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An approximate equation of state is proposed for ferromagnets, with a particular reference to magnetic
refrigerants such as gadolinium. The equation applies for T�TC and an arbitrary magnetic field and is based
on Landau’s theory of second-order phase transitions, with Bloch’s 3/2 power law built in one of Landau’s
coefficients. The displacement of the maximum in the specific heat under an applied magnetic field is demon-
strated to be nonmonotonic: the maximum shifts toward lower temperatures in a weak field but toward higher
temperatures in a strong field.
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I. INTRODUCTION

Finding a single equation of state to describe the thermo-
dynamic properties of ferromagnets in a broad range of tem-
peratures and magnetic fields is a problem that has defied
generations of solid-state physicists. After the initial success
of Weiss’s molecular-field theory1 a century ago, the progress
toward this goal has been slow. Satisfactorily accurate ex-
pressions have been obtained only for some special cases:
the low temperatures,2–4 the vicinity of the Curie point,5 and
the paramagnetic region. The interest in equations of state for
magnetic materials has been rekindled in recent years in con-
nection with the rapid development of magnetic cooling.6,7

We shall therefore undertake an attempt at constructing a
wide-range equation of state for ferromagnets, with a par-
ticular emphasis on the archetypal magnetic refrigerant—
gadolinium.

As a framework for our phenomenological approach, we
take the known theory of second-order phase transitions of
Landau,8 hereafter referred to as Landau’s theory �LT�. The
applicability of this rather old theory to ferromagnets is still
a matter of great confusion. Thus, Belov9 came to a
conclusion—entirely based on experiment—that LT well de-
scribes ferromagnetic 3d metals and alloys. Unfortunately,
Belov’s statement was largely unheeded at the time when the
newer scaling theories were coming into fashion. The atti-
tude to LT has changed over the past decades; now its appli-
cability to, e.g., ferroelectrics is regarded as firmly
established.10,11 Many of the arguments put forward by Gin-
zburg and co-workers10,11 equally apply to ferromagnets.

The paper is structured as follows. Before turning to con-
structing the equation of state, a brief revision of the main
facts about LT is given in Sec. II. Special attention is paid to
those issues that supposedly give cause for regarding LT as
inaccurate. LT is often mixed up with its simplest version,
limited to an immediate neighborhood of the Curie point.
Sometimes LT is confused with mean-field theories in gen-
eral and has to bear the responsibility for their drawbacks. In
an attempt to measure the feature that LT �upon being appro-
priately extended� can describe, but other mean-field theories
cannot, a quantity termed as “characteristic quotient” �Q� is
introduced. Thereafter, in Sec. III, we proceed to construct-
ing the magnetic equation of state, and in Sec. IV, the caloric
equation of state.

Toward the end of the paper, we shall discuss an interest-
ing and unexpected phenomenon—the nonmonotonic dis-
placement of the heat-capacity peak under an applied mag-
netic field. This effect is proper to ferromagnets in general.
The interest in the subject is not purely academic because it
is closely related to another hotly debated issue—the exact
location of the maximum of the magnetocaloric �T effect
with respect to the Curie point.12

II. LANDAU’S THEORY AT FINITE �

A. Essential points in brief

The theory in its general form was first stated by Landau
in 1937.8 Here, we shall follow the 1947 version by
Ginzburg,13 which is specific to ferromagnets. Its starting
point is a thermodynamic potential written as an expansion
in even powers of magnetization M,

��M,H,T� = �0 + 1
2AM2 + 1

4BM4 + 1
6CM6 + ¯ − MH .

�1�

The coefficients of this expansion, �0 ,A ,B ,C , . . ., may de-
pend on temperature �as well as on further external thermo-
dynamic parameters such as pressure� but not on the mag-
netic field H. For simplicity, the system is assumed isotropic.
At thermal equilibrium, � must be a minimum with respect
to M,

��

�M
= AM + BM3 + CM5 + ¯ − H = 0. �2�

This is, in an implicit form, a magnetic equation of state—a
relation between M, H, and T. In terms of the so-called re-
duced magnetization and temperature,

� =
M

M0
, � =

T

TC
, �3�

where M0 is the saturation magnetization and TC is the Curie
temperature; Eq. �2� is conveniently rewritten as

H = a� + b�3 + c�5 + ¯ . �4�

The coefficients on the right-hand side of Eq. �4�, which are
regarded as functions of reduced temperature, are expanded
in a Taylor series about the Curie point, i.e., about �=1,
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a��� = a�1� + a��1��� − 1� + 1
2a��1��� − 1�2 + ¯ ,

b��� = b�1� + b��1��� − 1� + ¯ ,

c��� = c�1� + ¯ . �5�

In principle, the first two coefficients would have sufficed for
a study of the asymptotic behavior near the Curie point, i.e.,
when �→1, H→0, and � is infinitesimal. Here, however, we
have kept an extra coefficient c because we intend to inves-
tigate the case of finite 1−� and �. In doing so, we follow
the idea put forward by Ginzburg in his 1947 paper,13 even
though he himself thought such an extension to the theory
would be of little value. We certainly do not share his pessi-
mistic view on this matter.

An important special case in the theory of ferromagnetic
transformation is that of vanishing applied magnetic field,
H=0, when there is a sharp distinction between the paramag-
netic ��=0� and the spontaneously magnetized ���0�
states, so that a changeover from one to the other is neces-
sarily a phase transition. Like Landau and Ginzburg, we shall
limit ourselves to the more interesting case when this is a
second-order phase transition.

The simplest possibility to realize such a transition is by
demanding a change of sign of the first coefficient in Eq. �4�:
a�1�=0, while a��1��0 and b�1��0. In the ferromagnetic
phase ���0,H=0�, one can divide Eq. �4� by �, carry the
coefficient a�a��1���−1� over to the left-hand side of the
equation and then proceed to solving it for �. Thus, one
arrives at

� = 1 −
b�1�
a��1�

�2 − � c�1�
a��1�

−
b�1�b��1�
�a��1��2

+
a��1�

2a��1�� b�1�
a��1��2	�4 − ¯ . �6�

This presentation of � as an expansion in even powers of �,
with coefficients independent of � �any remaining depen-
dence on � can be eliminated by iterations�, is obviously
unique. We find it instructive to consider the dependence
���� rather than the more usual ���� for the following rea-
son: Let Q be the ratio of the coefficients of �4 and �2 in
expansion �6�,

Q =
factor of �4

factor of �2 =
c�1�
b�1�

−
b��1�
a��1�

+
a��1�b�1�
2�a��1��2 . �7�

This characteristic quotient determines how far below the
Curie point Landau’s asymptotic relation, 
�
� �1−��1/2, still
holds. It is obviously required that


�
 � Q−1/2 �8�

or


� − 1
 �
b�1�
a��1�

1

Q
. �9�

Being truly phenomenological, LT does not commit itself to
any specific value of Q. This often leads to a misunderstand-
ing. The theory is undeservedly blamed for contradicting ex-

periment, referring typically to the interval 0.3���0.8. The
misplaced expectation that Landau’s asymptotic relation,

�
� �1−��1/2, should be observable at such magnetizations is
usually inferred from the molecular-field theory, which se-
verely underestimates the characteristic quotient Q �see Sec.
II B�. In reality, Q is always greater than unity and the
asymptotic regime sets in at much smaller magnetizations.
This was confirmed by more careful measurements on Gd.14

B. How large is the characteristic quotient Q?

Since LT gives no answer to this question, it has to be
sought elsewhere. The promptest response comes from the
molecular-field theory �for simplicity, restricted here to
spin=1 / 2�.15 Its magnetic equation of state,

� = tanh
�

�
, �10�

is readily rewritten as

� =
2�

ln
1 + �

1 − �

= 1 − 1
3�2 − 4

45�4 − ¯ , �11�

whence by definition �7�, Q=4 /15�0.27. This is a grossly
underestimated value, as will soon become clear. The
molecular-field theory appears far too inaccurate near the
Curie point.

In a more refined approach, one has to be more specific,
so we choose the spin-1

2 Heisenberg model on the face-
centered cubic �fcc� lattice. The corresponding dependence
���� was numerically computed by Baker et al.16 by using
the Padé approximants to the high-temperature series. The
data points from Table III of Ref. 16 �open circles in Fig. 1�
are fitted to an expression similar to Eq. �6�,

0.0 0.1 0.2 0.3 0.4 0.5
0.80

0.85

0.90

0.95

1.00

�

�2

� = 1 - 0.11 �2 - 0.44 �4

FIG. 1. �Color online� Reduced temperature vs square of re-
duced magnetization in the spin-1 / 2 Heisenberg model on the fcc
lattice. The open circles are numerical data from Table III of Ref. 16
�Padé approximants�; the line represents Eq. �12�. The line thick-
ness reflects the degree of confidence expressed in Ref. 16—the
thin line in the top-left corner is drawn through poorly converged
data points.
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� = 1 − 0.11�2 − 0.44�4. �12�

The agreement in Fig. 1 is better where the Padé approxi-
mants were particularly well converged �according to the au-
thors’ opinion�. This portion of the fit is shown in bold. We
observe a noticeable curvature in the � vs �2 dependence
�Fig. 1�, which means that the term in �4 is indispensable for
0.3� 
�
�0.7. The linear regime is limited to much smaller
magnetizations, 
�
�0.1.

The value Q=4, which was deduced from a well-
converged high-temperature expansion,16 should be regarded
as a fairly accurate estimate of the characteristic quotient of
the spin-1

2 Heisenberg model. �This value refers to the fcc
lattice; similar although not as well-converged results were
obtained for the other two cubic lattices.16� Fitting experi-
mental data also produces values of Q greater than one �see
Table I�. �This is, of course, not to suggest that the Heisen-
berg model is directly applicable to the ferromagnetic 3d
metals.� Therefore, the validity of the asymptotic relation �
=1−const �2 is limited to 
�
�0.1 or 
1−�
�10−3. This was
experimentally observed in Gd �see Fig. 6 of Ref. 14�.

Obtaining data very close to the Curie point in experiment
and/or numerical calculations is usually more difficult. Thus,
the thin part of the fit in Fig. 1 is drawn through the points
regarded as less reliable by Baker et al.16 The bold portion of
the curve can be alternatively fitted to a simpler formula, �
=1−const �1/	 or �� 
1−�
	, with 	�1 / 3. This single-
exponent expression can be sometimes useful provided one
keeps in mind that it is an approximate relation, which is not
valid for very small �. We shall refer to this relation in a
qualitative discussion of the shape of the heat-capacity peak
in Sec. IV B.

That experimental data are conventionally fitted to ex-
pressions with adjustable exponents rather than to Landau’s
expansion �6� or �12� does not amount to a disagreement
between the experiment and LT11 provided the latter is used
in conjunction with an appropriate Q. As a matter of fact, no
instances of disagreement between the two are known to ex-
ist. The real problem is the use of the molecular-field Q,
which is an order of magnitude too small.

Incidentally, treating the spin-1 / 2 Heisenberg model in a
more sophisticated random-phase approximation brings little
improvement in this respect. From Eq. �33.11� in Tyablikov’s
book,17 one derives

Q =
C

3
�1 −

C

5

Z + 1

Z
� , �13�

where Z is the coordination number and C is the constant
defined by Eq. �33.13� of Ref. 17. For the fcc lattice �Z
=12, C=1.345�, Eq. �13� yields Q=0.32. Practically the
same value is obtained for the other cubic lattices. This is far
short of the target value, Q=4, and is only a minor improve-
ment on the molecular-field result, Q=0.27. Whatever the
drawbacks of the various approximate solutions to the
Heisenberg model in three dimensions may be, a realistically
high characteristic quotient Q is a prerequisite of any suc-
cessful phenomenological equation of state.

C. Limitations of Landau’s theory: Critical fluctuations

LT should not apply in the so-called fluctuation region,18

when the applied field is weak and at the same time the
temperature is very close to the critical point �i.e., when fluc-
tuations of the order parameter are not small in comparison
to its mean value�. The width of the critical interval is known
to be extremely small in the case of superconductors.19 For
ferroelectrics, this region is also rather narrow,19 and it is
believed that all phenomena observed so far are fully ac-
counted for by LT.10 However, ferromagnets are generally
thought to be strongly affected by fluctuations in a broad
range of temperatures around the Curie point. Let us briefly
reexamine the grounds for such a belief.

The main argument in favor of the fluctuations’ being im-
portant has been Ginzburg’s criterion.19 According to Gin-
zburg’s own estimates, the right-hand side of his inequality
�5b� for Ni is 0.1.19 That is, LT should apply to nickel only
if 
�−1
�0.1. However, in the paragraph following imme-
diately after the inequality �5b�, Ginzburg mentioned the
omission “for convenience” of a prefactor 1 /32
2. Unfortu-
nately, this “truncated” form of Ginzburg’s inequality was
later included in the textbook.18 Having allowed for the small
prefactor would have yielded a very different result:

�−1
�3�10−4. The latter places practically no limitation
on the use of LT for gadolinium since the purity of the best
samples is only 1�10−3.20

The second important argument against LT is the nonful-
fillment of its prediction for spontaneous magnetization, �
� �1−��1/2, where ��1. What is observed looks more like
�� �1−��1/3. On closer inspection, � appears to follow no
power law at all. As pointed out earlier by Ginzburg and

TABLE I. Values of parameters used in conjunction with Eqs. �15�–�20� to generate the curves shown in
Figs. 2–5. The values of Q in the last column were obtained from Eq. �22�.

Fixed parameters Adjustable parameters Derived

Metal M0

�emu/g�
TC

�K�
p � a0

�MOe�
Q

Gd 266 293 1.5 0.35 0.9 1.9

Ni 58 631 0.28 0.47 1.85 1.3

Fe 222 1044 0.25 0.18 3.3 4.6

Co 164 1390 0.25 0.43 3.7 1.5
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co-workers,10,11 such a behavior is not attributable to critical
fluctuations and is not indicative of any failure of LT. It is
merely a sign of proximity to the tricritical point—b is small,
c is non-negligible, and Q is large.

In conclusion, no deviations from LT near TC have yet
been reliably documented for ferromagnets. On the contrary,
careful measurements on Gd very close to the Curie point
have found Landau’s asymptotic behavior, �� �1−��1/2, �
�1, and � ��−1�−1, ��1.14 Apparently, critical fluctua-
tions are confined to a much narrower interval around TC
than previously thought. In this work, they are disregarded
altogether.

III. MAGNETIC EQUATION OF STATE

A. Main statements

In Sec. II, we have learned that LT provides a valid frame-
work for constructing equations of state of ferromagnets. The
simplest version of the theory, with Eq. �4� truncated after
the term in �3, is valid for small �, strictly speaking, infini-
tesimal. The interval of validity can be widened by including
in Eq. �4� the term in �5, as proposed by Ginzburg.13 Now,
we set ourselves a goal—to work out an approximate equa-
tion of state that would apply in all situations of practical
importance, i.e., for 
�
�1, 0���1, and arbitrary H. This
excludes temperatures significantly exceeding the Curie
point. In Sec. III, we shall concentrate on the magnetic equa-
tion of state �Eq. �4��. The caloric equation of state will be
dealt with in Sec. IV.

We postulate that the magnetic equation of state of a fer-
romagnet can be presented as Eq. �4�, �i� which has been
truncated after the term in �5, �ii� where the coefficients b
and c are independent of �, and �iii� the coefficient a depends
on � in such a way that Bloch’s 3/2 power law is fulfilled at
low temperatures,

a��� = a0
�3 − 1

1 + p�3/2 . �14�

Here, a0 and p are parameters.21

Taking into consideration the above three points, as well
as the normalization condition whereby �=1 at �=0 and H
=0, we rewrite Eq. �4� as follows:

H = a0�� �3 − 1

1 + p�3/2 + ��2 + �1 − ���4� , �15�

where �=b /a0. Alternatively, the equation of state can be
solved for �,

� = ��1 − 2u + p2u2 − pu�2/3, �16�

where

u =
1

2
���2 + �1 − ���4 −

H

a0�
� . �17�

The two forms of the equation of state complement each
other: while Eq. �15� can be used for fitting experimental
magnetization curves �� vs H at fixed ��, Eqs. �16� and �17�
are suitable for fitting temperature dependences of magneti-

zation at a fixed magnetic field. Both purposes would be
better served with a closed expression for ��� ,H�. This is not
obtainable, however, because Eq. �15� is a fifth-degree poly-
nomial in �.

A solution for � is possible in a special case, H=0. This
yields an expression for reduced spontaneous magnetization
���1�,

�2 =

��2 + 4�1 − ��
1 − �3

1 + p�3/2 − �

2�1 − ��
. �18�

At low temperatures, ��1, this simplifies to

� = 1 −
p

2�2 − ��
�3/2, �19�

which is Bloch’s 3/2 power law. By virtue of Eq. �14�, the
paramagnetic susceptibility, =M0 /a���, is given by

 =
M0

a0

1 + p�3/2

�3 − 1
. �20�

Let us finally express the characteristic quotient Q in terms
of the model parameters. To this end, we expand the depen-
dence ���� defined by Eqs. �16� and �17� with H=0 in a
power series,

� = 1 −
1 + p

3
��2 −

1 + p

3
�1 − � +

2 − p

6
�2��4 − ¯ .

�21�

By definition, Q is the ratio of the factor of �4 to that of �2,
i.e.,

Q =
1 − �

�
+

2 − p

6
� . �22�

In realistic situations �Q�1, 0���1 / 2, p�0�, the main
contribution to Q comes from the first term, which is equal to
the ratio c /b of the coefficients in Eq. �4�.

B. Comparison to experiment

The equation of state obtained in Sec. III A has been
tested by fitting available in the literature data on the four
elemental ferromagnets. The most topical one of them is ga-
dolinium metal. The interest in its equation of state is prima-
rily centered around the Curie point, TC=293 K, and is
stimulated by use in room-temperature magnetic cooling
devices.6,7

A set of single-crystalline Gd data was taken from a clas-
sical work of Nigh et al.22 The reduced spontaneous magne-
tization is plotted against reduced temperature in Fig. 2�a�.
To compute � and �, fixed values of saturation magnetiza-
tion, M0=266 emu /g, and Curie temperature, TC=293 K,
were used, which were both taken from Ref. 22. The data
points were fitted to Eq. �18�. The two adjustable parameters,
p and �, were determined as follows. First, p was chosen so
as to reproduce the low-temperature part of the dependence,
which according to Eq. �19� is insensitive to the value of �.
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Then, keeping the found p fixed, � was adjusted to fit the
high-temperature end of the curve. After a few iterations, the
process converged at p=1.5 and �=0.35.

The remaining free parameter a0 was deduced from the
inverse susceptibility data22 �Fig. 2�b��. Equation �20� with

a0=1.0 MOe can be seen to agree with experiment at tem-
peratures of up to three times the Curie point �Fig. 2�b�,
dashed line�. Following Ginzburg’s advice,13 however, a
slightly lower value, a0=0.9 MOe, was chosen instead,
which better fits the data near �as well as below� the Curie
point �see the solid line in Fig. 2�b��.

The best-fit parameters are collected in Table I. These
parameters were used to compute the ���� dependences by
means of Eqs. �16� and �17�. The calculated curves are pre-
sented in Fig. 2�c� as � vs � together with experimental
data.22 There is good agreement between theory and experi-
ment except in the spin reorientation region, ��0.7, where
the low-field data measured along �001� are no longer repre-
sentative of the full magnetization.

Nickel data are presented in Fig. 3. The spontaneous mag-
netization �Fig. 3�a�� was taken from two different
sources23,24 and normalized by using M0=58 emu /g and
TC=631 K,23,24 which were regarded as fixed values. The
data were fitted to Eq. �18� with p=0.28 and �=0.47. The
inverse susceptibility �Fig. 3�b�� yielded a0=1.85 MOe. Fi-
nally, these parameters were used in conjunction with Eq.
�15� to generate the magnetization curves displayed in Fig.
3�c�. The data points therein are from Table II of Ref. 24.
The abscissas were corrected for demagnetization following
the prescription of Weiss and Forrer.24 Some residual curva-
ture in the low-field region is attributable to domain effects
in the irregularly shaped sample.

Less detailed data are available for Fe and Co �Figs. 4 and
5, respectively�. Similarly to the previous, temperature de-
pendence of spontaneous magnetization �a� and inverse sus-
ceptibility �b� was used to determine p, �, and a0. The fitting
range for −1��� is rather narrow in both cases for different
reasons. Iron undergoes a structural phase transition at �
�1.1, where its susceptibility experiences a large discontinu-
ous change, whereas cobalt melts at ��1.27. Unfortunately,
no tabular data on ��� ,H�0� of iron or cobalt are available
in literature. What has been found perfectly fits the descrip-
tion formulated in Sec. III A.

C. Ab initio evaluation of the parameters

Let us briefly review the prospects of computing from
first principles the model parameters introduced in Sec. III A.
As follows from the discussion in Sec. II, in order for the
���� curve to have the right shape on approach to the Curie
point, it is crucial to find a realistic value of the characteristic
quotient Q or alternatively of the parameter �. The two quan-
tities are related through

Q �
1 − �

�
, �23�

which is just Eq. �22� without the small second term.
Evaluating Q proves a difficult task. It is no mere chance

that most models underestimate it by an order. The one ex-
ception is the high-temperature expansion,16 which suggests
that Q �or �� should be sought in the paramagnetic region. As
a rough estimate, one may take Q3 and �0.3.

The parameter p is obtainable from low-temperature cal-
culations. By writing Bloch’s law as4
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FIG. 2. Fitting experimental data on Gd �Ref. 22�. All param-
eters are as in Table I unless indicated otherwise. �a� Reduced spon-
taneous magnetization vs reduced temperature: filled circles—
experiment; solid line—Eq. �18�. �b� Reciprocal susceptibility vs
reduced temperature: circles—experiment ���� a axis, ��� c axis�;
solid line—Eq. �20� with a0=0.9 MOe; and dotted line—Eq. �20�
with a0=1.0 MOe. �c� Reduced magnetization vs reduced tempera-
ture at three indicated values of internal magnetic field: circles—
experiment; solid lines—Eqs. �16� and �17�.
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� = 1 −
�� 3

2�
8
3/2

g�B

M0
� kTC

D
�3/2

�3/2 �24�

and equating the prefactors of �3/2 in Eqs. �19� and �24�, one
gets

p =
�2 − ���� 3

2�
4
3/2

g�B

M0
� kTC

D
�3/2

. �25�

This expression is not particularly sensitive to the exact
value of �. Calculating the volume saturation magnetization
M0 in the density functional theory �DFT� is a matter of
routine. The spin-wave stiffness D is more difficult to evalu-
ate; this requires noncollinear electronic structure calcula-
tions. Nonetheless, solving this problem within the DFT can
be regarded as an accomplished task.30–32 The calculated val-
ues of D describe well the temperature variation of the spon-
taneous magnetization of ferromagnetic 3d metals �see Fig. 8
of Ref. 33�.
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FIG. 3. Fitting Ni data. All parameters are as in Table I. �a�
Reduced spontaneous magnetization vs reduced temperature: open
circles—experiment �Ref. 23�; filled circles—experiment �Ref. 24�;
and solid line—Eq. �18�. �b� Reciprocal susceptibility vs reduced
temperature: open circles—experiment �Ref. 25�; filled circles—
experiment �Ref. 26�; and solid line—Eq. �20�. �c� Reduced mag-
netization vs internal magnetic field at various fixed temperatures:
circles—experiment �Ref. 24�; solid lines—Eq. �15�.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

σ

τ

(a)

-2

-1

0

1

2

3

4

5

0.9 1 1.1 1.2

χ
−
1

(k
g
/e

m
u
)

τ

(b)

FIG. 4. Fitting Fe data. All parameters are as in Table I. �a�
Reduced spontaneous magnetization vs reduced temperature: open
circles—experiment �Ref. 23�; solid line—Eq. �18�. �b� Reciprocal
susceptibility vs reduced temperature: filled circles—experiment
�Ref. 26�; solid line—Eq. �20�.
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The susceptibility in the paramagnetic region can be
simulated by the classical Monte Carlo technique �prior de-
termination of exchange integrals� and fitted to Eq. �20�. This
yields the Curie temperature and the parameter a0. The fitting
has to be performed iteratively since the use of Eq. �20�
requires the knowledge of p, which in turn depends on TC

through Eq. �25�. As regards to practical implementation of
this algorithm, we note a recent work of Ruban et al.,34 re-
porting such Monte Carlo simulations for iron and nickel.
The numerical technique is clearly in need of further
perfection—only one −1�T� dependence out of five pre-
sented in Fig. 7 of Ref. 34 has the correct upward curvature.
On the whole, given that Ref. 34 was a first such attempt, the
method stands a fair chance of success.

Coming back to the evaluation of �, one of the possibili-
ties might be to use the relation

� =
M0

3

a0

3

4 , �26�

where  and 3 are the usual �linear� and the nonlinear sus-
ceptibilities, which are defined as coefficients in the power
expansion of the magnetization, M =H−3H3− ¯ . Both
quantities can be evaluated simultaneously in the same
Monte Carlo simulation, so calculating 3 does not involve
much extra effort. The advantage of Eq. �26� is that it con-
tains a temperature-independent �within the model� combina-
tion of  and 3 and therefore requires no fitting. Instead, it
may be averaged over a suitably chosen interval of tempera-
tures above the Curie point. However, no examples of such
calculations are yet to be found in literature.

IV. CALORIC EQUATION OF STATE

A. Entropy

We proceed from the thermodynamic potential �1� taken
in conjunction with the three assumptions made at the begin-
ning of Sec. III. Namely, expansion �1� is truncated after the
term in M6, the coefficients B and C are independent of
temperature, while A=M0a���, where a��� is given by Eq.
�14�. The entropy is the negative derivative of Eq. �1� with
respect to temperature, subject to a minimum condition �Eq.
�2��. The latter means that when taking the derivative, only
the coefficients in Eq. �1� should be regarded as temperature
dependent, but not the magnetization itself. Thus, we write

Smagn = −
1

TC
�0���� −

M0

2TC
a�����2. �27�

Of relevance to magnetocaloric applications is the so-called
isothermal magnetic entropy change,

�Smagn =
M0a����

2TC
��ini

2 − �fin
2 � , �28�

where by convention the initial state is at zero magnetic field
and the final state is at H�0. Therefore, �ini

2 as a function of
� is given by Eq. �18�. Unfortunately, �fin

2 �� ,H� cannot be
explicitly expressed. Another possibility is a parametric de-
scription of the �Smagn vs � curves by means of two func-
tions, �Smagn��fin� and ���fin�, where

�Smagn��fin� =
M0a�����fin��

2TC
��ini

2 ����fin�� − �fin
2 � , �29�

���� is given by Eqs. �16� and �17� and �fin is a parameter
running between zero and a nonzero value �1. The curves
displayed in Fig. 6�a� were obtained in this way by using the
parameters relevant to Gd from Table I. Each one of these
curves has a cuspidate maximum situated at the Curie point,
�=1. The provenance of the cusp is illustrated in Fig. 6�b�,
which shows two �2��� curves. One of them, with H�0, is
smooth, whereas the other one, with H=0, has a kink at �
=1. Thanks to the kink, the difference between the two plot-
ted quantities �equal to the length of the hatching in Fig. 6�
has a sharp maximum at �=1. Likewise, the −�Smagn���
curves in Fig. 6�a� have cuspidate maxima at �=1.
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FIG. 5. Fitting Co data. All parameters are as in Table I. �a�
Reduced spontaneous magnetization vs reduced temperature: data
points—experiment �Refs. 27 ���, 28 ���, and 29 ����; solid
line—Eq. �18�. �b� Reciprocal susceptibility vs reduced tempera-
ture: filled circles—experiment �Ref. 26�; solid line—Eq. �20�.
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The height of the peak is readily evaluated by substituting
�=1 and �ini=0 into Eq. �28�,

�Smax = −
M0a��1�

2TC
�fin

2 . �30�

The quantity �fin must satisfy Eq. �15�, which at �=1 sim-
plifies to

H = a0��fin
3 + a0�1 − ���fin

5 . �31�

Setting �fin expressed from Eq. �30� into Eq. �31�, we get

H = a0��S̃max
3/2 + a0�1 − ���S̃max

5/2 , �32�

where

�S̃max =
2TC

M0a��1�

�Smax
 =

2�1 + p�TC

3a0M0

�Smax
 . �33�

Equation �32� sheds some light onto the much discussed
question of how �Smax depends on magnetic field.35 Accord-
ing to Eq. �32�, the mean-field result, �Smax�H2/3,36 corre-
sponds to the low-field asymptotic behavior. In order for it to
be valid, �fin must be small,

�fin
2 �

�

1 − �
�34�

Here, the right-hand side is roughly the inverse characteristic
quotient �cf. Eq. �23��. Therefore, inequality �34� is equiva-
lent to Eq. �8�. In strong fields, the relation �Smax�H2/3 may
become inaccurate, as a gradual crossover to �Smax�H2/5

takes place. This is clearly visible in Fig. 3 of Ref. 35,
wherein the effective exponent of LaFe10.8Si2.2 becomes
clearly less than 2/3 when the applied field exceeds 100 kOe.
For Gd at H=100 kOe, we estimate �fin

2 �0.34, whereas
� / �1−���0.54. Away from the Curie point, Eq. �32� is not
valid due to the emergence of a term in �Smagn

1/2 on the right-
hand side.

B. Specific heat (H=0)

Differentiating Eq. �27� with respect to � and multiplying
the result by �, we arrive at the following general expression
for magnetic specific heat:

Cmagn = −
�

TC
��0���� +

M0

2
a�����2 +

M0

2
a����

���2�
� �

�
�35�

The most characteristic feature of the specific heat of a fer-
romagnet is a prominent peak near the Curie point, �=1. The
primary responsibility for shaping the peak is borne by the
last term in Eq. �35�. Its form can be further specified by
considering the cases of H=0 and H�0 separately. In Sec.
IV B, we limit ourselves to the former case.

From Eq. �15�, with H=0, we derive for ��1,

���2�
��

= −
a����

a0�� + 2�1 − ���2�
, �36�

where a��� is defined by Eq. �14�. At ��1, of course,
���2� /���0. Thus, in the absence of magnetic field, the spe-
cific heat of a ferromagnet is described by a conjunction of
two explicit expressions,

Cmagn��� = �−
�

TC
��0���� +

M0

2
a�����2��� −

M0�a�����2

2a0�� + 2�1 − ���2����	 if � � 1

−
�

TC
�0���� if � � 1� , �37�
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FIG. 6. �a� Negative magnetic entropy change induced in Gd by
a change in magnetic field from 0 to 20 or to 50 kOe, computed by
means of Eq. �29�. �b� Square of reduced magnetization of Gd vs
reduced temperature, which is obtained from Eq. �18� for H=0 and
from Eqs. �16� and �17� for H=20 kOe.
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where �2��� is given by Eq. �18�. The usual in LT disconti-
nuity at �=1 delimits the peak on the right and determines its
height,

�C =
M0�a��1��2

2�a0TC
=

9a0M0

2��1 + p�2TC
. �38�

The low-temperature slope of the peak has a pronounced
upward curvature, which gives an impression that the spe-
cific heat diverges. This happens because on approach to the
Curie point from below, the magnetization behaves as ap-
proximately �1−��1/3, therefore Cmagn����2� /��� �1−��−1/3.
This is, however, no genuine divergence—very close to the
Curie point, the magnetization enters the asymptotic regime,
�� �1−��1/2, and the specific heat tends to a finite limit, quite
according to LT. Critical fluctuations play no role here.

The sharp peak of the specific heat, which is brought
about by the last term in Eq. �35�, stands on a “pedestal”
produced by the first term ��0����. Zeroth-order Landau’s
coefficient �0��� appeared as early as in Eq. �1� but was
passed over in silence since it entered neither into the mag-
netic equation of state �Eqs. �2�, �4�, and �15�� nor into the
magnetic entropy change �Eq. �28��. Nevertheless, �0���
plays a very important role in the caloric equation of state. It
cannot be simply set to zero, as sometimes suggested. With-
out the first term, the magnetic entropy �Eq. �27�� would be
negative in the entire ferromagnetic region, ��1, which is of
course unphysical. Likewise, without the first term, the spe-
cific heat �Eq. �35�� would be negative at low temperatures,
��1, where the term in a���� would be dominant. In the
paramagnetic region, ��1, both Smagn and Cmagn would be
identically zero, which is unphysical too.

It is fair to say that, while the magnetic equation of state
hinged on the first Landau’s coefficient a���, the caloric
equation of state is mainly concerned with constructing Lan-
dau’s zeroth coefficient �0���. Without sufficient experimen-
tal data in tabular form, we are not in a position to give a
definitive solution to this problem. We shall merely state the
principles of constructing �0��� and then demonstrate on Gd
that this can be done without introducing new adjustable
parameters or changing the ones introduced above, in Sec.
III. The basic principle is as follows: the dependence �0���
should be constructed in such a way as to ensure the correct
asymptotic behavior of Smagn��� and Cmagn��� away from the
Curie point. At low temperatures, ��1, it should be Smagn
�Cmagn��3/2.4 At high temperatures, Cmagn must monotoni-
cally fall off to zero, while Smagn must monotonically grow,
approaching a nonzero limit S�. In the simplest case of lo-
calized spins S �relevant in particular to Gd�, S� is just
k ln�2S+1� per spin. Restricting ourselves to this special
case, we write �0��� as a two-term expression,

�0��� =
a0M0

2�1 + p�3/2�
−

pS

2�2 − ��
�� 5

2�
�� 3

2�NkTC�5/2�1 − e−�0/��3/2.

�39�

Here, N stands for the number of spins per unit mass �or
volume� and �0 is a parameter defined by the following con-
dition:

�0
3/2 =

2�2 − ��
pS

�� 3
2�

�� 5
2� ln�2S + 1� . �40�

The first term in Eq. �39� is constructed so as to achieve the
cancellation of the nonphysical negative contributions to
Smagn �Eq. �27�� and Cmagn �Eq. �35�� coming from the terms
in a���� and a����, respectively. The second term in Eq. �39�
ensures the correct high-temperature limit, Smagn
→Nk ln�2S+1� as �→�, as well as the spin-wave behavior
at ��1,

Cmagn =
15

4
Nk

�� 5
2�

�� 3
2�

pS

2�2 − ��
�3/2. �41�

The ratio of the two � functions is needed to correctly relate
the prefactors of �3/2 in Eq. �41� and in Bloch’s law �Eq.
�19��.4

Equation �39� is constructed in such a way as to provide
the right asymptotic behavior at �→0 and �→�, while
keeping the function �0��� possibly smooth and featureless,
as proper to a background. The latter is important, e.g., to
guarantee the monotonic decreasing of Cmagn��� at ��1.
Equation �39� is one of the simplest expressions endowed
with such properties, but is certainly not the only one. Its
second derivative—too cumbersome to be reproduced
here—forms in conjunction with Eqs. �18� and �37�, a closed
expression for Cmagn���.

This dependence calculated for Gd with the parameters
from Table I and S=7 /2 is shown in Fig. 7�b� �solid line�.
Figure 7�a� displays the total specific heat of Gd, Cmagn���
+Clat���, at H=0. The lattice contribution is Clat���
=NkfD�1.73��, where fD�x� is Debye’s function defined as
follows:

fD�x� = 9x3�
0

x t4etdt

�et − 1�2 , �42�

and 1.73 is the ratio TC /TD computed with the known Debye
temperature of Gd, TD=169 K.6

The calculated specific heat of Gd �solid line in Fig. 7�a��
bears close resemblance to that measured on Gd single crys-
tals �see Fig. 6 of Ref. 20�. The dotted curve in Fig. 7�a�—a
convolution of the solid curve with a Lorentzian of semi-
width ��=0.005—simulates the smearing out of the peak
observed in less pure samples.20

C. Specific heat in a nonzero magnetic field

If H�0, Eq. �36� is no longer valid and has to be replaced
by

���2�
��

= −
2a�����2

a��� + 3a0��2 + 5a0�1 − ���4 . �43�

As a result, Eq. �35� becomes
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Cmagn = −
�

TC
��0���� +

M0

2
a�����2

−
M0�a�����2�2

a��� + 3a0��2 + 5a0�1 − ���4	 , �44�

where �0��� and a��� are defined by Eqs. �39� and �14�,
respectively.

Now, the magnetization � cannot be expressed explicitly
as a function of �. However, the inverse dependence ���� is
given by Eqs. �16� and �17�. Therefore, the Cmagn vs � curves
can be described parametrically by means of a pair of ex-
plicit expressions, ���� and Cmagn����� ,��, where � is a pa-
rameter running between 0 and 1.

Two curves generated in such a way for Gd are shown in
Fig. 7�b� along with the zero-field specific heat. Apart from
the expected disappearance of the discontinuity and broaden-
ing of the peak, we observe that the position of the maximum
shifts in a rather peculiar fashion. Namely, in a relatively

weak field, H=10 kOe, the maximum is situated at �peak
�1, i.e., at a lower temperature than without the field. How-
ever, in a stronger field, H=50 kOe, the maximum is at
�peak�1. The nonmonotonic dependence of �peak on H ob-
tained in our calculations for Gd is summarized in Fig. 8
�solid line�. For small H, the function �peak�H� decreases. It
reaches a minimum at about H=4 kOe and starts to increase.
At about 24 kOe, it crosses the �peak=1 level and continues
to grow further.

Remarkably, the nonmonotonic behavior of the peak po-
sition is corroborated by experimental data on Gd from vari-
ous sources, as displayed in Fig. 8. However, the data have
not been analyzed in their entirety by the earlier workers, and
the change of trend has not been noticed so far. Thus,
Dan’kov et al.20 remarked that the peak shifts toward higher
temperatures in stronger fields but made no comment on the
fact that the 20 kOe dependence in their Fig. 7 peaks at a
distinctly lower temperature than the H=0 curve does.

Checking the literature on other ferromagnets, one finds
surprisingly little information on whither the maximum of
the specific heat shifts under a magnetic field. Thus, Korn
and Kohlhaas39 saw it move toward lower temperatures in
iron and nickel in a field range of H�22.5 kOe, whereas
Ahn et al.40 observed the opposite trend in EuO, although in
stronger fields, 10 kOe�H�100 kOe.

Going back to Fig. 8, we note a systematic overestimation
of �peak in strong fields, which is clearly attributable to the
too gently sloping background �0����. Constructing for �0���
a better expression than Eq. �39� is certainly desirable. As
regards to the nonmonotonic shape of the �peak�H� depen-
dence, it should be common to all ferromagnets. This is dem-
onstrated in Sec. IV D.

D. Whither the heat-capacity peak?

The aim of Sec. IV D is to demonstrate that the nonmono-
tonicity of the field-induced shift of the heat-capacity peak is
proper to all ferromagnets. To this end, we shall use LT in its
simplest form,8,13 in which c=0 is nil, b is positive and in-
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dependent of temperature, and a��� is given by a���−1�,
where a� is also positive and temperature independent. Equi-
librium condition �4� can now be solved for �,

� = 1 +
H − b�3

a��
, �45�

and this expression be used to eliminate � from the last term
of Eq. �44�, which then becomes

Cmagn = C0 +
M0a�

TC
�2H + a�� − b�3

H + 2b�3 . �46�

Here, C0 stands for the background term, −�TC
−1�0����, and

we note the disappearance of the term in a�.
It is convenient to introduce new variables, a dimension-

less magnetic field,

h = � b

a�
�3/2H

b
, �47�

and a new running parameter x,

x =
b

a�
�2. �48�

Equations �45� and �46�, rewritten in terms of the new vari-
ables,

� = 1 − x + hx−1/2, �49�

Cmagn = C0 + 2�C
hx + x3/2 − x5/2

h + 2x3/2 , �50�

are now regarded as a parametric description of the depen-
dence of Cmagn on �. Here, �C is the jump in the specific heat
at H=0,

�C =
M0�a��2

2bTC
. �51�

The position of the maximum in the specific heat �peak is
determined from the condition �Cmagn /�x=0. Neglecting the
weak temperature dependence of the background term C0,
this results in

h = 1
4x1/2�7x − 3 + �81x2 − 42x + 9� . �52�

The plus sign before the square root has been chosen to
ensure that hx−1/2→0 as x→0 and �peak→1 �cf. Eq. �49��.

Setting Eq. �52� into Eq. �49� and solving for x, we get

x = 1
6 �2 − �peak � �9�peak

2 − 8�peak� , �53�

which in conjunction with Eq. �52� provides a closed expres-
sion for h��peak�. It is a universal relation, independent of a�
or b. In Fig. 9, it is presented in a more digestible form as
�peak vs h. �An explicit expression for �peak�h� is, in principle,
obtainable but too cumbersome to be useful�.

The falling portion of the curve in Fig. 9 is obtained if one
takes the lower sign in Eq. �53�. It is a finite arc starting at
the point h=0, �peak=1. �According to Eqs. �52� and �53�, h
is undefined for x�0 or �peak�1�. In very weak fields,

�peak = 1 − � 3
4�2/5h2/5 �54�

and

Cmagn = C0 + �C�1 −
5

33/542/5h2/5� , �55�

i.e., the decrease in the peak’s abscissa and height is propor-
tional to H2/5.

The growing part of the curve corresponds to the upper
sign in Eq. �53�. Setting �peak=1 into Eq. �53�, we get x
=1 / 3 and find, hence, the abscissa of the crossing point, h1
=3−3/2�0.19. At this field value, the heat-capacity peak is
back to its initial position, where it was without the field.
According to Eq. �50�, at this point, Cmagn=C0+ 2

3�C, i.e.,
the elevation of the peak above the pedestal has reduced by a
third in comparison to what it was at h=0.

Both branches join together at �peak=8 / 9, as the radicand
in Eq. �53� vanishes. This corresponds to the minimum in
Fig. 9. Its abscissa is hmin= 2

81
�5 / 3�0.03, i.e., about one-

sixth of h1. The height of the maximum at this stage amounts
to C0+ 20

27�C.
A cartoon explanation of the nonmonotonic behavior of

the heat-capacity peak is presented in Fig. 10. An applied
magnetic field lowers the peak in a systematic way. The
demolition of the summit �hatched� produces extra entropy,
which is dumped where room permits—at the foot of the
peak on its high-temperature side. The net effect on the po-
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FIG. 9. Position of the maximum in the magnetic specific heat
of a ferromagnet against rescaled magnetic field, which is computed
by using Eqs. �52� and �53�.
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sition of the maximum depends on whether the top of the
displaced entropy heap reaches the level of the new summit.
If it does not �weak fields, Fig. 10�a��, the maximum is to the
left of its initial zero-field position. If it does �strong fields,
Fig. 10�b��, then the displaced entropy plays a role in the
shaping of the new summit, pulling it eventually toward
higher temperatures. �It is essential that the specific heat is
integrated with a weight factor 1 /T, so the hatched areas in
each panel are not equal�.

In this simple picture, the maximum shift of the peak to
the left can be estimated as the half-width of the zero-field
peak at 0.74 of its height above the background. �Recall that
the height of the peak in the leftmost position was 20 / 27
�0.74 of its height at H=0�. Accordingly, the rather broad
peak contemplated by the simplest version of LT shifts by as
much as 11% �or by 1

9TC�. In the more refined approach of
Sec IVB, the peak is much narrower �see Fig. 7�b��; there-
fore, under an applied field, it moves to the left by no more
than 1.5% �Fig. 8�.

Summarizing, the nonmonotonic field-induced displace-
ment of the maximum in the specific heat of ferromagnets is
an effect common to all of them. The �peak�h� dependence
obtained within the simplest version of LT �Fig. 9� is similar
to that calculated from the complete equation of state �Fig.
8�. Yet the resemblance is merely qualitative, the minimum
in Fig. 9 being much deeper.

V. CONCLUSION

We have constructed an equation of state suitable for fer-
romagnets in a broad interval of temperatures �T�TC� and
magnetic fields. Properly speaking, these are two distinct but
associated equations of state, a magnetic one, which relates
M with H and T, and a caloric one, for S vs H and T. Ex-

pressions derived for the former are in fair agreement with
available experimental data. Crucial to the success of the
new magnetic equation of state is a feature that mean-field
models usually lack—the ability to handle realistically high
values of the characteristic quotient Q.

As regards to the caloric equation of state, here, an im-
portant role is played by a background containing the deriva-
tives of Landau’s zeroth-order coefficient �0��� �which is of
no relevance to the magnetic equation of state�. This term is,
in particular, responsible for the short order above the Curie
point, which is observed as a high-temperature “tail” in the
specific heat. The proposed expression for �0��� contains no
fitting parameters in addition to those already present in the
magnetic equation of state and leads to qualitatively correct
results. Thus, the heat-capacity peak bears close resemblance
to that experimentally observed. There is still room for quan-
titative improvements—the background slopes off too gently
above and is not high enough at the Curie point. As a result,
the calculated zero-field peak is somewhat too low.

Among other properties strongly affected by �0���, one
should mention the field-induced displacement of the heat-
capacity peak. It has been demonstrated that such displace-
ment in ferromagnets is nonmonotonic with respect to the
intensity of the field. In weak fields, the maximum shifts
toward lower temperatures, the size of the shift being prin-
cipally determined by the shape of the upper part of the peak.
In strong fields, the maximum moves toward higher tempera-
tures. This rising part of the dependence �peak�H� is very
sensitive to the background term in the magnetic specific
heat, which can be utilized for fine tuning �0���.
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