H� ���1� at high fields
depending on the field orientation. In the case of a strong
paramagnetic contribution, the high-field behavior near
Hc2��� shows a similar behavior for different pairing symme-
tries, while the lower-field behavior reflects the details of the
anisotropy of the gap function and Fermi surface structure.
For simplicity, we use a two-dimensional �2D� cylindrical
Fermi surface, k=kF�cos 	 , sin 	�, with 0�	�2� and as-
sume the d-wave pairing function, 
�k�=�2 cos 2	, to take
account of the line node contribution in Sr2RuO4. Our analy-
sis does not represent that the d-wave pairing is realized in
Sr2RuO4. The details of the orbital structure of the pairing
function do not give rise to serious differences in the high-
field behavior of ��H� near Hc2���, where the paramagnetic
contribution is dominant.

III. EFFECTIVE PARAMAGNETIC PARAMETER AT
EACH FIELD ORIENTATION

Before discussing ��H�, we estimate the anisotropy pa-
rameter � and the effective paramagnetic parameter �̃���
through analyzing the field-orientation dependence of the ob-
served Hc2���. A reduction of Hc2 from Hc2

orb due to the para-
magnetic effect is obtained by solving the Eilenberger equa-
tion as Hc2��̃�=Hc2

orb /�1+2.4�̃2. This is originally derived in
the dirty limit s-wave case,36 but we confirm it to be valid
numerically in the present clean limit d-wave case too, as
seen from Fig. 1, where the calculated values are compared
to this expression.
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It is natural to consider that Hc2
orb��� is described by

the effective mass model, namely, Hc2
orb��� /Hc2�ab

orb

=1 /��2 sin2 �+cos2 �, which simply embodies the fact that
the orbital motion of electrons is determined by the direc-
tional cosine of the field to the basal plane. That is,
Hc2

orb����
0 /2��ab��+90°, where ��+90° is the coherence
length in the �+90° direction, perpendicular to the magnetic
field within the ac plane, and given by

��+90° � ��vF��+90°
2 �1/2/kBTc

= ���vF�ab
2 �cos2 � + �vF�c

2 �sin2��1/2/kBTc

� �c
��2 cos2 � + sin2 � .

�vF��+90°
2 � indicates the Fermi surface average of the square of

the Fermi velocity component for the �+90° direction. Since
� is the angle from the ab plane, �=0 for H �ab and
�=90° for H �c. The anisotropy �=Hc2�ab

orb /Hc2�c
orb =�ab /�c is an

unknown parameter here. However, it is assigned by the re-
quirement that the experimental Hc2��� be theoretically re-
produced. Namely, once � is determined, the angle depen-
dence of Hc2��� is automatically known through the angle
dependence of the paramagnetic parameter �̃���, which con-
trols the reduction of the upper critical field Hc2 from the
“hypothetical” orbital-limited field Hc2

orb.
Knowing the paramagnetic depairing effect on Hc2��̃�, we

can calculate the angle dependence of the observed Hc2���
taking account of the fact that �̃�Hc2

orb /Hp has a � depen-
dence through the factor Hc2

orb��� given above. Thus, we ob-
tain �̃���= �̃0 /��2 sin2 �+cos2 �, where �̃0 is the value at
�=0. This � dependence of �̃��� is crucial for explaining the
anomalous � dependence in the high-field behavior of the
specific heat in Sr2RuO4, as will be discussed in Sec. IV.

By combining these relations, we finally obtain the �
dependence of the observed Hc2��� as Hc2���
=Hc2�ab

orb /��2 sin2 �+cos2 �+2.4�̃0
2. This takes account of

both orbital and paramagnetic depairing effects. To repro-
duce the observed anisotropy �obs�Hc2��=0� /Hc2��=90°�
=20, we take �̃0=3.41 when �=107. Note that �̃0 and � are
not independent parameters. As shown in Fig. 2, our effec-
tive mass model with the paramagnetic effect explains the
angle dependence of Hc2���,19,37 if one adjustable parameter
is fixed. It should be noted, as shown in inset of Fig. 2, that
the �̃��� value is completely determined by the effective
mass form with �=107.

With regard to the assigned �=107, we note that the dia-
magnetic orbital current is determined by the perpendicular
component of the average Fermi velocity to the field direc-
tion. Thus, � is the anisotropy ratio of the Fermi velocities,
namely, �=��vF�c

2 � / �vF�ab
2 �. This quantity is determined di-

rectly by de Haas-van Alphen experiment giving ��=117,
��=57, and ��=174 for the three bands �, �, and �,
respectively.7 Note that a simple arithmetic average �eff

= 1
3 ���+��+���=116 compares well with our assignment of

�=107. There are virtually no adjustable parameters in our
analysis. In passing, we note that the observed ratio, �obs

=Hc2�ab /Hc2�c=20, is strongly reduced from �eff, apparently
suggesting a reduction mechanism. We clarify this point in
Sec. IV.

IV. FIELD DEPENDENCE OF LOW-TEMPERATURE
SPECIFIC HEAT

We next discuss the specific heat at low T. In Fig. 3, we
display ��H� for several values of �̃ together with the ex-
perimental data in inset �a� for various � values. They show
strikingly similar behaviors as a whole. The larger angle data
exhibit a strong upward curvature, corresponding to the con-
ventional ��H���H, which is characteristic of a line node
gap structure. This behavior is reproduced in our �̃=0.02
and 0.41 curves. As � decreases, this changes to an almost
linear relation for moderate H and forms a convex curve near
Hc2. This behavior is reproduced by theoretical calculations
for larger �̃. Thus, the overall “metamorphosis” of ��H�
from conventional �H to a strong convex curve is repro-
duced by increasing �̃. The main purpose of this study is to
understand the high-field behavior of ��H�.

As shown in inset �b� of Fig. 3, the data are fitted well by
our calculations near Hc2, where we have used the �̃��� val-
ues determined above �see the inset of Fig. 2 with �̃0=3.41�.
We have computed the six cases of �̃ shown in Fig. 3 and

� � � �
�

���

�

��

	 

��
�
�

	 


�
�

��
�

FIG. 1. Reduction of Hc2��̃� as a function of �̃ evaluated by the
quasiclassical Eilenberger equation �solid circles�. The fitting curve
is described by Hc2��̃� /Hc2

orb=1 /�1+2.4�̃2 well. �� ��� ��� ��� ��� ��� ��� 	�� 
�� ���

�
����

� �
�

�
�
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�
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FIG. 2. �Color online� Calculated angle dependence of Hc2���
with �=107 and �̃0=3.41 �solid line�, where we assign
Hc2�ab=1.45 T. The circles �Ref. 19� and squares �Ref. 37� are
experimental data. An enlarged figure is shown in the inset for small
angles, plotting Hc2��� /Hc2�ab

orb . The dashed line is the original or-
bital limit Hc2

orb��� /Hc2�ab
orb of the effective mass form with �=107.

The dashed line also shows �̃��� with �̃0=3.41 �right-hand scale�. �
is the angle from the ab plane.
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obtained ��H� for other �̃ values by interpolation.
In Fig. 4, we display the theoretical behaviors of ��H� �a�

and the corresponding specific heat data19 �b�, with �̃���
taken from the inset of Fig. 2. Our theoretical curves explain
the data consistently. Of particular note is that �1� at �=0°,
where �̃�0�= �̃0=3.41 is largest, ��H� in our theoretical cal-
culation shows a �H-like sharp rise in the small H region
because of the presence of line nodes. However, this behav-
ior is limited to only low fields. In the experimental data,
��H� shows a rapid increase below H�0.15 T. This is con-
sidered to be due to the contribution of the passive
superconductivity of the � and � bands surviving only at low
fields,18,19 whose contributions are not included in our calcu-
lation. �2� In the intermediate field region �0.5 T�H
�1 T�, ��H� exhibits an almost linear change with H. This
extended linear change is shown to be thermodynamically
consistent with the magnetization M�T ,H� behavior, as will
be explained in Sec. V. �3� In the high-field region �H
�1 T� toward Hc2=1.45 T, ��H� displays a sharp rise with
a strong convex curvature. As H increases, the Pauli effect,
which is linearly proportional to H, becomes increasingly
effective, modifying ��H� from the usual �H behavior to a
convex H�-like curve with ��1.

The data for �=3° where �̃��=3°�=0.60 show a similar
behavior to that at �=0°, but the features associated with the
Pauli effect, namely, the existence of an inflection point from
concave to convex curves and a sharp rise toward Hc2, are
weaker. The ��H� data for higher angles ���3°� exhibit an
intermediate behavior between those at �=0° and the ordi-
nary �H curve, continuously changing their shapes with �. It
is remarkable that the highly convex curves of the experi-
mental data at high fields for small angles, previously unex-
plained, are reproduced by the Pauli-paramagnetic effect.
Physically, this effect makes the conventional Abrikosov vor-
tex state unstable, ultimately leading to the normal state via a
first order transition or the Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� state. The sharp rise in ��H� near Hc2 is a precursor
to this.

V. FIELD DEPENDENCE OF MAGNETIZATION

Lastly, we discuss the magnetization curve M�T ,H� as a
function of the magnetic field. In Fig. 5, we show the calcu-
lated results of magnetization M�H� for several values of T
�a� together with the experimental data21 �b� to qualitatively
understand the paramagnetic effects on M�T ,H�. We do not
attempt to quantitatively reproduce the data because the data
are of a qualitative nature due to hysteresis effects. It is seen
from Fig. 5�a� that the magnetization with a concave curva-
ture at lower fields changes into a convex curvature toward
Hc2. There is an inflection point field HK at the change in
curvature. The position of HK decreases with T �see also
insets�. At higher T, HK becomes invisible because of the
thermal effect. These two features can be experimentally ob-
served, as seen from the experimental data of M�T ,H� in Fig.
5�b�. As shown in the insets, the inflection point field HK
roughly coincides with that for ��H�, as seen from Fig. 4,
implying that these are thermodynamically related.

As is seen from Fig. 5, as T decreases, the slope of M�H�
at Hc2 becomes steeper, which means that the Maki param-
eter �2 decreases rather than increasing as in typical
superconductors.30,36 This is further clear supporting evi-
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FIG. 3. �Color online� Zero-energy DOS ��H� at T=0.1Tc for
�̃=0.02, 0.41, 0.86, 1.71, 2.57, and 3.41 from top to bottom. We
plot ��H� /�0 as a function of H /Hc2. Inset �a� shows the experi-
mental data �Ref. 19� for �=0°, 2.5°, 3.0°, 5.0°, and 90° from
bottom to top. Inset �b� shows fits to the data for �=0° by �̃
=3.41, 0.5° ��̃=2.36�, 5° ��̃=0.33�, and 90° ��̃=0.03� from bot-
tom to top, shifted upward.
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netic moment is subtracted.

MAGNETIC FIELD DEPENDENCE OF LOW-TEMPERATURE… PHYSICAL REVIEW B 77, 184515 �2008�

184515-5



dence that the paramagnetic effect is important in Sr2RuO4.
It is easy to derive a thermodynamic Maxwell relation,

d

dH

C

T
=

�2

�T2 M�T,H� , �9�

from which at low T we can see

���H�
�H

= ��H� , �10�

with M�T ,H�=M0�H�+ 1
2��H�T2 at low T. To examine

the relation of Eq. �10�, we estimate ��H� from the experi-
mental data21 in Fig. 5�b�, finding that ��H��const for
0.5 T�H�1 T. This implies that ��H��H for this range
of H. At higher fields around H�1.2 T, since ��H� has a
curvature like that of H3, we expect H4-like behavior in
��H�. These behaviors in ��H� are indeed seen for the
�=0° data shown in Fig. 4. These analyses of ��H� and
��H�, which are free from any microscopic models, mean
that the mysterious behavior of ��H� is thermodynamically
intrinsic to the superconductivity in Sr2RuO4.

VI. DISCUSSION AND SUMMARY

Before presenting a summary, we will discuss the pairing
symmetry and some related anomalous phenomena in
Sr2RuO4. While the spin-triplet chiral p-wave symmetry is
considered to be the most plausible pairing of Sr2RuO4, there
are several known difficulties associated with this pairing
symmetry.

�1� As mentioned above, experimentally, the supercon-
ductivity of Sr2RuO4 shows a strong suppression at high
fields only when H �ab. Thus, ��H� shows a convex curve
H� ���1� near Hc2. This suppression can be explained by a
strong paramagnetic effect, as discussed in this work. This is
possible only for either singlet pairing or triplet pairing with
the d vector locked in the basal plane because paramagnetic
pair breaking occurs when Cooper pairs are formed between
up-spin and down-spin electrons �with the direction of spin
defined relative to the magnetic field direction�. Thus, triplet
states, such as ẑ�px+ ipy� �Ref. 38� or ẑ�px+ ipy�cos pz,

39 can-
not explain the paramagnetic effects because paramagnetic
depairing does not occur when the d vector is not locked in
the basal plane. This conclusion for the paramagnetic effect
is not consistent with the Knight shift invariance below Tc if
the NMR experiment is able to see the spin part within ex-
perimental accuracy.9,10 The conclusion that the pairing sym-
metry of Sr2RuO4 is spin triplet and the d vector is always
perpendicular to the magnetic field requires an alternative
mechanism to explain the strong high-field suppression of
superconductivity and the anomalous high-field behavior of
��H� for H �ab.

�2� When the magnetic field is rotated within the ab
plane, the anisotropy of the in-plane Hc2 is experimentally
very small, within a few percent of Hc2. Theoretically, how-
ever, two-component chiral p-wave pairing states usually
give a large in-plane Hc2 anisotropy,15,40,41 which is not ob-
served in Sr2RuO4. The present singlet scenario does not
induce such large anisotropy. To obtain a small anisotropy

within chiral p-wave pairing, we need to choose the appro-
priate pairing function and to tune its detailed form.41

The origin of the convex behavior of ��H� near Hc2 is the
strong paramagnetic effect by the spin part of the Cooper
pairs. Since the orbital part of the pairing does not signifi-
cantly contribute to the high-field behavior of ��H�, our
analysis at high fields does not give information to identify
the orbital part. We have used the d-wave pairing function
for the orbital part as a simple example. However, this is not
a definite identification of the orbital part in the pairing func-
tion of Sr2RuO4. Since the structure of the orbital part, such
as the gap structure, affects the low-field behavior of ��H�,
further study is required on the orbital part to obtain a better
fit of ��H� for the whole range of H.

Let us now consider the high-field phase for H �ab ob-
served as a double transition.37 This transition appears in a
narrow H-T region along Hc2�ab, starting at T0=0.8 K or
T0=0.53Tc, at which point three transition lines meet, giving
rise to a tricritical point in the H vs T plane. T0 is remarkably
similar to the so-called Lifshitz point TL=0.56Tc in the
FFLO phase diagram for a Pauli limited superconductor
where the orbital depairing is completely quenched. This
number, TL=0.56Tc, is universal, valid for a variety of situ-
ations, including three-dimensional Fermi sphere s-wave,42

2D s-wave,43 d-wave,44 and 1D s-wave45 models. Our iden-
tified large paramagnetic parameter, �̃=3.41, indicates that
our system is almost Pauli limiting where the orbital effect is
almost perfectly quenched because of the extreme two di-
mensionality in Sr2RuO4. We note that the identified aniso-
tropy, �=107, implies Hc2�ab

orb �7.5 T, which is reduced to
Hc2�ab=1.5 T by the Pauli effect. Thus, we propose here to
identify this high-field phase as FFLO.

The extreme two dimensionality is clear: if H is tilted
away from the ab plane by as little as ��0.3°, the double
transition vanishes.37 According to Nakai et al.,46 the FFLO
region at low T occupies a region �0.8% below Hc2, which
is comparable to the width of �200 G of the high-field
phase below Hc2�ab=1.5 T, a region of 200 G /1.5 T
�1.3%.37 Based on the known phase diagram,36 we predict
that as the field orientation � increases, �̃ decreases and this
high-field phase survives only for 0���0.3°, quickly di-
minishing for ��0.3°. At around ��1.0°, a first order tran-
sition appears along the Hc2 line instead of FFLO. It disap-
pears for ��2.0°, above which the paramagnetic effect
becomes ineffective and Sr2RuO4 can be described as a con-
ventional singlet superconductor with line nodes. These pre-
dictions based on our analysis are experimentally testable,
although the details must be further theoretically sharpened.

In conclusion, we have analyzed both the specific heat at
low T and the magnetization M�T ,H� by self-consistently
solving the microscopic quasiclassical Eilenberger equation,
including the contribution of the strong paramagnetic effect.
It is seen that the Pauli-paramagnetic depairing effect is es-
sential in understanding the experimental data in Sr2RuO2,
especially to explain the high-field suppression of supercon-
ductivity when H �ab. Considering the paramagnetic effect,
we analyzed the change from a concave �H behavior of the
Sommerfeld coefficient ��H� to a convex H� ���1� behav-
ior at high fields when the orientation of magnetic field is
exactly aligned to H �ab. This strong suppression of super-
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conductivity by the strong paramagnetic effect is due to the
spin part of the Cooper pairs and is possible only for singlet
pairing or triplet pairing with the d vector locked in the basal
plane. While the pairing symmetry of Sr2RuO4 is usually
considered to be a spin-triplet chiral p-wave symmetry, there
still exist anomalous behaviors which cannot be explained by
a simple spin-triplet chiral p-wave symmetry scenario. Thus,
to identify the pairing symmetry of Sr2RuO4, further careful

study and analysis are necessary both in theoretical and ex-
perimental works.
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