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We study the character of an Ising nematic quantum phase transition deep inside a d-wave superconducting
state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1 /N expansion,
the transition is continuous. To leading order in 1 /N, quantum fluctuations enhance the dispersion anisotropy
of the nodal excitations and cause strong scattering, which critically broadens the quasiparticle �qp� peaks in
the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qps
remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak
disorder. Some possible implications for cuprate physics are also discussed.
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I. INTRODUCTION

In this paper, we study the nematic to isotropic quantum
phase transition �QPT� deep within the d-wave supercon-
ducting phase of a quasi-two-dimensional tetragonal crystal.
“Nematic” refers to a broken symmetry phase in which the
fourfold rotational symmetry of the crystal is broken down to
a twofold symmetry. More specifically, it is an “Ising nem-
atic,” which spontaneously breaks the discrete rotational
symmetry of the tetragonal crystal to an orthorhombic sub-
group, C4v→C2v, while retaining translational symmetry.
The superconducting order opens a gap in the quasiparticle
excitation spectrum, except at four gapless nodal points, but
these nodal quasiparticles �qps� strongly couple to the nem-
atic order parameter fluctuations. In the nematic phase, these
nodes are displaced from the relevant symmetry directions
by an amount proportional to the nematic order parameter, as
shown in Fig. 1. We derive a phenomenological theory to
describe this “nodal nematic QPT” consisting of a nematic
mode coupled to the nodal qps of the d-wave supercon-
ductor.

Our motivation to investigate this problem is twofold:
First, there is now considerable experimental evidence that a
nodal nematic phase occurs in at least some “underdoped”
cuprate superconductors, so this study has potential rel-
evance to the transition from this state to the isotropic state
in these materials. The best evidence of this comes from
measurements1 of strongly temperature dependent transport
anisotropies in underdoped YBa2Cu3O6+� and more recent
�and more direct� neutron scattering experiments in under-
doped YBa2Cu3O6.45 �YBCO�.2 Specifically, the spontaneous
onset of one-dimensional incommensurate spin modulations
in the neutron experiments is clear evidence of an isotropic-
to-nematic transition with transition temperature TN
�150 K. For �=0.45, TN is greater than the superconducting
Tc=35 K. However, at a higher O concentration, ��0.7,
both neutron scattering and transport experiments see no evi-
dence of a transition to a nematic phase down to the lowest
temperatures.1,3–6 It is thus reasonable to assume that TN���
→0 for a critical value, 0.45��c�0.7, with a QPT at �
=�c inside the SC phase.5–11 The extent to which nematic

phases are generic to the cuprates is a question that is beyond
the scope of the present study. However, Matsuda et al.12

recently reported that the “fluctuating stripe” phase of under-
doped �diagonal� La2−xSrxCuO4 �with x=0.04� is actually a
nematic phase. Moreover, scanning tunneling microscopy
�STM� studies by Howald et al.13 and Kohsaka et al.14 have
revealed a glassy phase with nematic domains in underdoped
Bi2Sr2CaCu2O8+�.

Second, the topic of quantum critical points �QCPs� in
two-dimensional �2D� systems with itinerant fermions has
been and continues to be a topic of broad interest. Here, we
study a new QCP in a 2D itinerant fermion system. In gen-
eral, the presence of gapless fermions at the Fermi surface
makes the study of this topic theoretically challenging. Since
gapless fermions interact with massless bosons associated
with order parameter fluctuations, this interaction affects
both low energy degrees of freedom, making it difficult to
obtain a correct description of the critical physics. Simplifi-
cations occur when one considers nodal fermions that are
gapless only at four nodal points of the underlying Fermi
surface in a d-wave superconductor. The limited phase space
for the gapless fermions restricts the possibilities for scatter-
ing mechanisms, permitting a controlled analysis.
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FIG. 1. �Color online� Quantum critical point at �=�c, separat-
ing the nodal nematic phase for �−1��c

−1 from the symmetric
phase, and its quantum critical fan. Tc and Tn are the superconduct-
ing and nematic critical temperatures and the �purple� wedge corre-
sponds to the thermal critical regime.
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Electronic nematic phases were first predicted to occur in
doped Mott insulators5 and have now been experimentally
observed in a number of different systems. In addition to
YBCO, they have been discovered in transport experiments
in semiconductor heterostructures15 and in the bulk transition
metal oxide Sr3Ru2O7.16 While in all cases the thermal tran-
sition to the nematic phase appears to be continuous, the
character of the quantum transition at zero temperature is
less clear and, at least in the case of Sr3Ru2O7,16 appears to
be first order. However, interesting universal physics can be
expected in the case of a continuous transition.

Vojta et al.9,10 analyzed various types of ordering transi-
tions in a nodal superconductor, including Ising nematic or-
dering. They employed an � expansion ��=3−d� to derive
perturbative renormalization group �RG� flows near the de-
coupled fixed point, �=0. In the nematic case, they found
runaway flows, which they tentatively interpreted as a fluc-
tuation induced first order transition. Of course, a runaway
flow can also imply breakdown of perturbation theory.

In this paper, we directly work in d=2 and use a large N
theory to access a nontrivial critical point at finite coupling
�c. This is achieved by generalizing the problem to one in
which there are N “flavors” of nodal qps �with the physical
N=2 case corresponding to two spin polarizations�.17 In the
large N limit, we present a theory of the nodal nematic
QPT,18 whose critical behavior should be smoothly and sys-
tematically corrected by the 1 /N expansion.19–22 We find the
following: �a� the quantum phase transition is continuous,
with nontrivial critical exponents that we compute for N
→�, �b� the transition occurs at a finite critical coupling
between the nodal qps and the nematic order parameter, so it
is inaccessible by perturbation theory; �c� the anisotropy of
the nodal qp dispersion strongly influences the interplay be-
tween the critical fluctuations and the qps. We also speculate
on the implications of this theory to the phenomenology of
nodal qps in cuprates. With minor changes, this theory also
applies to a possible electronic hexatic QPT in graphene and
similar systems.24

The paper is organized as follows. In Sec. II, we introduce
the model and discuss its symmetries. The effective theory of
the nematic order parameter is derived in the large N limit in
Sec. III. In Sec. IV, we discuss the behavior of the nodal
quasiparticles at and near the nematic quantum critical point.
In Sec. V, we give a qualitative presentation of the physics of
a nematic glass and how it affects the spectrum of a nodal
quasiparticle, leading to a Fermi arc phenomenology in the
quasiparticle spectral function. In Sec. VI, we discuss a num-
ber of important open problems.

II. MODEL

The effective Lagrangian that describes the coupling of
the nodal fermionic qps to the nematic order parameter is
L=L�+Lint+L	, where L� is the linearized nodal qp La-
grangian in a pure dx2−y2 SC:

L� = �
n,


�̄n,
��� − i�3v�F
n · �� − i�1v��

n · �� ��n,
. �2.1�

Here,

�n,
�p�� � � cK� n+p� ,


�

c
−�K� n+p��,

† � �2.2�

are two-component Nambu spinors representing the nodal
qps for node index n=1,2 and 
 ,
=1, . . . ,N are Sp�N /2�
flavor indices which, for N=2, correspond to the qp spin
polarizations since Sp�1��SU�2�. Equation �2.2� represents
nodal qps at momentum positions p� relative to each pair of

nodes at K� 1= �K ,K� and K� 2= �−K ,K� for n=1,2, respec-
tively, and

v�F
n = 	�� k�k	k�=K� n

, 	v��
n = �� k�k	k�=K� n

�2.3�

are velocities normal and tangential to the Fermi surface
�FS�. Note that we investigate our model for general values
of vF and v�. We use �1 and �3 to denote 2�2 Pauli matrices
acting on the Nambu spinors. The Lagrangian for the nem-
atic order parameter 	 is

L	 =
m2

2
	2 +

1

2

���	�2 + c2��	�2� +

u

4N
	4 + ¯ ,

�2.4�

where the ellipsis represents higher order terms in powers of
the nematic order parameter field 	. We assume that u�0
and that m2�0, i.e., in the absence of coupling to the nodal
qps, the system is in its isotropic phase, �	
=0, and the
nematic mode is gapped. The interaction term that couples
the nematic order parameter to a fermion bilinear is

Lint =
�

�2N
�
n,


	�̄n,
�1�n,
, �2.5�

which has a well defined large N limit.19–22 This model has
the discrete symmetry �	→−	 , p� →−p� ,�→�2��. The
combination of this discrete symmetry with the implicit sym-
metry of the Nambu notation and the twofold rotation sym-
metry associated with ��1↔�2 ,kx↔ky� amounts to C4v
symmetry. Should �	
�0, the position of the nodes shift in
the v��

n direction and the C4v symmetry is spontaneously bro-
ken down to C2v associated with ��1↔�2 ,kx↔ky� �see Fig.
1�.

The interaction in Eq. �2.5� has the form of a Dirac fer-
mion current coupled to one component of a vector gauge
field. Couplings of this type have been studied in the context
of gauge theoretic approaches to nodal fermions and phase
fluctuations.25–27 However, in the case at hand, the micro-
scopic theory does not have a local gauge invariance asso-
ciated with the nematic field 	 but, instead, only has a global
discrete symmetry which can be spontaneously broken.

Since the coupling makes the tangential and normal direc-
tions to the FS inequivalent, one must consider an aniso-
tropic dispersion, vF /v��1. Indeed, in previous studies of
quantum criticality with Dirac-like fermions, an effective ro-
tational symmetry about the nodal point, vF /v�→1, was
shown to be an emergent property of the fixed point in the
sense that anisotropy is perturbatively irrelevant; this is not
true in the present problem, and indeed, we find a number of
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qualitatively new features of the critical theory which derive
from this anisotropy.

The fact that vF and v� have different physical origins
implies that there is no reason a priori to expect the exis-
tence of even an approximate symmetry vF=v�. Indeed, ex-
perimentally, it is well known that the degree of anisotropy is
extreme: vF /v��19 for BSCCO from thermal
conductivity29 and ARPES �Ref. 30� and vF /v��14 for
YBCO from thermal conductivity.29 After we formulate our
theory for general values of vF and v�, we investigate the
specific case that corresponds to linearizing the phenomeno-
logical band structure of Norman et al.30

III. ORDER PARAMETER THEORY

We will now proceed to study the behavior in the large N
limit of the theory of nodal fermions coupled to a nematic
order parameter theory presented in the previous section. As
it is standard in the large N limit, we proceed to formally
integrating out the fermions and obtain the resulting effective
action for the nematic order parameter field.19,21,22 In the
large-N limit, the resulting bosonic path integral:

Z =� D	e−Seff
	�, �3.1�

will be dominated by the saddle point solution to the effec-
tive action Seff
	� and is amenable to a controlled 1 /N ex-
pansion to evaluate the effects of fluctuations. In imaginary
time, the full effective action Seff
	� has the standard form

Seff
	� =� d3x�m2

2
	2 +

1

2

���	�2 + c2��	�2� +

u

4N
	4�

− N�
n

ln Det��� − i�3v�F
n · �� − i�1v��

n · �� +
�

�2N
�1	�.

�3.2�

The fermion determinant in Eq. �3.2� represents the sum of
fermion bubble Feynman diagrams. Since the action of the
nodal fermions has the structure of an anisotropic Dirac
theory with a coupling to the nematic order parameter 	,
each bubble diagram involves a trace over a product of Dirac
fermion propagators with the appropriate insertions of the
matrices �1 dictated by the form of the coupling. This is a
standard procedure which obviates the need to present the
well known intermediate steps. We will thus only present the
main results of these calculations.

Upon rescaling the order parameter 	→�N	, it is appar-
ent that the effective action for the rescaled field 	 has the
form NSeff
	�. Hence, in the large-N limit, the path integral
is dominated by the solution to the saddle point equations for
the effective action Seff
	� and its fluctuations. When ex-
panded in powers of 	, the contribution of the fermion de-
terminant introduces a negative contribution to the quadratic
term that is proportional to �2 in the effective action
Seff
	�.19–21 This allows for the spontaneous symmetry
breaking driven by the coupling constant �. In theories of
this type,19,21,22 there is a critical coupling strength �c, be-
yond which 	 gains a finite expectation value due to the

spontaneous symmetry breaking. The critical value of the
coupling constant, which is the location of the quantum
phase transition, depends on the bare mass of the nematic
mode and the UV cutoff. If we use a sharp UV cutoff �, in
the large-N limit, we obtain

�c
2 = 
2�2/ln 2��m2vFv�/�� . �3.3�

For �2��c
2, the symmetry is unbroken and �	
=0. However,

for �2��c
2, a nonzero expectation value �	
 is obtained by

minimizing Seff
	�. This can be achieved by solving the
saddle point equation:

m2�	
 = −
�

�2N
�
n,


��̄n,
�1�n,

 . �3.4�

For � close to �c, the solution of Eq. �3.4� satisfies

�	
 � �� − �c�1/2. �3.5�

Thus, in the large-N limit, we find a continuous quantum
phase transition, i.e., a quantum critical point, separating the
weak coupling isotropic phase at ���c from a strong cou-
pling phase at ���c. The critical exponent of the order pa-
rameter of Eq. �3.5�, which is 1 /2, obtained in the large-N
limit will be corrected order by order in the 1 /N
expansion.19,21 Within the 1 /N expansion, the corrections to
the value of this and other critical exponents of this theory
follow from the resummation �exponentiation� of the infrared
divergent 1 /N perturbation theory. This procedure can also
be viewed as a construction of a fixed-point theory �and its
associated renormalization group� order by order in the 1 /N
expansion, which is a standard procedure in relativistically
invariant theories of Dirac fermions.19,21

In the present problem, Lorenz invariance is explicitly
absent due to both the velocity anisotropy, which is param-
etrized by the velocity ratio vF /v�, and the form of the cou-
pling between the nematic order parameter 	 and the Dirac
fermions. Lack of this invariance changes the physics in dra-
matic ways. As noted above, Vojta et al. studied the quantum
critical behavior of a similar system by means of a perturba-
tive RG analysis at fixed N near the critical �renormalizable�
dimension D=3+1 by using an � expansion.9,10 Due to the
combined effects of the velocity anisotropy and the aniso-
tropic coupling, they found that the perturbative RG has run-
away flows, signaling the breakdown of perturbation theory.
Following a standard analysis �see, for instance, Refs. 21 and
23, these authors interpreted this runaway flow as an indica-
tion of a fluctuation induced first order transition. Instead, in
the large-N theory that we present here, we find that, at fixed
dimension D=2+1 but for very large N, the quantum phase
transition is continuous and has a finite renormalized veloc-
ity anisotropy which plays a key role.28 This behavior also
contrasts with that of more nearly Lorenz invariant models,
such as the QED3-type models studied in Refs. 25–27, where
a small velocity anisotropy was found to be either irrelevant
or redundant.

We will now proceed with the analysis of this theory in
the large-N limit. The leading quantum fluctuations at large
N are obtained by expanding the effective action to quadratic
order about the saddle point �see, for instance, Ref. 31�. This
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standard procedure, when applied to the present problem
which breaks Lorentz invariance, introduces two separate en-
ergy scales associated with any given momentum p�

E1�p�� = �vF
2 px

2 + v�
2 py

2 and E2�p�� = �vF
2 py

2 + v�
2 px

2,

�3.6�

where E1�px , py�=E2�py , px�. In terms of E1�p�� and E2�p��, the
Gaussian action S�2�
�� for the fluctuations of the nematic
mode ��x� defined by ��x�� m

�c

	�x�− �	
�, which takes the

following form on the disordered side ����c� of the critical
point:

S�2�
�� =� d2pd�

�2��3

1

2
���c

2 − �2� + ���2 + c2p�2�

+ �
��2 + vF
2 px

2 + v�
2 py

2 + �v� ↔ vF���	��p�	2,

�3.7�

where ���c /m2 and ���c
2 /64vFv�. The quartic and higher

order terms in fluctuations have coefficients which are21,22

down by powers in 1 /N. Here, we will only treat the physics
to leading order in this expansion.32

We can analyze the effective action in Eq. �3.6� from the
viewpoint of scaling theory. Clearly, at criticality ��=�c�, the
bare dynamical terms in Eq. �2.4� are irrelevant, because they
have a larger dimension than the nonlocal term generated by
integrating out the nodal fermions. The scaling dimension of
the nematic field �, as traditionally defined, is dim
��= �d
+z−2+�� /2, with the space dimension d, the dynamic criti-
cal exponent z, and the anomalous dimension �. In the
present case, dim
��=1 and z=1 is inherited from the Dirac-
like spectrum of the fermions. This can then be interpreted as
a large anomalous dimension �=1.34 As a result of this scal-
ing, all local interaction terms of higher order in � are
�sometimes dangerously� irrelevant operators. �This is in
contrast to a local �4 theory in which the u�4 term is relevant
for d�3 at the Gaussian fixed point, so long as z�2, mak-
ing the fixed point unstable.� Nonlocal interactions are also
generated by integrating out the fermions, which, presum-
ably, lead to O�1 /N� corrections to the various critical expo-
nents. Away from criticality, the correlation length scales as
��	�c−�	−�, with �=1. To the extent that scaling holds, Tc
���−�c� for ���c ��z=1�. The resulting phase diagram,
with a v-shaped quantum critical fan, is sketched in Fig. 1.

We compute the spectral response of the nematic mode by
an analytic continuation of the effective action Eq. �3.6� to
real time. The irrelevant terms in the effective action can be
set to zero for energies small compared to � /�. In Fig. 2, we
show the spectral function of the nematic mode � at critical-
ity:

B�p� ,�� � − 2 sgn���Im G�p� ,�� , �3.8�

for the � propagator

G�p� ,�� = 
��− �2 + E1�p��2 + ��− �2 + E2�p��2�−1
,

�3.9�

where we defined projectors

P1 = 1 −
v�

2 py
2

− �2 + E1�p��2 , P2 = 1 −
v�

2 px
2

− �2 + E2�p��2 .

�3.10�

The spectral function of Eq. �3.8� contains contributions
from a pole and from branch cuts. When the dispersion is
isotropic, the nematic mode pole is at �=v 	 p� 	 /�2 with resi-
due Z�1/4 and there is a threshold at �=v 	 p� 	 for the con-
tinuum due to the branch cut. 
See Fig. 2�a�30�. However, the
dispersion anisotropy Notice that the dispersion anisotropy

�0 �vF�v�� completely alters the analytic structure of the
nematic mode spectral function. First of all, the pole ap-
proaches the continuum with a reduced residue.30 Moreover,
the threshold energy scale for the continuum at �=v 	 p� 	 as-
sociated with given momentum p� 	 for an isotropic dispersion,
splits into features at two energy scales E1�p�� and E2�p�� 
See
Fig. 2�b��. The spectral function B�q� ,�� can, in principle, be
measured with momentum resolved inelastic x-ray scatter-
ing. Observation of a nematic mode spectral function with
two distinct energy scales associated with a given momen-
tum will serve as direct evidence for nodal nematic critical-
ity. Moreover, the nontrivial analytic structure of the nematic
mode spectral function results in momentum dependent scat-
tering for quasiparticles.

IV. PROPERTIES OF NODAL FERMIONS AT
CRITICALITY

The critical nematic fluctuations have drastic effects on
the nature of nodal fermions. To illustrate this, here we will

0.25 0.50

10

20

ω/Λ

B(�p, ω)

0.25 0.5

4

8

B(�p, ω)

ω/Λ

(a)

(b)

FIG. 2. �Color online� The nematic mode spectral function

B̃�� , p�� plotted as a function of energy � /� at momentum p�
= �0.05� /vF ,0.15� /vF�, where � is a UV cutoff and vF is the
Fermi velocity. �a� Isotropic case vF=v�=v. �b� Anisotropic case
vF /v�=19.5. Notice how the singular feature at �=v��px

2+ py
2�

=0.16� for an isotropic dispersion splits into two features at �
=E1�p���0.05 and �=E2�p���0.15 for an anisotropic dispersion.
See Eq. �3.9�.
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discuss the single particle spectral function at the nodal nem-
atic QCP, which is defined in the vicinity of each node n
=1,2 as

An�p� ,�� � − 2 sgn���Im
Gn,11�p� ,��� . �4.1�

Here, Gn,11�p� ,�� is the �11� component of the �2�2� Nambu
matrix time ordered qp propagator:

Ĝn�p� ,�� � − i��n�p� ,���̄n�p� ,��
 . �4.2�

Note in the rest of this section that we will focus on the
vicinity of the n=1 node and omit the subscript n=1 to sim-
plify the notation.

A matrix-valued qp self-energy �̂�p� ,�� best characterizes
the effect of critical nematic fluctuations on the single fer-
mion spectral function. We can then express A�p� ,�� in terms

of �̂ in the standard manner. In the presence of �̂, the

Nambu matrix propagator for the nodal Fermions Ĝ is given

by Ĝ−1= Ĝ0
−1− �̂, where Ĝ0�p� ,��= ��I−vFpx�3−v�py�1�−1 is

the Nambu matrix propagator of the free nodal fermion
theory. By decomposing the matrix valued self-energy in a

basis of Pauli matrices as �̂�p� ,�����0�I−��1��3+��2��1, the
associated single particle spectral function is

A�p� ,�� = − 2 sgn���

�Im� �� − ��0�� + �vFpx − ��1��
�� − ��0��2 − �vFpx − ��1��2 − �v�py + ��2��2� .

�4.3�

From Eq. �4.3�, one can understand the effect of the different

components of �̂ on the physical properties of the fermions.
To order 1 /N, the �2�2� qp self-energy matrix at the

QCP is

�̂�p� ,�� =
i�c

2

2N
� d2k

�2��2

d��

2�
�1Ĝ0�k�,����1G�p� + k�,� + ��� ,

�4.4�

where G�k� ,�� is the large-N nematic mode propagator of Eq.
�3.8�. It can easily be checked that the components ��i��p� ,��
in the Pauli matrix basis are proportional to � ,vFpx ,v�py,
respectively, for i=0,1 ,2. As a result, the spectral function
Eq. �4.3� scales with � and p� �up to logarithmic corrections�.
Notice that ��i��p� ,�� have explicit nontrivial dependences on
p� and �. This momentum dependence makes the calculation
of the self-energy especially challenging in the presence of
the dispersion anisotropy vF�v�.

The critical theory depends on N and on the dispersion
anisotropy 
��vF−v�� /vF. In the isotropic limit of 
=0,
we obtained an analytic expression for the self-energy Eq.
�4.4�:24

�̂�p� ,�� =
��I − vpx�3 + vpy�1�

3�2N/4 �2

3
+ ln� �2

− �2 + v2	p� 	2��
�4.5�

for vF=v�=v. Note, however, that this self-energy renormal-
izes v� downward without affecting vF. Since there is a loga-

high

intensity

low

k y
(π
/a
)

1

-1
-1 1kx (π/a)

py=ω/v∆

py=ω/v∆~

pxpy

2θc

-0.027 -0.018 -0.009

30

60

A(px, 0, −9meV)

px [π/a]

px=ω/vF

A(0, py, −9meV)

py [π/a]

py=|ω|/v∆~py=|ω|/v∆

0.346

1

2

3

0.5190.173

(a)

(b)

(c)

FIG. 3. �Color online� Momentum distribution of the nodal
nematic QCP spectral function at an energy �=−9 meV for vF

=0.508 eV �� /a�−1, v�=0.026 eV �� /a�−1; vF /v�=19.5. Here, the

momentum p� is measured with respect to nodal point K� 1= �K ,K� in
a �rotated� local coordinate system, so that px and py lie, respec-
tively, along the nodal and tangential directions. �a� Contour plot. �c

is the critical angle at which a well defined qp peak departs from the
incoherent continuum. For ���c, the qp is well defined. �b� and �c�
are line cuts along the nodal direction and tangential direction,
respectively.
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rithmic divergence in this renormalization of v�, the aniso-
tropy ratio 
 is relevant at 
=0. Hence, it is clear that one
should consider the case of an anisotropic dispersion 
�0
from the beginning.

It is noteworthy that for any amount of anisotropy 
�0,
the analytic structure of the nodal fermion self-energy

�̂�p� ,�� becomes qualitatively different from that at 
=0
given in Eq. �4.5�. This is due to the existence of two energy
scales E1�p���E2�p�� 
see Eq. �3.9� for the definition of these
energy scales� entering the nematic mode propagator Eq.
�3.8� �see Fig. 2�. Such change in the analytic structure is not
perturbatively accessible in 
 from the 
=0 case. Hence, we

have numerically computed �̂ from Eq. �4.4� for an arbitrary

nonzero value of 
 by obtaining Im �̂ via a Monte Carlo

integration, and from this obtained Re �̂ by Kramers–
Kronig. We verified this method against the analytic expres-
sion Eq. �4.5� in the isotropic limit.

We present the nodal nematic QCP fermion spectral func-
tion A�p� ,��, which was obtained from the numerical calcu-

lation of �̂�p� ,��, in Figs. 3 and 4. Although we have carried
out the calculation for arbitrary values of velocities, we used
the dispersion vF=0.508 eV �� /a�−1 and v�

=0.026 eV �� /a�−1 with the velocity ratio vF /v�=19.5 in
our plots in order to demonstrate the effect of a large bare
velocity anisotropy. This dispersion was obtained by linear-
izing the phenomenological model Hamiltonian for BSCCO
of Norman et al.30 in our plots. For the value of the critical
coupling, we used �c

2 /2N�=0.3. Figure 3 shows the momen-
tum distribution of the spectral function at a fixed energy
�=−9 meV. The eccentricity of the ellipses in the contour
plot reflects the large bare velocity anisotropy. We also show
two line cuts or momentum distribution curves �MDCs�: one
along the nodal direction and the other along the tangential
direction. In Fig. 4, we show representative energy distribu-
tion curves �EDCs� at two fixed points in momentum space
�one point along the nodal direction and another point along
the tangential direction�.

On the basis of this numerical calculation of �̂�p� ,��, and
hence the spectral function A�p� ,��, we extract two principal
qualitative effects of the nematic critical fluctuations on the
nodal Fermion properties: �i� strongly momentum �angle� de-
pendent scattering and �ii� an anisotropic renormalization of
the already anisotropic bare velocities.

The presence of strongly angle-dependent scattering is
clearly shown in Fig. 3�a�. The qps are highly damped in the
direction normal to the FS �px direction� while they remain
sharply defined in the vicinity of the FS �py direction�. More
specifically, the momentum distribution of the spectral inten-
sity exhibits distinct behaviors in different wedges of p
space, which open about the FS at a critical angle, �c
=tan−1�v� /vF�. For ���c, the peaks in the spectral function
are broad with a width �	�	. For ���c, the MDC has sharp
peaks �the thin white lines� dispersing with a renormalized
velocity ṽ�, enhancing the eccentricity of the constant energy
ellipse. We have marked the boundary between different
wedges with dashed �pink� lines in Fig. 3�a�. Due to the
extreme bare anisotropy, the angle 2�c, which defines the
region in p� space with well defined qps, is rather small.

However, this narrow wedge can qualitatively affect the long
time properties of the nodal fermions.35

The anisotropic renormalization of the dispersion is par-
ticularly evident in Figs. 3�b� and 3�c�. The free nodal fer-
mion theory would have placed sharply defined peaks at p�
= �	w	 /vF ,0� and p� = �0, 	w	 /v�� in Fig. 3�b� and 3�c�, respec-
tively. Figure 3�b� indeed shows a peak �albeit broad� at the
position expected from the bare value of the vF, and hence,
vF is unrenormalized by 1 /N fluctuations. However, the po-
sition of a sharp peak in Fig. 3�c� has been shifted away from
the bare position. This shift is characterized by a renormal-
ization of v�→ ṽ�, where ṽ� is related to v� by

ṽ� = v��1 −
1

N
�� vF

v�
� − O� 1

N2�� . �4.6�

Here, ��vF /v�� is a positive function of vF /v�. As a result,
critical fluctuations effectively enhance the dispersion aniso-
tropy. Such anisotropic renormalization of the dispersion is
the result of the structure of the coupling between the nem-
atic mode and the nodal fermions and it holds order by order
in the 1 /N expansion.

One can readily understand the kinematic origins of the
sharply defined qps near the FS inside the narrow wedge in
Fig. 3�a�. E1�p�� defines the bare dispersion of a qp near the

nodal point K� 1= �K ,K�, while E2�p�� defines the bare disper-

sion of a qp near the nodal point K� 2= �K ,−K�. Since the
coupling to qps near both nodes determines the dynamics of
the nematic mode, it is the lesser of E1�p�� and E2�p�� that sets
the threshold for decay. For p� = �px ,0�= �−9 meV /vF ,0� nor-
mal to the FS 
Fig. 4�a��, E2�p��=v�	px	�E1�p��=vF	px	, so
the qp is highly damped. Notice the asymmetric line shape

9 18 27

A(-0.018π/a, 0, ω)

−ω [meV]

60

30

0

9 18 27

−ω [meV]

4

8

A(0, 0.35π/a, ω)

(a)

(b)

FIG. 4. �Color online� EDCs taken at two points in momentum
space. �a� At p� = �−9 meV /vF ,0�. �b� At p� = �0,9 meV /v��. These
are the momenta corresponding to the position of the peak in Fig.
3�b� and to the threshold in Fig. 3�c�, respectively.

KIM et al. PHYSICAL REVIEW B 77, 184514 �2008�

184514-6



which reflects the p� dependence of the self-energy. For p�
= �0, py�= �0,9 meV /v�� along the FS 
Fig. 4�b��, the nem-
atic fluctuations renormalize the qp velocity, v�→ ṽ�, and

the qp energy, Ẽ1�p��= ṽ� 	 py 	 �E1�p���E2�p��, so there is no
damping. It also produces an EDC with a “peak-dip-hump.”
The existence of entirely undamped quasiparticles inside
sharply defined k-space wedges is likely an artifact of the
first order corrections in the 1 /N expansion since higher or-
der terms are likely to introduce finite damping. It is there-
fore more plausible that the wedge delineates a crossover
from a regime in which the qps are highly damped to a
regime inside the wedge in which the qp peaks are relatively
narrow with a width that vanishes as one approaches the
tangential direction along the FS.

V. NEMATIC GLASS

Consider now the nodal nematic phase away from criti-
cality, ���c, where the nematic order parameter has a non-
zero expectation value, as in Eq. �3.5�. Because of the Ising
character of the ordered state, there is a gap in the nodal
nematic fluctuation spectrum, �N�TN���c−��. At energies
large compared to �N, the behavior of the spectral function
differs little from its behavior at criticality. However, at en-
ergies small compared to �N, the nodal qps are undamped,
but the nodal positions are shifted from the symmetric points
in k space by an amount �p���−�c, as shown in Fig. 1 and
the velocity tangential to the Fermi surface is renormalized,
as in Eq. �4.6�.

Unfortunately, quenched disorder �impurities� has a dev-
astating effect on nematic phases, and indeed, macroscopic
manifestations of electron nematic order have only been seen
in ultrapure systems.15,16 Specifically, the order parameter
theory in the presence of impurities is equivalent to the
random-field Ising model,36,37 and hence, nematic systems
are more generally expected to exhibit glassy dynamics
rather than a broken symmetry.38 Thus, more detailed spec-
troscopies and/or local measurements play an especially cen-
tral role in experimental studies of nematic phases. Here, we
sketch the effects of disorder on the single-particle spectral
function in the nematic phases. We consider two extremal
cases: short range and mesoscopic range disorder.

Short range disorder produces an imaginary part to the
self-energy, which smears the MDC at �=0 in all directions
about the nodal point. Due to the intrinsic dispersion aniso-
tropy, this broadened weight is severely elongated along the
tangential direction so the resulting MDC has a shape that
resembles a Fermi “arc.” However, the width of the MDC in
the normal direction is still proportional to the arc length.

In sufficiently clean systems, the effects of disorder are
only significant on longer distances, producing a “nematic
glass.” Here, we focus on the static effects, leaving out �im-
portant� dynamical effects generally expected in glassy
phases, such as hysteresis and noise. If each domain is large
enough to support a defined local nematic order, the variance
�2�	�	
	2 among domains amounts to a distribution of
nodal positions along the FS. In such a mesoscale glass
phase, a local measurement �such as STM� will see sharply
defined nodal quasiparticles at low enough energy, but a

measurement, such as ARPES, which averages over a large
area, will measure the domain averaged spectral function:

Ā�p� ,�� =� d	P�	�A0�px,py + 	/v�,�� , �5.1�

where P�	� is the probability density that 	 will shift the
position of the node by �py =	 /v� and A0�px , py ,�� is the
spectral function for free qps:

A0�px,py,�� =
�

E1�p��
��„� − E1�p��…
E1�p�� + vFpx�

+ �„� + E1�p��…
E1�p�� − vFpx�� , �5.2�

with E1�p�� given in Eq. �3.9�. For a Gaussian distribution of
	 with variance �, P�	�=e−	2/2�2

/�2�� and it is straight-
forward to show that the average spectral function in Eq.
�5.1� becomes

Ā�p� ,�� =� �

2�2 
�2 − �vFpx�2�
	�	

��2 − �vFpx�2

�
e−�v�py − ��2 − �vFpx�2�2/2�2

+ e−�v�py + ��2 − �vFpx�2�2/2�2
� . �5.3�

Note that this defines a Fermi arc with length � /v� with a
vanishing perpendicular width along the FS �px=0� at zero
energy �=0.

VI. DISCUSSION

In this paper, we have presented a phenomenological
theory of the nodal nematic QPT. Formally similar problems
arise in studies of the nodal quasiparticles near other
QPTs.9,26,27 In all these cases, the ordered phase preserves
the C4v symmetry, and the velocity anisotropy is irrelevant so
the fixed point is isotropic with emergent Lorenz invariance.
In the case of a nodal nematic critical point, the dispersion
anisotropy is enhanced at criticality. This has unforeseen ef-
fects on the single-particle spectral function.

We conclude with a few observations on the possible rel-
evance of a nodal nematic quantum criticality to the cuprate
physics, recognizing the danger of extrapolating large N re-
sults down to N=2. The previously cited evidence of a nem-
atic phase YBa2Cu3Oy near y�6.5 from1 transport aniso-
tropy measurements and from inelastic neutron scattering in
untwinned samples3 involves studies of materials with un-
usual purity and crystalline perfection. Nematic order lin-
early couples to spatial inhomogeneity and disorder, which
thus generically causes the ordered phase to be replaced by a
glassy �domain� phase. A glassy phase with anisotropic do-
mains has been seen in STM studies of underdoped
Bi2Sr2CaCu2O8+�.14 It is tempting to identify these structures
and the “Fermi arcs” seen in ARPES experiments on the
same material39 with the nematic glass. However, this inter-
pretation requires an extrapolation from the phase with
strong SC order where the theory is valid to the non-
superconducting pseudogap regime where the experiment is
carried out. Moreover, this interpretation is far from
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unique.40–42 A critical test of this interpretation is that as the
disorder is made increasingly weak, there will be a crossover
from a short range disorder behavior with a nodal point that
is broadened in all direction to a nematic glass regime with a
longer T=0 arc length but a narrower width 
with Eq. �5.3�
as the limiting case�. The existence of a nodal nematic
phase,43 which is related to ordered or fluctuating stripes, is
moderately clear6 in La2−xSrxCuO4 and related materials near
x=1 /8, but it seems likely that the critical phenomena in this
system will considerably be affected by quenched disorder.

The structure of the single-particle spectral function at the
nodal nematic QCP shown in Fig. 3 with sharp qps within a
narrow wedge around the FS but otherwise broad may pro-
vide a consistent explanation for both the observation of
broad qps in ARPES �Ref. 44� and of sharp qp interference
peaks in STM �Refs. 45 and 46� on Bi2Sr2CaCu2O8+�. Since
the wedge is so narrow due to the extreme dispersion aniso-
tropy, it is unlikely to be observed in a direct momentum
space probe. Hence, in ARPES, one is likely to only observe

broad qps. However, the interpretation of peaks in the Fou-
rier transform of STM on Bi2Sr2CaCu2O8+� in terms of qp
interference invoke the notion of coherent qps at the tips of
the equal energy ellipses �or “bananas” as it is frequently
referred to� along the FS.45,46 The narrow wedge provides a
natural and possibly unique mechanism for this interpreta-
tion. This aspect will be further analyzed in a future
publication.35
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